compaction.c 75.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
11
#include <linux/cpu.h>
12 13 14 15
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
16
#include <linux/sched/signal.h>
17
#include <linux/backing-dev.h>
18
#include <linux/sysctl.h>
19
#include <linux/sysfs.h>
20
#include <linux/page-isolation.h>
21
#include <linux/kasan.h>
22 23
#include <linux/kthread.h>
#include <linux/freezer.h>
24
#include <linux/page_owner.h>
25
#include <linux/psi.h>
26 27
#include "internal.h"

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

43 44
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

45 46 47
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

48 49 50 51 52
#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)

53 54 55
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
56
	unsigned long high_pfn = 0;
57 58

	list_for_each_entry_safe(page, next, freelist, lru) {
59
		unsigned long pfn = page_to_pfn(page);
60 61
		list_del(&page->lru);
		__free_page(page);
62 63
		if (pfn > high_pfn)
			high_pfn = pfn;
64 65
	}

66
	return high_pfn;
67 68
}

69
static void split_map_pages(struct list_head *list)
70
{
71 72 73 74 75 76 77 78 79 80
	unsigned int i, order, nr_pages;
	struct page *page, *next;
	LIST_HEAD(tmp_list);

	list_for_each_entry_safe(page, next, list, lru) {
		list_del(&page->lru);

		order = page_private(page);
		nr_pages = 1 << order;

81
		post_alloc_hook(page, order, __GFP_MOVABLE);
82 83
		if (order)
			split_page(page, order);
84

85 86 87 88
		for (i = 0; i < nr_pages; i++) {
			list_add(&page->lru, &tmp_list);
			page++;
		}
89
	}
90 91

	list_splice(&tmp_list, list);
92 93
}

94
#ifdef CONFIG_COMPACTION
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
int PageMovable(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	if (!__PageMovable(page))
		return 0;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
		return 1;

	return 0;
}
EXPORT_SYMBOL(PageMovable);

void __SetPageMovable(struct page *page, struct address_space *mapping)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__SetPageMovable);

void __ClearPageMovable(struct page *page)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	/*
	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
	 * flag so that VM can catch up released page by driver after isolation.
	 * With it, VM migration doesn't try to put it back.
	 */
	page->mapping = (void *)((unsigned long)page->mapping &
				PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__ClearPageMovable);

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

204 205 206 207 208 209 210 211 212 213
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

214 215 216 217
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218
	zone->compact_cached_free_pfn =
219
				pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 221
}

222
/*
223 224 225
 * Compound pages of >= pageblock_order should consistenly be skipped until
 * released. It is always pointless to compact pages of such order (if they are
 * migratable), and the pageblocks they occupy cannot contain any free pages.
226
 */
227
static bool pageblock_skip_persistent(struct page *page)
228
{
229
	if (!PageCompound(page))
230
		return false;
231 232 233 234 235 236 237

	page = compound_head(page);

	if (compound_order(page) >= pageblock_order)
		return true;

	return false;
238 239
}

240 241 242 243 244
static bool
__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
							bool check_target)
{
	struct page *page = pfn_to_online_page(pfn);
245
	struct page *block_page;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	struct page *end_page;
	unsigned long block_pfn;

	if (!page)
		return false;
	if (zone != page_zone(page))
		return false;
	if (pageblock_skip_persistent(page))
		return false;

	/*
	 * If skip is already cleared do no further checking once the
	 * restart points have been set.
	 */
	if (check_source && check_target && !get_pageblock_skip(page))
		return true;

	/*
	 * If clearing skip for the target scanner, do not select a
	 * non-movable pageblock as the starting point.
	 */
	if (!check_source && check_target &&
	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
		return false;

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	/* Ensure the start of the pageblock or zone is online and valid */
	block_pfn = pageblock_start_pfn(pfn);
	block_page = pfn_to_online_page(max(block_pfn, zone->zone_start_pfn));
	if (block_page) {
		page = block_page;
		pfn = block_pfn;
	}

	/* Ensure the end of the pageblock or zone is online and valid */
	block_pfn += pageblock_nr_pages;
	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
	end_page = pfn_to_online_page(block_pfn);
	if (!end_page)
		return false;

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	/*
	 * Only clear the hint if a sample indicates there is either a
	 * free page or an LRU page in the block. One or other condition
	 * is necessary for the block to be a migration source/target.
	 */
	do {
		if (pfn_valid_within(pfn)) {
			if (check_source && PageLRU(page)) {
				clear_pageblock_skip(page);
				return true;
			}

			if (check_target && PageBuddy(page)) {
				clear_pageblock_skip(page);
				return true;
			}
		}

		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
	} while (page < end_page);

	return false;
}

311 312 313 314 315
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
316
static void __reset_isolation_suitable(struct zone *zone)
317
{
318
	unsigned long migrate_pfn = zone->zone_start_pfn;
319
	unsigned long free_pfn = zone_end_pfn(zone) - 1;
320 321 322 323 324 325 326
	unsigned long reset_migrate = free_pfn;
	unsigned long reset_free = migrate_pfn;
	bool source_set = false;
	bool free_set = false;

	if (!zone->compact_blockskip_flush)
		return;
327

328
	zone->compact_blockskip_flush = false;
329

330 331 332 333 334 335 336 337
	/*
	 * Walk the zone and update pageblock skip information. Source looks
	 * for PageLRU while target looks for PageBuddy. When the scanner
	 * is found, both PageBuddy and PageLRU are checked as the pageblock
	 * is suitable as both source and target.
	 */
	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
					free_pfn -= pageblock_nr_pages) {
338 339
		cond_resched();

340 341 342 343 344 345 346 347 348
		/* Update the migrate PFN */
		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
		    migrate_pfn < reset_migrate) {
			source_set = true;
			reset_migrate = migrate_pfn;
			zone->compact_init_migrate_pfn = reset_migrate;
			zone->compact_cached_migrate_pfn[0] = reset_migrate;
			zone->compact_cached_migrate_pfn[1] = reset_migrate;
		}
349

350 351 352 353 354 355 356 357
		/* Update the free PFN */
		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
		    free_pfn > reset_free) {
			free_set = true;
			reset_free = free_pfn;
			zone->compact_init_free_pfn = reset_free;
			zone->compact_cached_free_pfn = reset_free;
		}
358
	}
359

360 361 362 363 364 365
	/* Leave no distance if no suitable block was reset */
	if (reset_migrate >= reset_free) {
		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
		zone->compact_cached_free_pfn = free_pfn;
	}
366 367
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
/*
 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 * locks are not required for read/writers. Returns true if it was already set.
 */
static bool test_and_set_skip(struct compact_control *cc, struct page *page,
							unsigned long pfn)
{
	bool skip;

	/* Do no update if skip hint is being ignored */
	if (cc->ignore_skip_hint)
		return false;

	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
		return false;

	skip = get_pageblock_skip(page);
	if (!skip && !cc->no_set_skip_hint)
		set_pageblock_skip(page);

	return skip;
}

static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
{
	struct zone *zone = cc->zone;

	pfn = pageblock_end_pfn(pfn);

	/* Set for isolation rather than compaction */
	if (cc->no_set_skip_hint)
		return;

	if (pfn > zone->compact_cached_migrate_pfn[0])
		zone->compact_cached_migrate_pfn[0] = pfn;
	if (cc->mode != MIGRATE_ASYNC &&
	    pfn > zone->compact_cached_migrate_pfn[1])
		zone->compact_cached_migrate_pfn[1] = pfn;
}

423 424
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
425
 * future. The information is later cleared by __reset_isolation_suitable().
426
 */
427
static void update_pageblock_skip(struct compact_control *cc,
428
			struct page *page, unsigned long pfn)
429
{
430
	struct zone *zone = cc->zone;
431

432
	if (cc->no_set_skip_hint)
433 434
		return;

435 436 437
	if (!page)
		return;

438
	set_pageblock_skip(page);
439

440
	/* Update where async and sync compaction should restart */
441 442
	if (pfn < zone->compact_cached_free_pfn)
		zone->compact_cached_free_pfn = pfn;
443 444 445 446 447 448 449 450
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

451
static inline bool pageblock_skip_persistent(struct page *page)
452 453 454 455 456
{
	return false;
}

static inline void update_pageblock_skip(struct compact_control *cc,
457
			struct page *page, unsigned long pfn)
458 459
{
}
460 461 462 463 464 465 466 467 468 469

static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
{
}

static bool test_and_set_skip(struct compact_control *cc, struct page *page,
							unsigned long pfn)
{
	return false;
}
470 471
#endif /* CONFIG_COMPACTION */

472 473
/*
 * Compaction requires the taking of some coarse locks that are potentially
474 475 476 477
 * very heavily contended. For async compaction, trylock and record if the
 * lock is contended. The lock will still be acquired but compaction will
 * abort when the current block is finished regardless of success rate.
 * Sync compaction acquires the lock.
478
 *
479
 * Always returns true which makes it easier to track lock state in callers.
480
 */
481
static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
482
						struct compact_control *cc)
483
{
484 485 486 487 488 489
	/* Track if the lock is contended in async mode */
	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
		if (spin_trylock_irqsave(lock, *flags))
			return true;

		cc->contended = true;
490
	}
491

492
	spin_lock_irqsave(lock, *flags);
493
	return true;
494 495
}

496 497
/*
 * Compaction requires the taking of some coarse locks that are potentially
498 499 500 501 502 503 504
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
505
 *
506 507 508 509
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
510
 */
511 512
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
513
{
514 515 516 517
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
518

519
	if (fatal_signal_pending(current)) {
520
		cc->contended = true;
521 522
		return true;
	}
523

524
	cond_resched();
525 526 527 528

	return false;
}

529
/*
530 531 532
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
533
 */
534
static unsigned long isolate_freepages_block(struct compact_control *cc,
535
				unsigned long *start_pfn,
536 537
				unsigned long end_pfn,
				struct list_head *freelist,
538
				unsigned int stride,
539
				bool strict)
540
{
541
	int nr_scanned = 0, total_isolated = 0;
542
	struct page *cursor;
543
	unsigned long flags = 0;
544
	bool locked = false;
545
	unsigned long blockpfn = *start_pfn;
546
	unsigned int order;
547

548 549 550 551
	/* Strict mode is for isolation, speed is secondary */
	if (strict)
		stride = 1;

552 553
	cursor = pfn_to_page(blockpfn);

554
	/* Isolate free pages. */
555
	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
556
		int isolated;
557 558
		struct page *page = cursor;

559 560 561 562 563 564 565 566 567 568
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

569
		nr_scanned++;
570
		if (!pfn_valid_within(blockpfn))
571 572
			goto isolate_fail;

573 574 575 576 577 578 579
		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
580 581
			const unsigned int order = compound_order(page);

582
			if (likely(order < MAX_ORDER)) {
583 584
				blockpfn += (1UL << order) - 1;
				cursor += (1UL << order) - 1;
585 586 587 588
			}
			goto isolate_fail;
		}

589
		if (!PageBuddy(page))
590
			goto isolate_fail;
591 592

		/*
593 594 595 596 597
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
598
		 */
599
		if (!locked) {
600
			locked = compact_lock_irqsave(&cc->zone->lock,
601
								&flags, cc);
602

603 604 605 606
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
607

608 609 610
		/* Found a free page, will break it into order-0 pages */
		order = page_order(page);
		isolated = __isolate_free_page(page, order);
611 612
		if (!isolated)
			break;
613
		set_page_private(page, order);
614

615
		total_isolated += isolated;
616
		cc->nr_freepages += isolated;
617 618
		list_add_tail(&page->lru, freelist);

619 620 621
		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
			blockpfn += isolated;
			break;
622
		}
623 624 625 626
		/* Advance to the end of split page */
		blockpfn += isolated - 1;
		cursor += isolated - 1;
		continue;
627 628 629 630 631 632 633

isolate_fail:
		if (strict)
			break;
		else
			continue;

634 635
	}

636 637 638
	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

639 640 641 642 643 644 645
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

646 647 648
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

649 650 651
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

652 653 654 655 656
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
657
	if (strict && blockpfn < end_pfn)
658 659
		total_isolated = 0;

660
	cc->total_free_scanned += nr_scanned;
661
	if (total_isolated)
662
		count_compact_events(COMPACTISOLATED, total_isolated);
663 664 665
	return total_isolated;
}

666 667
/**
 * isolate_freepages_range() - isolate free pages.
668
 * @cc:        Compaction control structure.
669 670 671 672 673 674 675 676 677 678 679
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
680
unsigned long
681 682
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
683
{
684
	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
685 686
	LIST_HEAD(freelist);

687
	pfn = start_pfn;
688
	block_start_pfn = pageblock_start_pfn(pfn);
689 690
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
691
	block_end_pfn = pageblock_end_pfn(pfn);
692 693

	for (; pfn < end_pfn; pfn += isolated,
694
				block_start_pfn = block_end_pfn,
695
				block_end_pfn += pageblock_nr_pages) {
696 697
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
698 699 700

		block_end_pfn = min(block_end_pfn, end_pfn);

701 702 703 704 705 706
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
707 708
			block_start_pfn = pageblock_start_pfn(pfn);
			block_end_pfn = pageblock_end_pfn(pfn);
709 710 711
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

712 713
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
714 715
			break;

716
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
717
					block_end_pfn, &freelist, 0, true);
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

734
	/* __isolate_free_page() does not map the pages */
735
	split_map_pages(&freelist);
736 737 738 739 740 741 742 743 744 745 746

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

747 748 749
/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
750
	unsigned long active, inactive, isolated;
751

M
Mel Gorman 已提交
752 753 754 755 756 757
	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
758

759
	return isolated > (inactive + active) / 2;
760 761
}

762
/**
763 764
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
765
 * @cc:		Compaction control structure.
766 767 768
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
769 770
 *
 * Isolate all pages that can be migrated from the range specified by
771 772 773 774
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
775
 *
776 777 778
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
779
 */
780 781 782
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
783
{
784
	struct zone *zone = cc->zone;
785
	unsigned long nr_scanned = 0, nr_isolated = 0;
786
	struct lruvec *lruvec;
787
	unsigned long flags = 0;
788
	bool locked = false;
789
	struct page *page = NULL, *valid_page = NULL;
790
	unsigned long start_pfn = low_pfn;
791 792
	bool skip_on_failure = false;
	unsigned long next_skip_pfn = 0;
793
	bool skip_updated = false;
794 795 796 797 798 799 800

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
801
		/* async migration should just abort */
802
		if (cc->mode == MIGRATE_ASYNC)
803
			return 0;
804

805 806 807
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
808
			return 0;
809 810
	}

811
	cond_resched();
812

813 814 815 816 817
	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
		skip_on_failure = true;
		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
	}

818 819
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
820

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
		if (skip_on_failure && low_pfn >= next_skip_pfn) {
			/*
			 * We have isolated all migration candidates in the
			 * previous order-aligned block, and did not skip it due
			 * to failure. We should migrate the pages now and
			 * hopefully succeed compaction.
			 */
			if (nr_isolated)
				break;

			/*
			 * We failed to isolate in the previous order-aligned
			 * block. Set the new boundary to the end of the
			 * current block. Note we can't simply increase
			 * next_skip_pfn by 1 << order, as low_pfn might have
			 * been incremented by a higher number due to skipping
			 * a compound or a high-order buddy page in the
			 * previous loop iteration.
			 */
			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
		}

843 844 845 846 847 848
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
849
		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
850 851
								&locked, cc))
			break;
852

853
		if (!pfn_valid_within(low_pfn))
854
			goto isolate_fail;
855
		nr_scanned++;
856 857

		page = pfn_to_page(low_pfn);
858

859 860 861 862 863 864 865 866 867 868 869
		/*
		 * Check if the pageblock has already been marked skipped.
		 * Only the aligned PFN is checked as the caller isolates
		 * COMPACT_CLUSTER_MAX at a time so the second call must
		 * not falsely conclude that the block should be skipped.
		 */
		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
				low_pfn = end_pfn;
				goto isolate_abort;
			}
870
			valid_page = page;
871
		}
872

873
		/*
874 875 876 877
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
878
		 */
879 880 881 882 883 884 885 886 887 888
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
889
			continue;
890
		}
891

892
		/*
893 894 895 896 897
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
898
		 */
899
		if (PageCompound(page)) {
900
			const unsigned int order = compound_order(page);
901

902
			if (likely(order < MAX_ORDER))
903
				low_pfn += (1UL << order) - 1;
904
			goto isolate_fail;
905 906
		}

907 908 909 910 911 912 913 914 915 916 917 918 919
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU and non-lru movable pages.
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			/*
			 * __PageMovable can return false positive so we need
			 * to verify it under page_lock.
			 */
			if (unlikely(__PageMovable(page)) &&
					!PageIsolated(page)) {
				if (locked) {
920
					spin_unlock_irqrestore(zone_lru_lock(zone),
921 922 923 924
									flags);
					locked = false;
				}

925
				if (!isolate_movable_page(page, isolate_mode))
926 927 928
					goto isolate_success;
			}

929
			goto isolate_fail;
930
		}
931

932 933 934 935 936 937 938
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
939
			goto isolate_fail;
940

941 942 943 944 945 946 947
		/*
		 * Only allow to migrate anonymous pages in GFP_NOFS context
		 * because those do not depend on fs locks.
		 */
		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
			goto isolate_fail;

948 949
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
950
			locked = compact_lock_irqsave(zone_lru_lock(zone),
951
								&flags, cc);
952 953 954 955 956 957 958

			/* Try get exclusive access under lock */
			if (!skip_updated) {
				skip_updated = true;
				if (test_and_set_skip(cc, page, low_pfn))
					goto isolate_abort;
			}
959

960
			/* Recheck PageLRU and PageCompound under lock */
961
			if (!PageLRU(page))
962
				goto isolate_fail;
963 964 965 966 967 968 969

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
970
				low_pfn += (1UL << compound_order(page)) - 1;
971
				goto isolate_fail;
972
			}
973 974
		}

M
Mel Gorman 已提交
975
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
976

977
		/* Try isolate the page */
978
		if (__isolate_lru_page(page, isolate_mode) != 0)
979
			goto isolate_fail;
980

981
		VM_BUG_ON_PAGE(PageCompound(page), page);
982

983
		/* Successfully isolated */
984
		del_page_from_lru_list(page, lruvec, page_lru(page));
985 986
		inc_node_page_state(page,
				NR_ISOLATED_ANON + page_is_file_cache(page));
987 988

isolate_success:
989
		list_add(&page->lru, &cc->migratepages);
990
		cc->nr_migratepages++;
991
		nr_isolated++;
992

993 994
		/*
		 * Avoid isolating too much unless this block is being
995 996 997
		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
		 * or a lock is contended. For contention, isolate quickly to
		 * potentially remove one source of contention.
998
		 */
999 1000
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
		    !cc->rescan && !cc->contended) {
1001
			++low_pfn;
1002
			break;
1003
		}
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

		continue;
isolate_fail:
		if (!skip_on_failure)
			continue;

		/*
		 * We have isolated some pages, but then failed. Release them
		 * instead of migrating, as we cannot form the cc->order buddy
		 * page anyway.
		 */
		if (nr_isolated) {
			if (locked) {
1017
				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
				locked = false;
			}
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			nr_isolated = 0;
		}

		if (low_pfn < next_skip_pfn) {
			low_pfn = next_skip_pfn - 1;
			/*
			 * The check near the loop beginning would have updated
			 * next_skip_pfn too, but this is a bit simpler.
			 */
			next_skip_pfn += 1UL << cc->order;
		}
1033 1034
	}

1035 1036 1037 1038 1039 1040 1041
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

1042
isolate_abort:
1043
	if (locked)
1044
		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
1045

1046
	/*
1047 1048 1049 1050 1051 1052
	 * Updated the cached scanner pfn once the pageblock has been scanned
	 * Pages will either be migrated in which case there is no point
	 * scanning in the near future or migration failed in which case the
	 * failure reason may persist. The block is marked for skipping if
	 * there were no pages isolated in the block or if the block is
	 * rescanned twice in a row.
1053
	 */
1054
	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1055 1056 1057 1058
		if (valid_page && !skip_updated)
			set_pageblock_skip(valid_page);
		update_cached_migrate(cc, low_pfn);
	}
1059

1060 1061
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
1062

1063
	cc->total_migrate_scanned += nr_scanned;
1064
	if (nr_isolated)
1065
		count_compact_events(COMPACTISOLATED, nr_isolated);
1066

1067 1068 1069
	return low_pfn;
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
1084
	unsigned long pfn, block_start_pfn, block_end_pfn;
1085 1086 1087

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
1088
	block_start_pfn = pageblock_start_pfn(pfn);
1089 1090
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
1091
	block_end_pfn = pageblock_end_pfn(pfn);
1092 1093

	for (; pfn < end_pfn; pfn = block_end_pfn,
1094
				block_start_pfn = block_end_pfn,
1095 1096 1097 1098
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

1099 1100
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
1101 1102 1103 1104 1105
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

1106
		if (!pfn)
1107
			break;
1108 1109 1110

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
1111 1112 1113 1114 1115
	}

	return pfn;
}

1116 1117
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
1118

1119 1120 1121
static bool suitable_migration_source(struct compact_control *cc,
							struct page *page)
{
1122 1123
	int block_mt;

1124 1125 1126
	if (pageblock_skip_persistent(page))
		return false;

1127
	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1128 1129
		return true;

1130 1131 1132 1133 1134 1135
	block_mt = get_pageblock_migratetype(page);

	if (cc->migratetype == MIGRATE_MOVABLE)
		return is_migrate_movable(block_mt);
	else
		return block_mt == cc->migratetype;
1136 1137
}

1138
/* Returns true if the page is within a block suitable for migration to */
1139 1140
static bool suitable_migration_target(struct compact_control *cc,
							struct page *page)
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

1153 1154 1155
	if (cc->ignore_block_suitable)
		return true;

1156
	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1157
	if (is_migrate_movable(get_pageblock_migratetype(page)))
1158 1159 1160 1161 1162 1163
		return true;

	/* Otherwise skip the block */
	return false;
}

1164 1165 1166 1167 1168 1169
static inline unsigned int
freelist_scan_limit(struct compact_control *cc)
{
	return (COMPACT_CLUSTER_MAX >> cc->fast_search_fail) + 1;
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
/*
 * Used when scanning for a suitable migration target which scans freelists
 * in reverse. Reorders the list such as the unscanned pages are scanned
 * first on the next iteration of the free scanner
 */
static void
move_freelist_head(struct list_head *freelist, struct page *freepage)
{
	LIST_HEAD(sublist);

	if (!list_is_last(freelist, &freepage->lru)) {
		list_cut_before(&sublist, freelist, &freepage->lru);
		if (!list_empty(&sublist))
			list_splice_tail(&sublist, freelist);
	}
}

/*
 * Similar to move_freelist_head except used by the migration scanner
 * when scanning forward. It's possible for these list operations to
 * move against each other if they search the free list exactly in
 * lockstep.
 */
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
static void
move_freelist_tail(struct list_head *freelist, struct page *freepage)
{
	LIST_HEAD(sublist);

	if (!list_is_first(freelist, &freepage->lru)) {
		list_cut_position(&sublist, freelist, &freepage->lru);
		if (!list_empty(&sublist))
			list_splice_tail(&sublist, freelist);
	}
}

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
static void
fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
{
	unsigned long start_pfn, end_pfn;
	struct page *page = pfn_to_page(pfn);

	/* Do not search around if there are enough pages already */
	if (cc->nr_freepages >= cc->nr_migratepages)
		return;

	/* Minimise scanning during async compaction */
	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
		return;

	/* Pageblock boundaries */
	start_pfn = pageblock_start_pfn(pfn);
	end_pfn = min(start_pfn + pageblock_nr_pages, zone_end_pfn(cc->zone));

	/* Scan before */
	if (start_pfn != pfn) {
1235
		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1236 1237 1238 1239 1240 1241 1242
		if (cc->nr_freepages >= cc->nr_migratepages)
			return;
	}

	/* Scan after */
	start_pfn = pfn + nr_isolated;
	if (start_pfn != end_pfn)
1243
		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1244 1245 1246 1247 1248 1249

	/* Skip this pageblock in the future as it's full or nearly full */
	if (cc->nr_freepages < cc->nr_migratepages)
		set_pageblock_skip(page);
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
/* Search orders in round-robin fashion */
static int next_search_order(struct compact_control *cc, int order)
{
	order--;
	if (order < 0)
		order = cc->order - 1;

	/* Search wrapped around? */
	if (order == cc->search_order) {
		cc->search_order--;
		if (cc->search_order < 0)
			cc->search_order = cc->order - 1;
		return -1;
	}

	return order;
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
static unsigned long
fast_isolate_freepages(struct compact_control *cc)
{
	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
	unsigned int nr_scanned = 0;
	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
	unsigned long nr_isolated = 0;
	unsigned long distance;
	struct page *page = NULL;
	bool scan_start = false;
	int order;

	/* Full compaction passes in a negative order */
	if (cc->order <= 0)
		return cc->free_pfn;

	/*
	 * If starting the scan, use a deeper search and use the highest
	 * PFN found if a suitable one is not found.
	 */
1288
	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		limit = pageblock_nr_pages >> 1;
		scan_start = true;
	}

	/*
	 * Preferred point is in the top quarter of the scan space but take
	 * a pfn from the top half if the search is problematic.
	 */
	distance = (cc->free_pfn - cc->migrate_pfn);
	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));

	if (WARN_ON_ONCE(min_pfn > low_pfn))
		low_pfn = min_pfn;

1304 1305 1306 1307 1308 1309 1310 1311 1312
	/*
	 * Search starts from the last successful isolation order or the next
	 * order to search after a previous failure
	 */
	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);

	for (order = cc->search_order;
	     !page && order >= 0;
	     order = next_search_order(cc, order)) {
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		struct free_area *area = &cc->zone->free_area[order];
		struct list_head *freelist;
		struct page *freepage;
		unsigned long flags;
		unsigned int order_scanned = 0;

		if (!area->nr_free)
			continue;

		spin_lock_irqsave(&cc->zone->lock, flags);
		freelist = &area->free_list[MIGRATE_MOVABLE];
		list_for_each_entry_reverse(freepage, freelist, lru) {
			unsigned long pfn;

			order_scanned++;
			nr_scanned++;
			pfn = page_to_pfn(freepage);

			if (pfn >= highest)
				highest = pageblock_start_pfn(pfn);

			if (pfn >= low_pfn) {
				cc->fast_search_fail = 0;
1336
				cc->search_order = order;
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
				page = freepage;
				break;
			}

			if (pfn >= min_pfn && pfn > high_pfn) {
				high_pfn = pfn;

				/* Shorten the scan if a candidate is found */
				limit >>= 1;
			}

			if (order_scanned >= limit)
				break;
		}

		/* Use a minimum pfn if a preferred one was not found */
		if (!page && high_pfn) {
			page = pfn_to_page(high_pfn);

			/* Update freepage for the list reorder below */
			freepage = page;
		}

		/* Reorder to so a future search skips recent pages */
		move_freelist_head(freelist, freepage);

		/* Isolate the page if available */
		if (page) {
			if (__isolate_free_page(page, order)) {
				set_page_private(page, order);
				nr_isolated = 1 << order;
				cc->nr_freepages += nr_isolated;
				list_add_tail(&page->lru, &cc->freepages);
				count_compact_events(COMPACTISOLATED, nr_isolated);
			} else {
				/* If isolation fails, abort the search */
				order = -1;
				page = NULL;
			}
		}

		spin_unlock_irqrestore(&cc->zone->lock, flags);

		/*
		 * Smaller scan on next order so the total scan ig related
		 * to freelist_scan_limit.
		 */
		if (order_scanned >= limit)
			limit = min(1U, limit >> 1);
	}

	if (!page) {
		cc->fast_search_fail++;
		if (scan_start) {
			/*
			 * Use the highest PFN found above min. If one was
			 * not found, be pessemistic for direct compaction
			 * and use the min mark.
			 */
			if (highest) {
				page = pfn_to_page(highest);
				cc->free_pfn = highest;
			} else {
				if (cc->direct_compaction) {
					page = pfn_to_page(min_pfn);
					cc->free_pfn = min_pfn;
				}
			}
		}
	}

1408 1409
	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
		highest -= pageblock_nr_pages;
1410
		cc->zone->compact_cached_free_pfn = highest;
1411
	}
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

	cc->total_free_scanned += nr_scanned;
	if (!page)
		return cc->free_pfn;

	low_pfn = page_to_pfn(page);
	fast_isolate_around(cc, low_pfn, nr_isolated);
	return low_pfn;
}

1422
/*
1423 1424
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
1425
 */
1426
static void isolate_freepages(struct compact_control *cc)
1427
{
1428
	struct zone *zone = cc->zone;
1429
	struct page *page;
1430
	unsigned long block_start_pfn;	/* start of current pageblock */
1431
	unsigned long isolate_start_pfn; /* exact pfn we start at */
1432 1433
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1434
	struct list_head *freelist = &cc->freepages;
1435
	unsigned int stride;
1436

1437 1438 1439 1440 1441
	/* Try a small search of the free lists for a candidate */
	isolate_start_pfn = fast_isolate_freepages(cc);
	if (cc->nr_freepages)
		goto splitmap;

1442 1443
	/*
	 * Initialise the free scanner. The starting point is where we last
1444
	 * successfully isolated from, zone-cached value, or the end of the
1445 1446
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
1447 1448 1449
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
1450 1451
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
1452
	 */
1453
	isolate_start_pfn = cc->free_pfn;
1454
	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1455 1456
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
1457
	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1458
	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1459

1460 1461 1462 1463 1464
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
1465
	for (; block_start_pfn >= low_pfn;
1466
				block_end_pfn = block_start_pfn,
1467 1468
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
1469 1470
		unsigned long nr_isolated;

1471 1472
		/*
		 * This can iterate a massively long zone without finding any
1473
		 * suitable migration targets, so periodically check resched.
1474
		 */
1475
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1476
			cond_resched();
1477

1478 1479 1480
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
1481 1482 1483
			continue;

		/* Check the block is suitable for migration */
1484
		if (!suitable_migration_target(cc, page))
1485
			continue;
1486

1487 1488 1489 1490
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1491
		/* Found a block suitable for isolating free pages from. */
1492 1493
		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
					block_end_pfn, freelist, stride, false);
1494

1495 1496 1497 1498
		/* Update the skip hint if the full pageblock was scanned */
		if (isolate_start_pfn == block_end_pfn)
			update_pageblock_skip(cc, page, block_start_pfn);

1499 1500
		/* Are enough freepages isolated? */
		if (cc->nr_freepages >= cc->nr_migratepages) {
1501 1502 1503 1504 1505
			if (isolate_start_pfn >= block_end_pfn) {
				/*
				 * Restart at previous pageblock if more
				 * freepages can be isolated next time.
				 */
1506 1507
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1508
			}
1509
			break;
1510
		} else if (isolate_start_pfn < block_end_pfn) {
1511
			/*
1512 1513
			 * If isolation failed early, do not continue
			 * needlessly.
1514
			 */
1515
			break;
1516
		}
1517 1518 1519 1520 1521 1522 1523

		/* Adjust stride depending on isolation */
		if (nr_isolated) {
			stride = 1;
			continue;
		}
		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1524 1525
	}

1526
	/*
1527 1528 1529 1530
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1531
	 */
1532
	cc->free_pfn = isolate_start_pfn;
1533 1534 1535 1536

splitmap:
	/* __isolate_free_page() does not map the pages */
	split_map_pages(freelist);
1537 1538 1539 1540 1541 1542 1543
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
1544
					unsigned long data)
1545 1546 1547 1548 1549
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	if (list_empty(&cc->freepages)) {
1550
		isolate_freepages(cc);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1576 1577 1578 1579 1580 1581 1582
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1583 1584 1585 1586 1587 1588
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
static inline void
update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
{
	if (cc->fast_start_pfn == ULONG_MAX)
		return;

	if (!cc->fast_start_pfn)
		cc->fast_start_pfn = pfn;

	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
}

static inline unsigned long
reinit_migrate_pfn(struct compact_control *cc)
{
	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
		return cc->migrate_pfn;

	cc->migrate_pfn = cc->fast_start_pfn;
	cc->fast_start_pfn = ULONG_MAX;

	return cc->migrate_pfn;
}

/*
 * Briefly search the free lists for a migration source that already has
 * some free pages to reduce the number of pages that need migration
 * before a pageblock is free.
 */
static unsigned long fast_find_migrateblock(struct compact_control *cc)
{
	unsigned int limit = freelist_scan_limit(cc);
	unsigned int nr_scanned = 0;
	unsigned long distance;
	unsigned long pfn = cc->migrate_pfn;
	unsigned long high_pfn;
	int order;

	/* Skip hints are relied on to avoid repeats on the fast search */
	if (cc->ignore_skip_hint)
		return pfn;

	/*
	 * If the migrate_pfn is not at the start of a zone or the start
	 * of a pageblock then assume this is a continuation of a previous
	 * scan restarted due to COMPACT_CLUSTER_MAX.
	 */
	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
		return pfn;

	/*
	 * For smaller orders, just linearly scan as the number of pages
	 * to migrate should be relatively small and does not necessarily
	 * justify freeing up a large block for a small allocation.
	 */
	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return pfn;

	/*
	 * Only allow kcompactd and direct requests for movable pages to
	 * quickly clear out a MOVABLE pageblock for allocation. This
	 * reduces the risk that a large movable pageblock is freed for
	 * an unmovable/reclaimable small allocation.
	 */
	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
		return pfn;

	/*
	 * When starting the migration scanner, pick any pageblock within the
	 * first half of the search space. Otherwise try and pick a pageblock
	 * within the first eighth to reduce the chances that a migration
	 * target later becomes a source.
	 */
	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
		distance >>= 2;
	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);

	for (order = cc->order - 1;
	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
	     order--) {
		struct free_area *area = &cc->zone->free_area[order];
		struct list_head *freelist;
		unsigned long flags;
		struct page *freepage;

		if (!area->nr_free)
			continue;

		spin_lock_irqsave(&cc->zone->lock, flags);
		freelist = &area->free_list[MIGRATE_MOVABLE];
		list_for_each_entry(freepage, freelist, lru) {
			unsigned long free_pfn;

			nr_scanned++;
			free_pfn = page_to_pfn(freepage);
			if (free_pfn < high_pfn) {
				/*
				 * Avoid if skipped recently. Ideally it would
				 * move to the tail but even safe iteration of
				 * the list assumes an entry is deleted, not
				 * reordered.
				 */
				if (get_pageblock_skip(freepage)) {
					if (list_is_last(freelist, &freepage->lru))
						break;

					continue;
				}

				/* Reorder to so a future search skips recent pages */
				move_freelist_tail(freelist, freepage);

1702
				update_fast_start_pfn(cc, free_pfn);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
				pfn = pageblock_start_pfn(free_pfn);
				cc->fast_search_fail = 0;
				set_pageblock_skip(freepage);
				break;
			}

			if (nr_scanned >= limit) {
				cc->fast_search_fail++;
				move_freelist_tail(freelist, freepage);
				break;
			}
		}
		spin_unlock_irqrestore(&cc->zone->lock, flags);
	}

	cc->total_migrate_scanned += nr_scanned;

	/*
	 * If fast scanning failed then use a cached entry for a page block
	 * that had free pages as the basis for starting a linear scan.
	 */
	if (pfn == cc->migrate_pfn)
		pfn = reinit_migrate_pfn(cc);

	return pfn;
}

1730
/*
1731 1732 1733
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1734 1735 1736 1737
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
1738 1739 1740
	unsigned long block_start_pfn;
	unsigned long block_end_pfn;
	unsigned long low_pfn;
1741 1742
	struct page *page;
	const isolate_mode_t isolate_mode =
1743
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1744
		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1745
	bool fast_find_block;
1746

1747 1748
	/*
	 * Start at where we last stopped, or beginning of the zone as
1749 1750
	 * initialized by compact_zone(). The first failure will use
	 * the lowest PFN as the starting point for linear scanning.
1751
	 */
1752
	low_pfn = fast_find_migrateblock(cc);
1753
	block_start_pfn = pageblock_start_pfn(low_pfn);
1754 1755
	if (block_start_pfn < zone->zone_start_pfn)
		block_start_pfn = zone->zone_start_pfn;
1756

1757 1758 1759 1760 1761 1762 1763
	/*
	 * fast_find_migrateblock marks a pageblock skipped so to avoid
	 * the isolation_suitable check below, check whether the fast
	 * search was successful.
	 */
	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;

1764
	/* Only scan within a pageblock boundary */
1765
	block_end_pfn = pageblock_end_pfn(low_pfn);
1766

1767 1768 1769 1770
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
1771
	for (; block_end_pfn <= cc->free_pfn;
1772
			fast_find_block = false,
1773 1774 1775
			low_pfn = block_end_pfn,
			block_start_pfn = block_end_pfn,
			block_end_pfn += pageblock_nr_pages) {
1776

1777 1778 1779
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
1780
		 * need to schedule.
1781
		 */
1782
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1783
			cond_resched();
1784

1785 1786
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
1787
		if (!page)
1788 1789
			continue;

1790 1791 1792 1793 1794 1795 1796 1797 1798
		/*
		 * If isolation recently failed, do not retry. Only check the
		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
		 * to be visited multiple times. Assume skip was checked
		 * before making it "skip" so other compaction instances do
		 * not scan the same block.
		 */
		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
		    !fast_find_block && !isolation_suitable(cc, page))
1799 1800 1801
			continue;

		/*
1802 1803 1804 1805 1806 1807
		 * For async compaction, also only scan in MOVABLE blocks
		 * without huge pages. Async compaction is optimistic to see
		 * if the minimum amount of work satisfies the allocation.
		 * The cached PFN is updated as it's possible that all
		 * remaining blocks between source and target are unsuitable
		 * and the compaction scanners fail to meet.
1808
		 */
1809 1810
		if (!suitable_migration_source(cc, page)) {
			update_cached_migrate(cc, block_end_pfn);
1811
			continue;
1812
		}
1813 1814

		/* Perform the isolation */
1815 1816
		low_pfn = isolate_migratepages_block(cc, low_pfn,
						block_end_pfn, isolate_mode);
1817

1818
		if (!low_pfn)
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

1829 1830
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1831

1832
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1833 1834
}

1835 1836 1837 1838 1839 1840 1841 1842 1843
/*
 * order == -1 is expected when compacting via
 * /proc/sys/vm/compact_memory
 */
static inline bool is_via_compact_memory(int order)
{
	return order == -1;
}

1844
static enum compact_result __compact_finished(struct compact_control *cc)
1845
{
1846
	unsigned int order;
1847
	const int migratetype = cc->migratetype;
1848
	int ret;
1849

1850
	/* Compaction run completes if the migrate and free scanner meet */
1851
	if (compact_scanners_met(cc)) {
1852
		/* Let the next compaction start anew. */
1853
		reset_cached_positions(cc->zone);
1854

1855 1856
		/*
		 * Mark that the PG_migrate_skip information should be cleared
1857
		 * by kswapd when it goes to sleep. kcompactd does not set the
1858 1859 1860
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
1861
		if (cc->direct_compaction)
1862
			cc->zone->compact_blockskip_flush = true;
1863

1864 1865 1866 1867
		if (cc->whole_zone)
			return COMPACT_COMPLETE;
		else
			return COMPACT_PARTIAL_SKIPPED;
1868
	}
1869

1870
	if (is_via_compact_memory(cc->order))
1871 1872
		return COMPACT_CONTINUE;

1873 1874 1875 1876 1877 1878 1879 1880
	/*
	 * Always finish scanning a pageblock to reduce the possibility of
	 * fallbacks in the future. This is particularly important when
	 * migration source is unmovable/reclaimable but it's not worth
	 * special casing.
	 */
	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
		return COMPACT_CONTINUE;
1881

1882
	/* Direct compactor: Is a suitable page free? */
1883
	ret = COMPACT_NO_SUITABLE_PAGE;
1884
	for (order = cc->order; order < MAX_ORDER; order++) {
1885
		struct free_area *area = &cc->zone->free_area[order];
1886
		bool can_steal;
1887 1888

		/* Job done if page is free of the right migratetype */
1889
		if (!free_area_empty(area, migratetype))
1890
			return COMPACT_SUCCESS;
1891

1892 1893 1894
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
1895
			!free_area_empty(area, MIGRATE_CMA))
1896
			return COMPACT_SUCCESS;
1897 1898 1899 1900 1901 1902
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
						true, &can_steal) != -1) {

			/* movable pages are OK in any pageblock */
			if (migratetype == MIGRATE_MOVABLE)
				return COMPACT_SUCCESS;

			/*
			 * We are stealing for a non-movable allocation. Make
			 * sure we finish compacting the current pageblock
			 * first so it is as free as possible and we won't
			 * have to steal another one soon. This only applies
			 * to sync compaction, as async compaction operates
			 * on pageblocks of the same migratetype.
			 */
			if (cc->mode == MIGRATE_ASYNC ||
					IS_ALIGNED(cc->migrate_pfn,
							pageblock_nr_pages)) {
				return COMPACT_SUCCESS;
			}

1923 1924
			ret = COMPACT_CONTINUE;
			break;
1925
		}
1926 1927
	}

1928 1929 1930 1931
	if (cc->contended || fatal_signal_pending(current))
		ret = COMPACT_CONTENDED;

	return ret;
1932 1933
}

1934
static enum compact_result compact_finished(struct compact_control *cc)
1935 1936 1937
{
	int ret;

1938 1939
	ret = __compact_finished(cc);
	trace_mm_compaction_finished(cc->zone, cc->order, ret);
1940 1941 1942 1943
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1944 1945
}

1946 1947 1948 1949
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1950
 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1951 1952
 *   COMPACT_CONTINUE - If compaction should run now
 */
1953
static enum compact_result __compaction_suitable(struct zone *zone, int order,
1954
					unsigned int alloc_flags,
1955 1956
					int classzone_idx,
					unsigned long wmark_target)
1957 1958 1959
{
	unsigned long watermark;

1960
	if (is_via_compact_memory(order))
1961 1962
		return COMPACT_CONTINUE;

1963
	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1964 1965 1966 1967 1968 1969
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
1970
		return COMPACT_SUCCESS;
1971

1972
	/*
1973
	 * Watermarks for order-0 must be met for compaction to be able to
1974 1975 1976 1977 1978 1979 1980
	 * isolate free pages for migration targets. This means that the
	 * watermark and alloc_flags have to match, or be more pessimistic than
	 * the check in __isolate_free_page(). We don't use the direct
	 * compactor's alloc_flags, as they are not relevant for freepage
	 * isolation. We however do use the direct compactor's classzone_idx to
	 * skip over zones where lowmem reserves would prevent allocation even
	 * if compaction succeeds.
1981 1982
	 * For costly orders, we require low watermark instead of min for
	 * compaction to proceed to increase its chances.
1983 1984
	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
	 * suitable migration targets
1985
	 */
1986 1987 1988
	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
				low_wmark_pages(zone) : min_wmark_pages(zone);
	watermark += compact_gap(order);
1989
	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1990
						ALLOC_CMA, wmark_target))
1991 1992
		return COMPACT_SKIPPED;

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	return COMPACT_CONTINUE;
}

enum compact_result compaction_suitable(struct zone *zone, int order,
					unsigned int alloc_flags,
					int classzone_idx)
{
	enum compact_result ret;
	int fragindex;

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
				    zone_page_state(zone, NR_FREE_PAGES));
2005 2006 2007 2008
	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
2009 2010
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
2011 2012 2013
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
2014 2015 2016 2017 2018 2019
	 * Only compact if a failure would be due to fragmentation. Also
	 * ignore fragindex for non-costly orders where the alternative to
	 * a successful reclaim/compaction is OOM. Fragindex and the
	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
	 * excessive compaction for costly orders, but it should not be at the
	 * expense of system stability.
2020
	 */
2021
	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2022 2023 2024 2025
		fragindex = fragmentation_index(zone, order);
		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
			ret = COMPACT_NOT_SUITABLE_ZONE;
	}
2026 2027 2028 2029 2030 2031 2032 2033

	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
		int alloc_flags)
{
	struct zone *zone;
	struct zoneref *z;

	/*
	 * Make sure at least one zone would pass __compaction_suitable if we continue
	 * retrying the reclaim.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
		enum compact_result compact_result;

		/*
		 * Do not consider all the reclaimable memory because we do not
		 * want to trash just for a single high order allocation which
		 * is even not guaranteed to appear even if __compaction_suitable
		 * is happy about the watermark check.
		 */
2055
		available = zone_reclaimable_pages(zone) / order;
2056 2057 2058
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
		compact_result = __compaction_suitable(zone, order, alloc_flags,
				ac_classzone_idx(ac), available);
2059
		if (compact_result != COMPACT_SKIPPED)
2060 2061 2062 2063 2064 2065
			return true;
	}

	return false;
}

2066 2067
static enum compact_result
compact_zone(struct compact_control *cc, struct capture_control *capc)
2068
{
2069
	enum compact_result ret;
2070 2071
	unsigned long start_pfn = cc->zone->zone_start_pfn;
	unsigned long end_pfn = zone_end_pfn(cc->zone);
2072
	unsigned long last_migrated_pfn;
2073
	const bool sync = cc->mode != MIGRATE_ASYNC;
2074
	bool update_cached;
2075

2076
	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2077
	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2078
							cc->classzone_idx);
2079
	/* Compaction is likely to fail */
2080
	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2081
		return ret;
2082 2083 2084

	/* huh, compaction_suitable is returning something unexpected */
	VM_BUG_ON(ret != COMPACT_CONTINUE);
2085

2086 2087
	/*
	 * Clear pageblock skip if there were failures recently and compaction
2088
	 * is about to be retried after being deferred.
2089
	 */
2090 2091
	if (compaction_restarting(cc->zone, cc->order))
		__reset_isolation_suitable(cc->zone);
2092

2093 2094
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
2095 2096 2097
	 * information on where the scanners should start (unless we explicitly
	 * want to compact the whole zone), but check that it is initialised
	 * by ensuring the values are within zone boundaries.
2098
	 */
2099
	cc->fast_start_pfn = 0;
2100
	if (cc->whole_zone) {
2101
		cc->migrate_pfn = start_pfn;
2102 2103
		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
	} else {
2104 2105
		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2106 2107
		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2108
			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2109 2110 2111
		}
		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
			cc->migrate_pfn = start_pfn;
2112 2113
			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2114
		}
2115

2116
		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2117 2118
			cc->whole_zone = true;
	}
2119

2120
	last_migrated_pfn = 0;
2121

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	/*
	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
	 * the basis that some migrations will fail in ASYNC mode. However,
	 * if the cached PFNs match and pageblocks are skipped due to having
	 * no isolation candidates, then the sync state does not matter.
	 * Until a pageblock with isolation candidates is found, keep the
	 * cached PFNs in sync to avoid revisiting the same blocks.
	 */
	update_cached = !sync &&
		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];

2133 2134
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
2135

2136 2137
	migrate_prep_local();

2138
	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2139
		int err;
2140
		unsigned long start_pfn = cc->migrate_pfn;
2141

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		/*
		 * Avoid multiple rescans which can happen if a page cannot be
		 * isolated (dirty/writeback in async mode) or if the migrated
		 * pages are being allocated before the pageblock is cleared.
		 * The first rescan will capture the entire pageblock for
		 * migration. If it fails, it'll be marked skip and scanning
		 * will proceed as normal.
		 */
		cc->rescan = false;
		if (pageblock_start_pfn(last_migrated_pfn) ==
		    pageblock_start_pfn(start_pfn)) {
			cc->rescan = true;
		}

2156
		switch (isolate_migratepages(cc->zone, cc)) {
2157
		case ISOLATE_ABORT:
2158
			ret = COMPACT_CONTENDED;
2159
			putback_movable_pages(&cc->migratepages);
2160
			cc->nr_migratepages = 0;
2161
			last_migrated_pfn = 0;
2162 2163
			goto out;
		case ISOLATE_NONE:
2164 2165 2166 2167 2168
			if (update_cached) {
				cc->zone->compact_cached_migrate_pfn[1] =
					cc->zone->compact_cached_migrate_pfn[0];
			}

2169 2170 2171 2172 2173 2174
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
2175
		case ISOLATE_SUCCESS:
2176
			update_cached = false;
2177
			last_migrated_pfn = start_pfn;
2178 2179
			;
		}
2180

2181
		err = migrate_pages(&cc->migratepages, compaction_alloc,
2182
				compaction_free, (unsigned long)cc, cc->mode,
2183
				MR_COMPACTION);
2184

2185 2186
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
2187

2188 2189
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
2190
		if (err) {
2191
			putback_movable_pages(&cc->migratepages);
2192 2193 2194 2195
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
2196
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2197
				ret = COMPACT_CONTENDED;
2198 2199
				goto out;
			}
2200 2201 2202 2203 2204 2205 2206 2207 2208
			/*
			 * We failed to migrate at least one page in the current
			 * order-aligned block, so skip the rest of it.
			 */
			if (cc->direct_compaction &&
						(cc->mode == MIGRATE_ASYNC)) {
				cc->migrate_pfn = block_end_pfn(
						cc->migrate_pfn - 1, cc->order);
				/* Draining pcplists is useless in this case */
2209
				last_migrated_pfn = 0;
2210
			}
2211
		}
2212 2213 2214 2215 2216 2217 2218 2219 2220

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
2221
		if (cc->order > 0 && last_migrated_pfn) {
2222 2223
			int cpu;
			unsigned long current_block_start =
2224
				block_start_pfn(cc->migrate_pfn, cc->order);
2225

2226
			if (last_migrated_pfn < current_block_start) {
2227 2228
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
2229
				drain_local_pages(cc->zone);
2230 2231
				put_cpu();
				/* No more flushing until we migrate again */
2232
				last_migrated_pfn = 0;
2233 2234 2235
			}
		}

2236 2237 2238 2239 2240
		/* Stop if a page has been captured */
		if (capc && capc->page) {
			ret = COMPACT_SUCCESS;
			break;
		}
2241 2242
	}

2243
out:
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
2254
		free_pfn = pageblock_start_pfn(free_pfn);
2255 2256 2257 2258
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
2259 2260
		if (free_pfn > cc->zone->compact_cached_free_pfn)
			cc->zone->compact_cached_free_pfn = free_pfn;
2261
	}
2262

2263 2264 2265
	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);

2266 2267
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
2268

2269 2270
	return ret;
}
2271

2272
static enum compact_result compact_zone_order(struct zone *zone, int order,
2273
		gfp_t gfp_mask, enum compact_priority prio,
2274 2275
		unsigned int alloc_flags, int classzone_idx,
		struct page **capture)
2276
{
2277
	enum compact_result ret;
2278
	struct compact_control cc = {
2279 2280 2281 2282
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
2283
		.order = order,
2284
		.search_order = order,
2285
		.gfp_mask = gfp_mask,
2286
		.zone = zone,
2287 2288
		.mode = (prio == COMPACT_PRIO_ASYNC) ?
					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2289 2290
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
2291
		.direct_compaction = true,
2292
		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2293 2294
		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2295
	};
2296 2297 2298 2299 2300 2301 2302
	struct capture_control capc = {
		.cc = &cc,
		.page = NULL,
	};

	if (capture)
		current->capture_control = &capc;
2303 2304
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);
2305

2306
	ret = compact_zone(&cc, &capc);
2307 2308 2309 2310

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

2311 2312 2313
	*capture = capc.page;
	current->capture_control = NULL;

2314
	return ret;
2315 2316
}

2317 2318
int sysctl_extfrag_threshold = 500;

2319 2320 2321
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
2322 2323 2324
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
2325
 * @prio: Determines how hard direct compaction should try to succeed
2326 2327 2328
 *
 * This is the main entry point for direct page compaction.
 */
2329
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2330
		unsigned int alloc_flags, const struct alloc_context *ac,
2331
		enum compact_priority prio, struct page **capture)
2332 2333 2334 2335
{
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
2336
	enum compact_result rc = COMPACT_SKIPPED;
2337

2338 2339 2340 2341 2342
	/*
	 * Check if the GFP flags allow compaction - GFP_NOIO is really
	 * tricky context because the migration might require IO
	 */
	if (!may_perform_io)
2343
		return COMPACT_SKIPPED;
2344

2345
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2346

2347
	/* Compact each zone in the list */
2348 2349
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
2350
		enum compact_result status;
2351

2352 2353
		if (prio > MIN_COMPACT_PRIORITY
					&& compaction_deferred(zone, order)) {
2354
			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2355
			continue;
2356
		}
2357

2358
		status = compact_zone_order(zone, order, gfp_mask, prio,
2359
				alloc_flags, ac_classzone_idx(ac), capture);
2360 2361
		rc = max(status, rc);

2362 2363
		/* The allocation should succeed, stop compacting */
		if (status == COMPACT_SUCCESS) {
2364 2365 2366 2367 2368 2369 2370
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
2371

2372
			break;
2373 2374
		}

2375
		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2376
					status == COMPACT_PARTIAL_SKIPPED))
2377 2378 2379 2380 2381 2382
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
2383 2384 2385 2386

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
2387
		 * case do not try further zones
2388
		 */
2389 2390 2391
		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
					|| fatal_signal_pending(current))
			break;
2392 2393 2394 2395 2396 2397
	}

	return rc;
}


2398
/* Compact all zones within a node */
2399
static void compact_node(int nid)
2400
{
2401
	pg_data_t *pgdat = NODE_DATA(nid);
2402 2403
	int zoneid;
	struct zone *zone;
2404 2405
	struct compact_control cc = {
		.order = -1,
2406 2407
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
2408 2409 2410
		.mode = MIGRATE_SYNC,
		.ignore_skip_hint = true,
		.whole_zone = true,
2411
		.gfp_mask = GFP_KERNEL,
2412 2413
	};

2414 2415 2416 2417 2418 2419 2420

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

2421 2422
		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
2423
		cc.zone = zone;
2424 2425
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);
2426

2427
		compact_zone(&cc, NULL);
2428

2429 2430
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
2431 2432 2433 2434
	}
}

/* Compact all nodes in the system */
2435
static void compact_nodes(void)
2436 2437 2438
{
	int nid;

2439 2440 2441
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

2442 2443 2444 2445 2446 2447 2448
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

2449 2450 2451 2452
/*
 * This is the entry point for compacting all nodes via
 * /proc/sys/vm/compact_memory
 */
2453 2454 2455 2456
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
2457
		compact_nodes();
2458 2459 2460

	return 0;
}
2461

2462 2463 2464 2465 2466 2467 2468 2469
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

2470
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2471
static ssize_t sysfs_compact_node(struct device *dev,
2472
			struct device_attribute *attr,
2473 2474
			const char *buf, size_t count)
{
2475 2476 2477 2478 2479 2480 2481 2482
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
2483 2484 2485

	return count;
}
2486
static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2487 2488 2489

int compaction_register_node(struct node *node)
{
2490
	return device_create_file(&node->dev, &dev_attr_compact);
2491 2492 2493 2494
}

void compaction_unregister_node(struct node *node)
{
2495
	return device_remove_file(&node->dev, &dev_attr_compact);
2496 2497
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2498

2499 2500
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
{
2501
	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2502 2503 2504 2505 2506 2507 2508 2509
}

static bool kcompactd_node_suitable(pg_data_t *pgdat)
{
	int zoneid;
	struct zone *zone;
	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;

2510
	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
		zone = &pgdat->node_zones[zoneid];

		if (!populated_zone(zone))
			continue;

		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
					classzone_idx) == COMPACT_CONTINUE)
			return true;
	}

	return false;
}

static void kcompactd_do_work(pg_data_t *pgdat)
{
	/*
	 * With no special task, compact all zones so that a page of requested
	 * order is allocatable.
	 */
	int zoneid;
	struct zone *zone;
	struct compact_control cc = {
		.order = pgdat->kcompactd_max_order,
2534
		.search_order = pgdat->kcompactd_max_order,
2535 2536
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
2537 2538
		.classzone_idx = pgdat->kcompactd_classzone_idx,
		.mode = MIGRATE_SYNC_LIGHT,
2539
		.ignore_skip_hint = false,
2540
		.gfp_mask = GFP_KERNEL,
2541 2542 2543
	};
	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
							cc.classzone_idx);
2544
	count_compact_event(KCOMPACTD_WAKE);
2545

2546
	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		int status;

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		if (compaction_deferred(zone, cc.order))
			continue;

		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
							COMPACT_CONTINUE)
			continue;

2560 2561 2562 2563 2564 2565 2566 2567
		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
		cc.total_migrate_scanned = 0;
		cc.total_free_scanned = 0;
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);

2568 2569
		if (kthread_should_stop())
			return;
2570
		status = compact_zone(&cc, NULL);
2571

2572
		if (status == COMPACT_SUCCESS) {
2573
			compaction_defer_reset(zone, cc.order, false);
2574
		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2575 2576 2577 2578 2579 2580 2581 2582
			/*
			 * Buddy pages may become stranded on pcps that could
			 * otherwise coalesce on the zone's free area for
			 * order >= cc.order.  This is ratelimited by the
			 * upcoming deferral.
			 */
			drain_all_pages(zone);

2583 2584 2585 2586 2587 2588 2589
			/*
			 * We use sync migration mode here, so we defer like
			 * sync direct compaction does.
			 */
			defer_compaction(zone, cc.order);
		}

2590 2591 2592 2593 2594
		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
				     cc.total_migrate_scanned);
		count_compact_events(KCOMPACTD_FREE_SCANNED,
				     cc.total_free_scanned);

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
	}

	/*
	 * Regardless of success, we are done until woken up next. But remember
	 * the requested order/classzone_idx in case it was higher/tighter than
	 * our current ones
	 */
	if (pgdat->kcompactd_max_order <= cc.order)
		pgdat->kcompactd_max_order = 0;
	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
}

void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
{
	if (!order)
		return;

	if (pgdat->kcompactd_max_order < order)
		pgdat->kcompactd_max_order = order;

	if (pgdat->kcompactd_classzone_idx > classzone_idx)
		pgdat->kcompactd_classzone_idx = classzone_idx;

2621 2622 2623 2624 2625
	/*
	 * Pairs with implicit barrier in wait_event_freezable()
	 * such that wakeups are not missed.
	 */
	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
		return;

	if (!kcompactd_node_suitable(pgdat))
		return;

	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
							classzone_idx);
	wake_up_interruptible(&pgdat->kcompactd_wait);
}

/*
 * The background compaction daemon, started as a kernel thread
 * from the init process.
 */
static int kcompactd(void *p)
{
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;

	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);

	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(tsk, cpumask);

	set_freezable();

	pgdat->kcompactd_max_order = 0;
	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;

	while (!kthread_should_stop()) {
2656 2657
		unsigned long pflags;

2658 2659 2660 2661
		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
		wait_event_freezable(pgdat->kcompactd_wait,
				kcompactd_work_requested(pgdat));

2662
		psi_memstall_enter(&pflags);
2663
		kcompactd_do_work(pgdat);
2664
		psi_memstall_leave(&pflags);
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
	}

	return 0;
}

/*
 * This kcompactd start function will be called by init and node-hot-add.
 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
 */
int kcompactd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kcompactd)
		return 0;

	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
	if (IS_ERR(pgdat->kcompactd)) {
		pr_err("Failed to start kcompactd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kcompactd);
		pgdat->kcompactd = NULL;
	}
	return ret;
}

/*
 * Called by memory hotplug when all memory in a node is offlined. Caller must
 * hold mem_hotplug_begin/end().
 */
void kcompactd_stop(int nid)
{
	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;

	if (kcompactd) {
		kthread_stop(kcompactd);
		NODE_DATA(nid)->kcompactd = NULL;
	}
}

/*
 * It's optimal to keep kcompactd on the same CPUs as their memory, but
 * not required for correctness. So if the last cpu in a node goes
 * away, we get changed to run anywhere: as the first one comes back,
 * restore their cpu bindings.
 */
2711
static int kcompactd_cpu_online(unsigned int cpu)
2712 2713 2714
{
	int nid;

2715 2716 2717
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
2718

2719
		mask = cpumask_of_node(pgdat->node_id);
2720

2721 2722 2723
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2724
	}
2725
	return 0;
2726 2727 2728 2729 2730
}

static int __init kcompactd_init(void)
{
	int nid;
2731 2732 2733 2734 2735 2736 2737 2738 2739
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/compaction:online",
					kcompactd_cpu_online, NULL);
	if (ret < 0) {
		pr_err("kcompactd: failed to register hotplug callbacks.\n");
		return ret;
	}
2740 2741 2742 2743 2744 2745 2746

	for_each_node_state(nid, N_MEMORY)
		kcompactd_run(nid);
	return 0;
}
subsys_initcall(kcompactd_init)

2747
#endif /* CONFIG_COMPACTION */