compaction.c 71.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
11
#include <linux/cpu.h>
12 13 14 15
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
16
#include <linux/sched/signal.h>
17
#include <linux/backing-dev.h>
18
#include <linux/sysctl.h>
19
#include <linux/sysfs.h>
20
#include <linux/page-isolation.h>
21
#include <linux/kasan.h>
22 23
#include <linux/kthread.h>
#include <linux/freezer.h>
24
#include <linux/page_owner.h>
25
#include <linux/psi.h>
26 27
#include "internal.h"

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

43 44
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

45 46 47
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

48 49 50 51 52
#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)

53 54 55
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
56
	unsigned long high_pfn = 0;
57 58

	list_for_each_entry_safe(page, next, freelist, lru) {
59
		unsigned long pfn = page_to_pfn(page);
60 61
		list_del(&page->lru);
		__free_page(page);
62 63
		if (pfn > high_pfn)
			high_pfn = pfn;
64 65
	}

66
	return high_pfn;
67 68
}

69
static void split_map_pages(struct list_head *list)
70
{
71 72 73 74 75 76 77 78 79 80
	unsigned int i, order, nr_pages;
	struct page *page, *next;
	LIST_HEAD(tmp_list);

	list_for_each_entry_safe(page, next, list, lru) {
		list_del(&page->lru);

		order = page_private(page);
		nr_pages = 1 << order;

81
		post_alloc_hook(page, order, __GFP_MOVABLE);
82 83
		if (order)
			split_page(page, order);
84

85 86 87 88
		for (i = 0; i < nr_pages; i++) {
			list_add(&page->lru, &tmp_list);
			page++;
		}
89
	}
90 91

	list_splice(&tmp_list, list);
92 93
}

94
#ifdef CONFIG_COMPACTION
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
int PageMovable(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	if (!__PageMovable(page))
		return 0;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
		return 1;

	return 0;
}
EXPORT_SYMBOL(PageMovable);

void __SetPageMovable(struct page *page, struct address_space *mapping)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__SetPageMovable);

void __ClearPageMovable(struct page *page)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	/*
	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
	 * flag so that VM can catch up released page by driver after isolation.
	 * With it, VM migration doesn't try to put it back.
	 */
	page->mapping = (void *)((unsigned long)page->mapping &
				PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__ClearPageMovable);

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

204 205 206 207 208 209 210 211 212 213
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

214 215 216 217
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218
	zone->compact_cached_free_pfn =
219
				pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 221
}

222
/*
223 224 225
 * Compound pages of >= pageblock_order should consistenly be skipped until
 * released. It is always pointless to compact pages of such order (if they are
 * migratable), and the pageblocks they occupy cannot contain any free pages.
226
 */
227
static bool pageblock_skip_persistent(struct page *page)
228
{
229
	if (!PageCompound(page))
230
		return false;
231 232 233 234 235 236 237

	page = compound_head(page);

	if (compound_order(page) >= pageblock_order)
		return true;

	return false;
238 239
}

240 241 242 243 244
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
245
static void __reset_isolation_suitable(struct zone *zone)
246 247
{
	unsigned long start_pfn = zone->zone_start_pfn;
248
	unsigned long end_pfn = zone_end_pfn(zone);
249 250
	unsigned long pfn;

251
	zone->compact_blockskip_flush = false;
252 253 254 255 256 257 258

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

259 260
		page = pfn_to_online_page(pfn);
		if (!page)
261 262 263
			continue;
		if (zone != page_zone(page))
			continue;
264
		if (pageblock_skip_persistent(page))
265
			continue;
266 267 268

		clear_pageblock_skip(page);
	}
269 270

	reset_cached_positions(zone);
271 272
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 * locks are not required for read/writers. Returns true if it was already set.
 */
static bool test_and_set_skip(struct compact_control *cc, struct page *page,
							unsigned long pfn)
{
	bool skip;

	/* Do no update if skip hint is being ignored */
	if (cc->ignore_skip_hint)
		return false;

	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
		return false;

	skip = get_pageblock_skip(page);
	if (!skip && !cc->no_set_skip_hint)
		set_pageblock_skip(page);

	return skip;
}

static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
{
	struct zone *zone = cc->zone;

	pfn = pageblock_end_pfn(pfn);

	/* Set for isolation rather than compaction */
	if (cc->no_set_skip_hint)
		return;

	if (pfn > zone->compact_cached_migrate_pfn[0])
		zone->compact_cached_migrate_pfn[0] = pfn;
	if (cc->mode != MIGRATE_ASYNC &&
	    pfn > zone->compact_cached_migrate_pfn[1])
		zone->compact_cached_migrate_pfn[1] = pfn;
}

328 329
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
330
 * future. The information is later cleared by __reset_isolation_suitable().
331
 */
332
static void update_pageblock_skip(struct compact_control *cc,
333
			struct page *page, unsigned long nr_isolated)
334
{
335
	struct zone *zone = cc->zone;
336
	unsigned long pfn;
337

338
	if (cc->no_set_skip_hint)
339 340
		return;

341 342 343
	if (!page)
		return;

344 345 346
	if (nr_isolated)
		return;

347
	set_pageblock_skip(page);
348

349 350 351
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
352 353
	if (pfn < zone->compact_cached_free_pfn)
		zone->compact_cached_free_pfn = pfn;
354 355 356 357 358 359 360 361
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

362
static inline bool pageblock_skip_persistent(struct page *page)
363 364 365 366 367
{
	return false;
}

static inline void update_pageblock_skip(struct compact_control *cc,
368
			struct page *page, unsigned long nr_isolated)
369 370
{
}
371 372 373 374 375 376 377 378 379 380

static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
{
}

static bool test_and_set_skip(struct compact_control *cc, struct page *page,
							unsigned long pfn)
{
	return false;
}
381 382
#endif /* CONFIG_COMPACTION */

383 384
/*
 * Compaction requires the taking of some coarse locks that are potentially
385 386 387 388
 * very heavily contended. For async compaction, trylock and record if the
 * lock is contended. The lock will still be acquired but compaction will
 * abort when the current block is finished regardless of success rate.
 * Sync compaction acquires the lock.
389
 *
390
 * Always returns true which makes it easier to track lock state in callers.
391
 */
392
static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
393
						struct compact_control *cc)
394
{
395 396 397 398 399 400
	/* Track if the lock is contended in async mode */
	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
		if (spin_trylock_irqsave(lock, *flags))
			return true;

		cc->contended = true;
401
	}
402

403
	spin_lock_irqsave(lock, *flags);
404
	return true;
405 406
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and records async compaction as contended if necessary.
 */
static inline void compact_check_resched(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC)
			cc->contended = true;

		cond_resched();
	}
}

422 423
/*
 * Compaction requires the taking of some coarse locks that are potentially
424 425 426 427 428 429 430
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
431
 *
432 433 434 435
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
436
 */
437 438
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
439
{
440 441 442 443
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
444

445
	if (fatal_signal_pending(current)) {
446
		cc->contended = true;
447 448
		return true;
	}
449

450
	compact_check_resched(cc);
451 452 453 454

	return false;
}

455
/*
456 457 458
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
459
 */
460
static unsigned long isolate_freepages_block(struct compact_control *cc,
461
				unsigned long *start_pfn,
462 463 464
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
465
{
466
	int nr_scanned = 0, total_isolated = 0;
467
	struct page *cursor, *valid_page = NULL;
468
	unsigned long flags = 0;
469
	bool locked = false;
470
	unsigned long blockpfn = *start_pfn;
471
	unsigned int order;
472 473 474

	cursor = pfn_to_page(blockpfn);

475
	/* Isolate free pages. */
476
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
477
		int isolated;
478 479
		struct page *page = cursor;

480 481 482 483 484 485 486 487 488 489
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

490
		nr_scanned++;
491
		if (!pfn_valid_within(blockpfn))
492 493
			goto isolate_fail;

494 495
		if (!valid_page)
			valid_page = page;
496 497 498 499 500 501 502 503

		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
504 505
			const unsigned int order = compound_order(page);

506
			if (likely(order < MAX_ORDER)) {
507 508
				blockpfn += (1UL << order) - 1;
				cursor += (1UL << order) - 1;
509 510 511 512
			}
			goto isolate_fail;
		}

513
		if (!PageBuddy(page))
514
			goto isolate_fail;
515 516

		/*
517 518 519 520 521
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
522
		 */
523
		if (!locked) {
524
			locked = compact_lock_irqsave(&cc->zone->lock,
525
								&flags, cc);
526

527 528 529 530
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
531

532 533 534
		/* Found a free page, will break it into order-0 pages */
		order = page_order(page);
		isolated = __isolate_free_page(page, order);
535 536
		if (!isolated)
			break;
537
		set_page_private(page, order);
538

539
		total_isolated += isolated;
540
		cc->nr_freepages += isolated;
541 542
		list_add_tail(&page->lru, freelist);

543 544 545
		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
			blockpfn += isolated;
			break;
546
		}
547 548 549 550
		/* Advance to the end of split page */
		blockpfn += isolated - 1;
		cursor += isolated - 1;
		continue;
551 552 553 554 555 556 557

isolate_fail:
		if (strict)
			break;
		else
			continue;

558 559
	}

560 561 562
	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

563 564 565 566 567 568 569
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

570 571 572
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

573 574 575
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

576 577 578 579 580
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
581
	if (strict && blockpfn < end_pfn)
582 583
		total_isolated = 0;

584 585
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
586
		update_pageblock_skip(cc, valid_page, total_isolated);
587

588
	cc->total_free_scanned += nr_scanned;
589
	if (total_isolated)
590
		count_compact_events(COMPACTISOLATED, total_isolated);
591 592 593
	return total_isolated;
}

594 595
/**
 * isolate_freepages_range() - isolate free pages.
596
 * @cc:        Compaction control structure.
597 598 599 600 601 602 603 604 605 606 607
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
608
unsigned long
609 610
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
611
{
612
	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
613 614
	LIST_HEAD(freelist);

615
	pfn = start_pfn;
616
	block_start_pfn = pageblock_start_pfn(pfn);
617 618
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
619
	block_end_pfn = pageblock_end_pfn(pfn);
620 621

	for (; pfn < end_pfn; pfn += isolated,
622
				block_start_pfn = block_end_pfn,
623
				block_end_pfn += pageblock_nr_pages) {
624 625
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
626 627 628

		block_end_pfn = min(block_end_pfn, end_pfn);

629 630 631 632 633 634
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
635 636
			block_start_pfn = pageblock_start_pfn(pfn);
			block_end_pfn = pageblock_end_pfn(pfn);
637 638 639
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

640 641
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
642 643
			break;

644 645
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

662
	/* __isolate_free_page() does not map the pages */
663
	split_map_pages(&freelist);
664 665 666 667 668 669 670 671 672 673 674

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

675 676 677
/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
678
	unsigned long active, inactive, isolated;
679

M
Mel Gorman 已提交
680 681 682 683 684 685
	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
686

687
	return isolated > (inactive + active) / 2;
688 689
}

690
/**
691 692
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
693
 * @cc:		Compaction control structure.
694 695 696
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
697 698
 *
 * Isolate all pages that can be migrated from the range specified by
699 700 701 702
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
703
 *
704 705 706
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
707
 */
708 709 710
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
711
{
712
	struct zone *zone = cc->zone;
713
	unsigned long nr_scanned = 0, nr_isolated = 0;
714
	struct lruvec *lruvec;
715
	unsigned long flags = 0;
716
	bool locked = false;
717
	struct page *page = NULL, *valid_page = NULL;
718
	unsigned long start_pfn = low_pfn;
719 720
	bool skip_on_failure = false;
	unsigned long next_skip_pfn = 0;
721
	bool skip_updated = false;
722 723 724 725 726 727 728

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
729
		/* async migration should just abort */
730
		if (cc->mode == MIGRATE_ASYNC)
731
			return 0;
732

733 734 735
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
736
			return 0;
737 738
	}

739
	compact_check_resched(cc);
740

741 742 743 744 745
	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
		skip_on_failure = true;
		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
	}

746 747
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
748

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
		if (skip_on_failure && low_pfn >= next_skip_pfn) {
			/*
			 * We have isolated all migration candidates in the
			 * previous order-aligned block, and did not skip it due
			 * to failure. We should migrate the pages now and
			 * hopefully succeed compaction.
			 */
			if (nr_isolated)
				break;

			/*
			 * We failed to isolate in the previous order-aligned
			 * block. Set the new boundary to the end of the
			 * current block. Note we can't simply increase
			 * next_skip_pfn by 1 << order, as low_pfn might have
			 * been incremented by a higher number due to skipping
			 * a compound or a high-order buddy page in the
			 * previous loop iteration.
			 */
			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
		}

771 772 773 774 775 776
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
777
		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
778 779
								&locked, cc))
			break;
780

781
		if (!pfn_valid_within(low_pfn))
782
			goto isolate_fail;
783
		nr_scanned++;
784 785

		page = pfn_to_page(low_pfn);
786

787 788 789 790 791 792 793 794 795 796 797
		/*
		 * Check if the pageblock has already been marked skipped.
		 * Only the aligned PFN is checked as the caller isolates
		 * COMPACT_CLUSTER_MAX at a time so the second call must
		 * not falsely conclude that the block should be skipped.
		 */
		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
				low_pfn = end_pfn;
				goto isolate_abort;
			}
798
			valid_page = page;
799
		}
800

801
		/*
802 803 804 805
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
806
		 */
807 808 809 810 811 812 813 814 815 816
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
817
			continue;
818
		}
819

820
		/*
821 822 823 824 825
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
826
		 */
827
		if (PageCompound(page)) {
828
			const unsigned int order = compound_order(page);
829

830
			if (likely(order < MAX_ORDER))
831
				low_pfn += (1UL << order) - 1;
832
			goto isolate_fail;
833 834
		}

835 836 837 838 839 840 841 842 843 844 845 846 847
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU and non-lru movable pages.
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			/*
			 * __PageMovable can return false positive so we need
			 * to verify it under page_lock.
			 */
			if (unlikely(__PageMovable(page)) &&
					!PageIsolated(page)) {
				if (locked) {
848
					spin_unlock_irqrestore(zone_lru_lock(zone),
849 850 851 852
									flags);
					locked = false;
				}

853
				if (!isolate_movable_page(page, isolate_mode))
854 855 856
					goto isolate_success;
			}

857
			goto isolate_fail;
858
		}
859

860 861 862 863 864 865 866
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
867
			goto isolate_fail;
868

869 870 871 872 873 874 875
		/*
		 * Only allow to migrate anonymous pages in GFP_NOFS context
		 * because those do not depend on fs locks.
		 */
		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
			goto isolate_fail;

876 877
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
878
			locked = compact_lock_irqsave(zone_lru_lock(zone),
879
								&flags, cc);
880 881 882 883 884 885 886

			/* Try get exclusive access under lock */
			if (!skip_updated) {
				skip_updated = true;
				if (test_and_set_skip(cc, page, low_pfn))
					goto isolate_abort;
			}
887

888
			/* Recheck PageLRU and PageCompound under lock */
889
			if (!PageLRU(page))
890
				goto isolate_fail;
891 892 893 894 895 896 897

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
898
				low_pfn += (1UL << compound_order(page)) - 1;
899
				goto isolate_fail;
900
			}
901 902
		}

M
Mel Gorman 已提交
903
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
904

905
		/* Try isolate the page */
906
		if (__isolate_lru_page(page, isolate_mode) != 0)
907
			goto isolate_fail;
908

909
		VM_BUG_ON_PAGE(PageCompound(page), page);
910

911
		/* Successfully isolated */
912
		del_page_from_lru_list(page, lruvec, page_lru(page));
913 914
		inc_node_page_state(page,
				NR_ISOLATED_ANON + page_is_file_cache(page));
915 916

isolate_success:
917
		list_add(&page->lru, &cc->migratepages);
918
		cc->nr_migratepages++;
919
		nr_isolated++;
920

921 922
		/*
		 * Avoid isolating too much unless this block is being
923 924 925
		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
		 * or a lock is contended. For contention, isolate quickly to
		 * potentially remove one source of contention.
926
		 */
927 928
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
		    !cc->rescan && !cc->contended) {
929
			++low_pfn;
930
			break;
931
		}
932 933 934 935 936 937 938 939 940 941 942 943 944

		continue;
isolate_fail:
		if (!skip_on_failure)
			continue;

		/*
		 * We have isolated some pages, but then failed. Release them
		 * instead of migrating, as we cannot form the cc->order buddy
		 * page anyway.
		 */
		if (nr_isolated) {
			if (locked) {
945
				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
				locked = false;
			}
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			nr_isolated = 0;
		}

		if (low_pfn < next_skip_pfn) {
			low_pfn = next_skip_pfn - 1;
			/*
			 * The check near the loop beginning would have updated
			 * next_skip_pfn too, but this is a bit simpler.
			 */
			next_skip_pfn += 1UL << cc->order;
		}
961 962
	}

963 964 965 966 967 968 969
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

970
isolate_abort:
971
	if (locked)
972
		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
973

974
	/*
975 976 977 978 979 980
	 * Updated the cached scanner pfn once the pageblock has been scanned
	 * Pages will either be migrated in which case there is no point
	 * scanning in the near future or migration failed in which case the
	 * failure reason may persist. The block is marked for skipping if
	 * there were no pages isolated in the block or if the block is
	 * rescanned twice in a row.
981
	 */
982
	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
983 984 985 986
		if (valid_page && !skip_updated)
			set_pageblock_skip(valid_page);
		update_cached_migrate(cc, low_pfn);
	}
987

988 989
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
990

991
	cc->total_migrate_scanned += nr_scanned;
992
	if (nr_isolated)
993
		count_compact_events(COMPACTISOLATED, nr_isolated);
994

995 996 997
	return low_pfn;
}

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
1012
	unsigned long pfn, block_start_pfn, block_end_pfn;
1013 1014 1015

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
1016
	block_start_pfn = pageblock_start_pfn(pfn);
1017 1018
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
1019
	block_end_pfn = pageblock_end_pfn(pfn);
1020 1021

	for (; pfn < end_pfn; pfn = block_end_pfn,
1022
				block_start_pfn = block_end_pfn,
1023 1024 1025 1026
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

1027 1028
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
1029 1030 1031 1032 1033
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

1034
		if (!pfn)
1035
			break;
1036 1037 1038

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
1039 1040 1041 1042 1043
	}

	return pfn;
}

1044 1045
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
1046

1047 1048 1049
static bool suitable_migration_source(struct compact_control *cc,
							struct page *page)
{
1050 1051
	int block_mt;

1052 1053 1054
	if (pageblock_skip_persistent(page))
		return false;

1055
	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1056 1057
		return true;

1058 1059 1060 1061 1062 1063
	block_mt = get_pageblock_migratetype(page);

	if (cc->migratetype == MIGRATE_MOVABLE)
		return is_migrate_movable(block_mt);
	else
		return block_mt == cc->migratetype;
1064 1065
}

1066
/* Returns true if the page is within a block suitable for migration to */
1067 1068
static bool suitable_migration_target(struct compact_control *cc,
							struct page *page)
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

1081 1082 1083
	if (cc->ignore_block_suitable)
		return true;

1084
	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1085
	if (is_migrate_movable(get_pageblock_migratetype(page)))
1086 1087 1088 1089 1090 1091
		return true;

	/* Otherwise skip the block */
	return false;
}

1092 1093 1094 1095 1096 1097
static inline unsigned int
freelist_scan_limit(struct compact_control *cc)
{
	return (COMPACT_CLUSTER_MAX >> cc->fast_search_fail) + 1;
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
/*
 * Used when scanning for a suitable migration target which scans freelists
 * in reverse. Reorders the list such as the unscanned pages are scanned
 * first on the next iteration of the free scanner
 */
static void
move_freelist_head(struct list_head *freelist, struct page *freepage)
{
	LIST_HEAD(sublist);

	if (!list_is_last(freelist, &freepage->lru)) {
		list_cut_before(&sublist, freelist, &freepage->lru);
		if (!list_empty(&sublist))
			list_splice_tail(&sublist, freelist);
	}
}

/*
 * Similar to move_freelist_head except used by the migration scanner
 * when scanning forward. It's possible for these list operations to
 * move against each other if they search the free list exactly in
 * lockstep.
 */
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
static void
move_freelist_tail(struct list_head *freelist, struct page *freepage)
{
	LIST_HEAD(sublist);

	if (!list_is_first(freelist, &freepage->lru)) {
		list_cut_position(&sublist, freelist, &freepage->lru);
		if (!list_empty(&sublist))
			list_splice_tail(&sublist, freelist);
	}
}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
static void
fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
{
	unsigned long start_pfn, end_pfn;
	struct page *page = pfn_to_page(pfn);

	/* Do not search around if there are enough pages already */
	if (cc->nr_freepages >= cc->nr_migratepages)
		return;

	/* Minimise scanning during async compaction */
	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
		return;

	/* Pageblock boundaries */
	start_pfn = pageblock_start_pfn(pfn);
	end_pfn = min(start_pfn + pageblock_nr_pages, zone_end_pfn(cc->zone));

	/* Scan before */
	if (start_pfn != pfn) {
		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, false);
		if (cc->nr_freepages >= cc->nr_migratepages)
			return;
	}

	/* Scan after */
	start_pfn = pfn + nr_isolated;
	if (start_pfn != end_pfn)
		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, false);

	/* Skip this pageblock in the future as it's full or nearly full */
	if (cc->nr_freepages < cc->nr_migratepages)
		set_pageblock_skip(page);
}

static unsigned long
fast_isolate_freepages(struct compact_control *cc)
{
	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
	unsigned int nr_scanned = 0;
	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
	unsigned long nr_isolated = 0;
	unsigned long distance;
	struct page *page = NULL;
	bool scan_start = false;
	int order;

	/* Full compaction passes in a negative order */
	if (cc->order <= 0)
		return cc->free_pfn;

	/*
	 * If starting the scan, use a deeper search and use the highest
	 * PFN found if a suitable one is not found.
	 */
	if (cc->free_pfn == pageblock_start_pfn(zone_end_pfn(cc->zone) - 1)) {
		limit = pageblock_nr_pages >> 1;
		scan_start = true;
	}

	/*
	 * Preferred point is in the top quarter of the scan space but take
	 * a pfn from the top half if the search is problematic.
	 */
	distance = (cc->free_pfn - cc->migrate_pfn);
	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));

	if (WARN_ON_ONCE(min_pfn > low_pfn))
		low_pfn = min_pfn;

	for (order = cc->order - 1;
	     order >= 0 && !page;
	     order--) {
		struct free_area *area = &cc->zone->free_area[order];
		struct list_head *freelist;
		struct page *freepage;
		unsigned long flags;
		unsigned int order_scanned = 0;

		if (!area->nr_free)
			continue;

		spin_lock_irqsave(&cc->zone->lock, flags);
		freelist = &area->free_list[MIGRATE_MOVABLE];
		list_for_each_entry_reverse(freepage, freelist, lru) {
			unsigned long pfn;

			order_scanned++;
			nr_scanned++;
			pfn = page_to_pfn(freepage);

			if (pfn >= highest)
				highest = pageblock_start_pfn(pfn);

			if (pfn >= low_pfn) {
				cc->fast_search_fail = 0;
				page = freepage;
				break;
			}

			if (pfn >= min_pfn && pfn > high_pfn) {
				high_pfn = pfn;

				/* Shorten the scan if a candidate is found */
				limit >>= 1;
			}

			if (order_scanned >= limit)
				break;
		}

		/* Use a minimum pfn if a preferred one was not found */
		if (!page && high_pfn) {
			page = pfn_to_page(high_pfn);

			/* Update freepage for the list reorder below */
			freepage = page;
		}

		/* Reorder to so a future search skips recent pages */
		move_freelist_head(freelist, freepage);

		/* Isolate the page if available */
		if (page) {
			if (__isolate_free_page(page, order)) {
				set_page_private(page, order);
				nr_isolated = 1 << order;
				cc->nr_freepages += nr_isolated;
				list_add_tail(&page->lru, &cc->freepages);
				count_compact_events(COMPACTISOLATED, nr_isolated);
			} else {
				/* If isolation fails, abort the search */
				order = -1;
				page = NULL;
			}
		}

		spin_unlock_irqrestore(&cc->zone->lock, flags);

		/*
		 * Smaller scan on next order so the total scan ig related
		 * to freelist_scan_limit.
		 */
		if (order_scanned >= limit)
			limit = min(1U, limit >> 1);
	}

	if (!page) {
		cc->fast_search_fail++;
		if (scan_start) {
			/*
			 * Use the highest PFN found above min. If one was
			 * not found, be pessemistic for direct compaction
			 * and use the min mark.
			 */
			if (highest) {
				page = pfn_to_page(highest);
				cc->free_pfn = highest;
			} else {
				if (cc->direct_compaction) {
					page = pfn_to_page(min_pfn);
					cc->free_pfn = min_pfn;
				}
			}
		}
	}

	if (highest && highest > cc->zone->compact_cached_free_pfn)
		cc->zone->compact_cached_free_pfn = highest;

	cc->total_free_scanned += nr_scanned;
	if (!page)
		return cc->free_pfn;

	low_pfn = page_to_pfn(page);
	fast_isolate_around(cc, low_pfn, nr_isolated);
	return low_pfn;
}

1323
/*
1324 1325
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
1326
 */
1327
static void isolate_freepages(struct compact_control *cc)
1328
{
1329
	struct zone *zone = cc->zone;
1330
	struct page *page;
1331
	unsigned long block_start_pfn;	/* start of current pageblock */
1332
	unsigned long isolate_start_pfn; /* exact pfn we start at */
1333 1334
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1335
	struct list_head *freelist = &cc->freepages;
1336

1337 1338 1339 1340 1341
	/* Try a small search of the free lists for a candidate */
	isolate_start_pfn = fast_isolate_freepages(cc);
	if (cc->nr_freepages)
		goto splitmap;

1342 1343
	/*
	 * Initialise the free scanner. The starting point is where we last
1344
	 * successfully isolated from, zone-cached value, or the end of the
1345 1346
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
1347 1348 1349
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
1350 1351
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
1352
	 */
1353
	isolate_start_pfn = cc->free_pfn;
1354
	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1355 1356
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
1357
	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1358

1359 1360 1361 1362 1363
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
1364
	for (; block_start_pfn >= low_pfn;
1365
				block_end_pfn = block_start_pfn,
1366 1367
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
1368 1369
		/*
		 * This can iterate a massively long zone without finding any
1370
		 * suitable migration targets, so periodically check resched.
1371
		 */
1372 1373
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
			compact_check_resched(cc);
1374

1375 1376 1377
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
1378 1379 1380
			continue;

		/* Check the block is suitable for migration */
1381
		if (!suitable_migration_target(cc, page))
1382
			continue;
1383

1384 1385 1386 1387
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1388
		/* Found a block suitable for isolating free pages from. */
1389 1390
		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
					freelist, false);
1391

1392 1393
		/* Are enough freepages isolated? */
		if (cc->nr_freepages >= cc->nr_migratepages) {
1394 1395 1396 1397 1398
			if (isolate_start_pfn >= block_end_pfn) {
				/*
				 * Restart at previous pageblock if more
				 * freepages can be isolated next time.
				 */
1399 1400
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1401
			}
1402
			break;
1403
		} else if (isolate_start_pfn < block_end_pfn) {
1404
			/*
1405 1406
			 * If isolation failed early, do not continue
			 * needlessly.
1407
			 */
1408
			break;
1409
		}
1410 1411
	}

1412
	/*
1413 1414 1415 1416
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1417
	 */
1418
	cc->free_pfn = isolate_start_pfn;
1419 1420 1421 1422

splitmap:
	/* __isolate_free_page() does not map the pages */
	split_map_pages(freelist);
1423 1424 1425 1426 1427 1428 1429
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
1430
					unsigned long data)
1431 1432 1433 1434 1435
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	if (list_empty(&cc->freepages)) {
1436
		isolate_freepages(cc);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1462 1463 1464 1465 1466 1467 1468
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1469 1470 1471 1472 1473 1474
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
static inline void
update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
{
	if (cc->fast_start_pfn == ULONG_MAX)
		return;

	if (!cc->fast_start_pfn)
		cc->fast_start_pfn = pfn;

	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
}

static inline unsigned long
reinit_migrate_pfn(struct compact_control *cc)
{
	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
		return cc->migrate_pfn;

	cc->migrate_pfn = cc->fast_start_pfn;
	cc->fast_start_pfn = ULONG_MAX;

	return cc->migrate_pfn;
}

/*
 * Briefly search the free lists for a migration source that already has
 * some free pages to reduce the number of pages that need migration
 * before a pageblock is free.
 */
static unsigned long fast_find_migrateblock(struct compact_control *cc)
{
	unsigned int limit = freelist_scan_limit(cc);
	unsigned int nr_scanned = 0;
	unsigned long distance;
	unsigned long pfn = cc->migrate_pfn;
	unsigned long high_pfn;
	int order;

	/* Skip hints are relied on to avoid repeats on the fast search */
	if (cc->ignore_skip_hint)
		return pfn;

	/*
	 * If the migrate_pfn is not at the start of a zone or the start
	 * of a pageblock then assume this is a continuation of a previous
	 * scan restarted due to COMPACT_CLUSTER_MAX.
	 */
	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
		return pfn;

	/*
	 * For smaller orders, just linearly scan as the number of pages
	 * to migrate should be relatively small and does not necessarily
	 * justify freeing up a large block for a small allocation.
	 */
	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return pfn;

	/*
	 * Only allow kcompactd and direct requests for movable pages to
	 * quickly clear out a MOVABLE pageblock for allocation. This
	 * reduces the risk that a large movable pageblock is freed for
	 * an unmovable/reclaimable small allocation.
	 */
	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
		return pfn;

	/*
	 * When starting the migration scanner, pick any pageblock within the
	 * first half of the search space. Otherwise try and pick a pageblock
	 * within the first eighth to reduce the chances that a migration
	 * target later becomes a source.
	 */
	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
		distance >>= 2;
	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);

	for (order = cc->order - 1;
	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
	     order--) {
		struct free_area *area = &cc->zone->free_area[order];
		struct list_head *freelist;
		unsigned long flags;
		struct page *freepage;

		if (!area->nr_free)
			continue;

		spin_lock_irqsave(&cc->zone->lock, flags);
		freelist = &area->free_list[MIGRATE_MOVABLE];
		list_for_each_entry(freepage, freelist, lru) {
			unsigned long free_pfn;

			nr_scanned++;
			free_pfn = page_to_pfn(freepage);
			if (free_pfn < high_pfn) {
				/*
				 * Avoid if skipped recently. Ideally it would
				 * move to the tail but even safe iteration of
				 * the list assumes an entry is deleted, not
				 * reordered.
				 */
				if (get_pageblock_skip(freepage)) {
					if (list_is_last(freelist, &freepage->lru))
						break;

					continue;
				}

				/* Reorder to so a future search skips recent pages */
				move_freelist_tail(freelist, freepage);

1588
				update_fast_start_pfn(cc, free_pfn);
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
				pfn = pageblock_start_pfn(free_pfn);
				cc->fast_search_fail = 0;
				set_pageblock_skip(freepage);
				break;
			}

			if (nr_scanned >= limit) {
				cc->fast_search_fail++;
				move_freelist_tail(freelist, freepage);
				break;
			}
		}
		spin_unlock_irqrestore(&cc->zone->lock, flags);
	}

	cc->total_migrate_scanned += nr_scanned;

	/*
	 * If fast scanning failed then use a cached entry for a page block
	 * that had free pages as the basis for starting a linear scan.
	 */
	if (pfn == cc->migrate_pfn)
		pfn = reinit_migrate_pfn(cc);

	return pfn;
}

1616
/*
1617 1618 1619
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1620 1621 1622 1623
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
1624 1625 1626
	unsigned long block_start_pfn;
	unsigned long block_end_pfn;
	unsigned long low_pfn;
1627 1628
	struct page *page;
	const isolate_mode_t isolate_mode =
1629
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1630
		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1631
	bool fast_find_block;
1632

1633 1634
	/*
	 * Start at where we last stopped, or beginning of the zone as
1635 1636
	 * initialized by compact_zone(). The first failure will use
	 * the lowest PFN as the starting point for linear scanning.
1637
	 */
1638
	low_pfn = fast_find_migrateblock(cc);
1639
	block_start_pfn = pageblock_start_pfn(low_pfn);
1640 1641
	if (block_start_pfn < zone->zone_start_pfn)
		block_start_pfn = zone->zone_start_pfn;
1642

1643 1644 1645 1646 1647 1648 1649
	/*
	 * fast_find_migrateblock marks a pageblock skipped so to avoid
	 * the isolation_suitable check below, check whether the fast
	 * search was successful.
	 */
	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;

1650
	/* Only scan within a pageblock boundary */
1651
	block_end_pfn = pageblock_end_pfn(low_pfn);
1652

1653 1654 1655 1656
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
1657
	for (; block_end_pfn <= cc->free_pfn;
1658
			fast_find_block = false,
1659 1660 1661
			low_pfn = block_end_pfn,
			block_start_pfn = block_end_pfn,
			block_end_pfn += pageblock_nr_pages) {
1662

1663 1664 1665
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
1666
		 * need to schedule.
1667
		 */
1668 1669
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
			compact_check_resched(cc);
1670

1671 1672
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
1673
		if (!page)
1674 1675
			continue;

1676 1677 1678 1679 1680 1681 1682 1683 1684
		/*
		 * If isolation recently failed, do not retry. Only check the
		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
		 * to be visited multiple times. Assume skip was checked
		 * before making it "skip" so other compaction instances do
		 * not scan the same block.
		 */
		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
		    !fast_find_block && !isolation_suitable(cc, page))
1685 1686 1687
			continue;

		/*
1688 1689 1690 1691 1692 1693
		 * For async compaction, also only scan in MOVABLE blocks
		 * without huge pages. Async compaction is optimistic to see
		 * if the minimum amount of work satisfies the allocation.
		 * The cached PFN is updated as it's possible that all
		 * remaining blocks between source and target are unsuitable
		 * and the compaction scanners fail to meet.
1694
		 */
1695 1696
		if (!suitable_migration_source(cc, page)) {
			update_cached_migrate(cc, block_end_pfn);
1697
			continue;
1698
		}
1699 1700

		/* Perform the isolation */
1701 1702
		low_pfn = isolate_migratepages_block(cc, low_pfn,
						block_end_pfn, isolate_mode);
1703

1704
		if (!low_pfn)
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

1715 1716
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1717

1718
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1719 1720
}

1721 1722 1723 1724 1725 1726 1727 1728 1729
/*
 * order == -1 is expected when compacting via
 * /proc/sys/vm/compact_memory
 */
static inline bool is_via_compact_memory(int order)
{
	return order == -1;
}

1730
static enum compact_result __compact_finished(struct compact_control *cc)
1731
{
1732
	unsigned int order;
1733
	const int migratetype = cc->migratetype;
1734
	int ret;
1735

1736
	/* Compaction run completes if the migrate and free scanner meet */
1737
	if (compact_scanners_met(cc)) {
1738
		/* Let the next compaction start anew. */
1739
		reset_cached_positions(cc->zone);
1740

1741 1742
		/*
		 * Mark that the PG_migrate_skip information should be cleared
1743
		 * by kswapd when it goes to sleep. kcompactd does not set the
1744 1745 1746
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
1747
		if (cc->direct_compaction)
1748
			cc->zone->compact_blockskip_flush = true;
1749

1750 1751 1752 1753
		if (cc->whole_zone)
			return COMPACT_COMPLETE;
		else
			return COMPACT_PARTIAL_SKIPPED;
1754
	}
1755

1756
	if (is_via_compact_memory(cc->order))
1757 1758
		return COMPACT_CONTINUE;

1759 1760 1761 1762 1763 1764 1765 1766
	/*
	 * Always finish scanning a pageblock to reduce the possibility of
	 * fallbacks in the future. This is particularly important when
	 * migration source is unmovable/reclaimable but it's not worth
	 * special casing.
	 */
	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
		return COMPACT_CONTINUE;
1767

1768
	/* Direct compactor: Is a suitable page free? */
1769
	ret = COMPACT_NO_SUITABLE_PAGE;
1770
	for (order = cc->order; order < MAX_ORDER; order++) {
1771
		struct free_area *area = &cc->zone->free_area[order];
1772
		bool can_steal;
1773 1774

		/* Job done if page is free of the right migratetype */
1775
		if (!free_area_empty(area, migratetype))
1776
			return COMPACT_SUCCESS;
1777

1778 1779 1780
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
1781
			!free_area_empty(area, MIGRATE_CMA))
1782
			return COMPACT_SUCCESS;
1783 1784 1785 1786 1787 1788
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
						true, &can_steal) != -1) {

			/* movable pages are OK in any pageblock */
			if (migratetype == MIGRATE_MOVABLE)
				return COMPACT_SUCCESS;

			/*
			 * We are stealing for a non-movable allocation. Make
			 * sure we finish compacting the current pageblock
			 * first so it is as free as possible and we won't
			 * have to steal another one soon. This only applies
			 * to sync compaction, as async compaction operates
			 * on pageblocks of the same migratetype.
			 */
			if (cc->mode == MIGRATE_ASYNC ||
					IS_ALIGNED(cc->migrate_pfn,
							pageblock_nr_pages)) {
				return COMPACT_SUCCESS;
			}

1809 1810
			ret = COMPACT_CONTINUE;
			break;
1811
		}
1812 1813
	}

1814 1815 1816 1817
	if (cc->contended || fatal_signal_pending(current))
		ret = COMPACT_CONTENDED;

	return ret;
1818 1819
}

1820
static enum compact_result compact_finished(struct compact_control *cc)
1821 1822 1823
{
	int ret;

1824 1825
	ret = __compact_finished(cc);
	trace_mm_compaction_finished(cc->zone, cc->order, ret);
1826 1827 1828 1829
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1830 1831
}

1832 1833 1834 1835
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1836
 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1837 1838
 *   COMPACT_CONTINUE - If compaction should run now
 */
1839
static enum compact_result __compaction_suitable(struct zone *zone, int order,
1840
					unsigned int alloc_flags,
1841 1842
					int classzone_idx,
					unsigned long wmark_target)
1843 1844 1845
{
	unsigned long watermark;

1846
	if (is_via_compact_memory(order))
1847 1848
		return COMPACT_CONTINUE;

1849
	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1850 1851 1852 1853 1854 1855
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
1856
		return COMPACT_SUCCESS;
1857

1858
	/*
1859
	 * Watermarks for order-0 must be met for compaction to be able to
1860 1861 1862 1863 1864 1865 1866
	 * isolate free pages for migration targets. This means that the
	 * watermark and alloc_flags have to match, or be more pessimistic than
	 * the check in __isolate_free_page(). We don't use the direct
	 * compactor's alloc_flags, as they are not relevant for freepage
	 * isolation. We however do use the direct compactor's classzone_idx to
	 * skip over zones where lowmem reserves would prevent allocation even
	 * if compaction succeeds.
1867 1868
	 * For costly orders, we require low watermark instead of min for
	 * compaction to proceed to increase its chances.
1869 1870
	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
	 * suitable migration targets
1871
	 */
1872 1873 1874
	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
				low_wmark_pages(zone) : min_wmark_pages(zone);
	watermark += compact_gap(order);
1875
	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1876
						ALLOC_CMA, wmark_target))
1877 1878
		return COMPACT_SKIPPED;

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	return COMPACT_CONTINUE;
}

enum compact_result compaction_suitable(struct zone *zone, int order,
					unsigned int alloc_flags,
					int classzone_idx)
{
	enum compact_result ret;
	int fragindex;

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
				    zone_page_state(zone, NR_FREE_PAGES));
1891 1892 1893 1894
	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1895 1896
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1897 1898 1899
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
1900 1901 1902 1903 1904 1905
	 * Only compact if a failure would be due to fragmentation. Also
	 * ignore fragindex for non-costly orders where the alternative to
	 * a successful reclaim/compaction is OOM. Fragindex and the
	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
	 * excessive compaction for costly orders, but it should not be at the
	 * expense of system stability.
1906
	 */
1907
	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1908 1909 1910 1911
		fragindex = fragmentation_index(zone, order);
		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
			ret = COMPACT_NOT_SUITABLE_ZONE;
	}
1912 1913 1914 1915 1916 1917 1918 1919

	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
		int alloc_flags)
{
	struct zone *zone;
	struct zoneref *z;

	/*
	 * Make sure at least one zone would pass __compaction_suitable if we continue
	 * retrying the reclaim.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
		enum compact_result compact_result;

		/*
		 * Do not consider all the reclaimable memory because we do not
		 * want to trash just for a single high order allocation which
		 * is even not guaranteed to appear even if __compaction_suitable
		 * is happy about the watermark check.
		 */
1941
		available = zone_reclaimable_pages(zone) / order;
1942 1943 1944
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
		compact_result = __compaction_suitable(zone, order, alloc_flags,
				ac_classzone_idx(ac), available);
1945
		if (compact_result != COMPACT_SKIPPED)
1946 1947 1948 1949 1950 1951
			return true;
	}

	return false;
}

1952
static enum compact_result compact_zone(struct compact_control *cc)
1953
{
1954
	enum compact_result ret;
1955 1956
	unsigned long start_pfn = cc->zone->zone_start_pfn;
	unsigned long end_pfn = zone_end_pfn(cc->zone);
1957
	unsigned long last_migrated_pfn;
1958
	const bool sync = cc->mode != MIGRATE_ASYNC;
1959
	bool update_cached;
1960

1961
	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1962
	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
1963
							cc->classzone_idx);
1964
	/* Compaction is likely to fail */
1965
	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1966
		return ret;
1967 1968 1969

	/* huh, compaction_suitable is returning something unexpected */
	VM_BUG_ON(ret != COMPACT_CONTINUE);
1970

1971 1972
	/*
	 * Clear pageblock skip if there were failures recently and compaction
1973
	 * is about to be retried after being deferred.
1974
	 */
1975 1976
	if (compaction_restarting(cc->zone, cc->order))
		__reset_isolation_suitable(cc->zone);
1977

1978 1979
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
1980 1981 1982
	 * information on where the scanners should start (unless we explicitly
	 * want to compact the whole zone), but check that it is initialised
	 * by ensuring the values are within zone boundaries.
1983
	 */
1984
	cc->fast_start_pfn = 0;
1985
	if (cc->whole_zone) {
1986
		cc->migrate_pfn = start_pfn;
1987 1988
		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
	} else {
1989 1990
		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
		cc->free_pfn = cc->zone->compact_cached_free_pfn;
1991 1992
		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1993
			cc->zone->compact_cached_free_pfn = cc->free_pfn;
1994 1995 1996
		}
		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
			cc->migrate_pfn = start_pfn;
1997 1998
			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1999
		}
2000

2001 2002 2003
		if (cc->migrate_pfn == start_pfn)
			cc->whole_zone = true;
	}
2004

2005
	last_migrated_pfn = 0;
2006

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	/*
	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
	 * the basis that some migrations will fail in ASYNC mode. However,
	 * if the cached PFNs match and pageblocks are skipped due to having
	 * no isolation candidates, then the sync state does not matter.
	 * Until a pageblock with isolation candidates is found, keep the
	 * cached PFNs in sync to avoid revisiting the same blocks.
	 */
	update_cached = !sync &&
		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];

2018 2019
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
2020

2021 2022
	migrate_prep_local();

2023
	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2024
		int err;
2025
		unsigned long start_pfn = cc->migrate_pfn;
2026

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
		/*
		 * Avoid multiple rescans which can happen if a page cannot be
		 * isolated (dirty/writeback in async mode) or if the migrated
		 * pages are being allocated before the pageblock is cleared.
		 * The first rescan will capture the entire pageblock for
		 * migration. If it fails, it'll be marked skip and scanning
		 * will proceed as normal.
		 */
		cc->rescan = false;
		if (pageblock_start_pfn(last_migrated_pfn) ==
		    pageblock_start_pfn(start_pfn)) {
			cc->rescan = true;
		}

2041
		switch (isolate_migratepages(cc->zone, cc)) {
2042
		case ISOLATE_ABORT:
2043
			ret = COMPACT_CONTENDED;
2044
			putback_movable_pages(&cc->migratepages);
2045
			cc->nr_migratepages = 0;
2046
			last_migrated_pfn = 0;
2047 2048
			goto out;
		case ISOLATE_NONE:
2049 2050 2051 2052 2053
			if (update_cached) {
				cc->zone->compact_cached_migrate_pfn[1] =
					cc->zone->compact_cached_migrate_pfn[0];
			}

2054 2055 2056 2057 2058 2059
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
2060
		case ISOLATE_SUCCESS:
2061
			update_cached = false;
2062
			last_migrated_pfn = start_pfn;
2063 2064
			;
		}
2065

2066
		err = migrate_pages(&cc->migratepages, compaction_alloc,
2067
				compaction_free, (unsigned long)cc, cc->mode,
2068
				MR_COMPACTION);
2069

2070 2071
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
2072

2073 2074
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
2075
		if (err) {
2076
			putback_movable_pages(&cc->migratepages);
2077 2078 2079 2080
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
2081
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2082
				ret = COMPACT_CONTENDED;
2083 2084
				goto out;
			}
2085 2086 2087 2088 2089 2090 2091 2092 2093
			/*
			 * We failed to migrate at least one page in the current
			 * order-aligned block, so skip the rest of it.
			 */
			if (cc->direct_compaction &&
						(cc->mode == MIGRATE_ASYNC)) {
				cc->migrate_pfn = block_end_pfn(
						cc->migrate_pfn - 1, cc->order);
				/* Draining pcplists is useless in this case */
2094
				last_migrated_pfn = 0;
2095
			}
2096
		}
2097 2098 2099 2100 2101 2102 2103 2104 2105

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
2106
		if (cc->order > 0 && last_migrated_pfn) {
2107 2108
			int cpu;
			unsigned long current_block_start =
2109
				block_start_pfn(cc->migrate_pfn, cc->order);
2110

2111
			if (last_migrated_pfn < current_block_start) {
2112 2113
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
2114
				drain_local_pages(cc->zone);
2115 2116
				put_cpu();
				/* No more flushing until we migrate again */
2117
				last_migrated_pfn = 0;
2118 2119 2120
			}
		}

2121 2122
	}

2123
out:
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
2134
		free_pfn = pageblock_start_pfn(free_pfn);
2135 2136 2137 2138
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
2139 2140
		if (free_pfn > cc->zone->compact_cached_free_pfn)
			cc->zone->compact_cached_free_pfn = free_pfn;
2141
	}
2142

2143 2144 2145
	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);

2146 2147
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
2148

2149 2150
	return ret;
}
2151

2152
static enum compact_result compact_zone_order(struct zone *zone, int order,
2153
		gfp_t gfp_mask, enum compact_priority prio,
2154
		unsigned int alloc_flags, int classzone_idx)
2155
{
2156
	enum compact_result ret;
2157
	struct compact_control cc = {
2158 2159 2160 2161
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
2162
		.order = order,
2163
		.gfp_mask = gfp_mask,
2164
		.zone = zone,
2165 2166
		.mode = (prio == COMPACT_PRIO_ASYNC) ?
					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2167 2168
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
2169
		.direct_compaction = true,
2170
		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2171 2172
		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2173
	};
2174 2175
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);
2176

2177
	ret = compact_zone(&cc);
2178 2179 2180 2181 2182

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	return ret;
2183 2184
}

2185 2186
int sysctl_extfrag_threshold = 500;

2187 2188 2189
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
2190 2191 2192
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
2193
 * @prio: Determines how hard direct compaction should try to succeed
2194 2195 2196
 *
 * This is the main entry point for direct page compaction.
 */
2197
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2198
		unsigned int alloc_flags, const struct alloc_context *ac,
2199
		enum compact_priority prio)
2200 2201 2202 2203
{
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
2204
	enum compact_result rc = COMPACT_SKIPPED;
2205

2206 2207 2208 2209 2210
	/*
	 * Check if the GFP flags allow compaction - GFP_NOIO is really
	 * tricky context because the migration might require IO
	 */
	if (!may_perform_io)
2211
		return COMPACT_SKIPPED;
2212

2213
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2214

2215
	/* Compact each zone in the list */
2216 2217
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
2218
		enum compact_result status;
2219

2220 2221
		if (prio > MIN_COMPACT_PRIORITY
					&& compaction_deferred(zone, order)) {
2222
			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2223
			continue;
2224
		}
2225

2226
		status = compact_zone_order(zone, order, gfp_mask, prio,
2227
					alloc_flags, ac_classzone_idx(ac));
2228 2229
		rc = max(status, rc);

2230 2231
		/* The allocation should succeed, stop compacting */
		if (status == COMPACT_SUCCESS) {
2232 2233 2234 2235 2236 2237 2238
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
2239

2240
			break;
2241 2242
		}

2243
		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2244
					status == COMPACT_PARTIAL_SKIPPED))
2245 2246 2247 2248 2249 2250
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
2251 2252 2253 2254

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
2255
		 * case do not try further zones
2256
		 */
2257 2258 2259
		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
					|| fatal_signal_pending(current))
			break;
2260 2261 2262 2263 2264 2265
	}

	return rc;
}


2266
/* Compact all zones within a node */
2267
static void compact_node(int nid)
2268
{
2269
	pg_data_t *pgdat = NODE_DATA(nid);
2270 2271
	int zoneid;
	struct zone *zone;
2272 2273
	struct compact_control cc = {
		.order = -1,
2274 2275
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
2276 2277 2278
		.mode = MIGRATE_SYNC,
		.ignore_skip_hint = true,
		.whole_zone = true,
2279
		.gfp_mask = GFP_KERNEL,
2280 2281
	};

2282 2283 2284 2285 2286 2287 2288

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

2289 2290
		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
2291
		cc.zone = zone;
2292 2293
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);
2294

2295
		compact_zone(&cc);
2296

2297 2298
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
2299 2300 2301 2302
	}
}

/* Compact all nodes in the system */
2303
static void compact_nodes(void)
2304 2305 2306
{
	int nid;

2307 2308 2309
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

2310 2311 2312 2313 2314 2315 2316
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

2317 2318 2319 2320
/*
 * This is the entry point for compacting all nodes via
 * /proc/sys/vm/compact_memory
 */
2321 2322 2323 2324
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
2325
		compact_nodes();
2326 2327 2328

	return 0;
}
2329

2330 2331 2332 2333 2334 2335 2336 2337
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

2338
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2339
static ssize_t sysfs_compact_node(struct device *dev,
2340
			struct device_attribute *attr,
2341 2342
			const char *buf, size_t count)
{
2343 2344 2345 2346 2347 2348 2349 2350
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
2351 2352 2353

	return count;
}
2354
static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2355 2356 2357

int compaction_register_node(struct node *node)
{
2358
	return device_create_file(&node->dev, &dev_attr_compact);
2359 2360 2361 2362
}

void compaction_unregister_node(struct node *node)
{
2363
	return device_remove_file(&node->dev, &dev_attr_compact);
2364 2365
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2366

2367 2368
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
{
2369
	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2370 2371 2372 2373 2374 2375 2376 2377
}

static bool kcompactd_node_suitable(pg_data_t *pgdat)
{
	int zoneid;
	struct zone *zone;
	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;

2378
	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
		zone = &pgdat->node_zones[zoneid];

		if (!populated_zone(zone))
			continue;

		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
					classzone_idx) == COMPACT_CONTINUE)
			return true;
	}

	return false;
}

static void kcompactd_do_work(pg_data_t *pgdat)
{
	/*
	 * With no special task, compact all zones so that a page of requested
	 * order is allocatable.
	 */
	int zoneid;
	struct zone *zone;
	struct compact_control cc = {
		.order = pgdat->kcompactd_max_order,
2402 2403
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
2404 2405
		.classzone_idx = pgdat->kcompactd_classzone_idx,
		.mode = MIGRATE_SYNC_LIGHT,
2406
		.ignore_skip_hint = false,
2407
		.gfp_mask = GFP_KERNEL,
2408 2409 2410
	};
	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
							cc.classzone_idx);
2411
	count_compact_event(KCOMPACTD_WAKE);
2412

2413
	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
		int status;

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		if (compaction_deferred(zone, cc.order))
			continue;

		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
							COMPACT_CONTINUE)
			continue;

2427 2428 2429 2430 2431 2432 2433 2434
		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
		cc.total_migrate_scanned = 0;
		cc.total_free_scanned = 0;
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);

2435 2436
		if (kthread_should_stop())
			return;
2437
		status = compact_zone(&cc);
2438

2439
		if (status == COMPACT_SUCCESS) {
2440
			compaction_defer_reset(zone, cc.order, false);
2441
		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2442 2443 2444 2445 2446 2447 2448 2449
			/*
			 * Buddy pages may become stranded on pcps that could
			 * otherwise coalesce on the zone's free area for
			 * order >= cc.order.  This is ratelimited by the
			 * upcoming deferral.
			 */
			drain_all_pages(zone);

2450 2451 2452 2453 2454 2455 2456
			/*
			 * We use sync migration mode here, so we defer like
			 * sync direct compaction does.
			 */
			defer_compaction(zone, cc.order);
		}

2457 2458 2459 2460 2461
		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
				     cc.total_migrate_scanned);
		count_compact_events(KCOMPACTD_FREE_SCANNED,
				     cc.total_free_scanned);

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
	}

	/*
	 * Regardless of success, we are done until woken up next. But remember
	 * the requested order/classzone_idx in case it was higher/tighter than
	 * our current ones
	 */
	if (pgdat->kcompactd_max_order <= cc.order)
		pgdat->kcompactd_max_order = 0;
	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
}

void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
{
	if (!order)
		return;

	if (pgdat->kcompactd_max_order < order)
		pgdat->kcompactd_max_order = order;

	if (pgdat->kcompactd_classzone_idx > classzone_idx)
		pgdat->kcompactd_classzone_idx = classzone_idx;

2488 2489 2490 2491 2492
	/*
	 * Pairs with implicit barrier in wait_event_freezable()
	 * such that wakeups are not missed.
	 */
	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
		return;

	if (!kcompactd_node_suitable(pgdat))
		return;

	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
							classzone_idx);
	wake_up_interruptible(&pgdat->kcompactd_wait);
}

/*
 * The background compaction daemon, started as a kernel thread
 * from the init process.
 */
static int kcompactd(void *p)
{
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;

	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);

	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(tsk, cpumask);

	set_freezable();

	pgdat->kcompactd_max_order = 0;
	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;

	while (!kthread_should_stop()) {
2523 2524
		unsigned long pflags;

2525 2526 2527 2528
		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
		wait_event_freezable(pgdat->kcompactd_wait,
				kcompactd_work_requested(pgdat));

2529
		psi_memstall_enter(&pflags);
2530
		kcompactd_do_work(pgdat);
2531
		psi_memstall_leave(&pflags);
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
	}

	return 0;
}

/*
 * This kcompactd start function will be called by init and node-hot-add.
 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
 */
int kcompactd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kcompactd)
		return 0;

	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
	if (IS_ERR(pgdat->kcompactd)) {
		pr_err("Failed to start kcompactd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kcompactd);
		pgdat->kcompactd = NULL;
	}
	return ret;
}

/*
 * Called by memory hotplug when all memory in a node is offlined. Caller must
 * hold mem_hotplug_begin/end().
 */
void kcompactd_stop(int nid)
{
	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;

	if (kcompactd) {
		kthread_stop(kcompactd);
		NODE_DATA(nid)->kcompactd = NULL;
	}
}

/*
 * It's optimal to keep kcompactd on the same CPUs as their memory, but
 * not required for correctness. So if the last cpu in a node goes
 * away, we get changed to run anywhere: as the first one comes back,
 * restore their cpu bindings.
 */
2578
static int kcompactd_cpu_online(unsigned int cpu)
2579 2580 2581
{
	int nid;

2582 2583 2584
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
2585

2586
		mask = cpumask_of_node(pgdat->node_id);
2587

2588 2589 2590
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2591
	}
2592
	return 0;
2593 2594 2595 2596 2597
}

static int __init kcompactd_init(void)
{
	int nid;
2598 2599 2600 2601 2602 2603 2604 2605 2606
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/compaction:online",
					kcompactd_cpu_online, NULL);
	if (ret < 0) {
		pr_err("kcompactd: failed to register hotplug callbacks.\n");
		return ret;
	}
2607 2608 2609 2610 2611 2612 2613

	for_each_node_state(nid, N_MEMORY)
		kcompactd_run(nid);
	return 0;
}
subsys_initcall(kcompactd_init)

2614
#endif /* CONFIG_COMPACTION */