compaction.c 24.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17 18
#include "internal.h"

19 20 21
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * compact_control is used to track pages being migrated and the free pages
 * they are being migrated to during memory compaction. The free_pfn starts
 * at the end of a zone and migrate_pfn begins at the start. Movable pages
 * are moved to the end of a zone during a compaction run and the run
 * completes when free_pfn <= migrate_pfn
 */
struct compact_control {
	struct list_head freepages;	/* List of free pages to migrate to */
	struct list_head migratepages;	/* List of pages being migrated */
	unsigned long nr_freepages;	/* Number of isolated free pages */
	unsigned long nr_migratepages;	/* Number of pages to migrate */
	unsigned long free_pfn;		/* isolate_freepages search base */
	unsigned long migrate_pfn;	/* isolate_migratepages search base */
36
	bool sync;			/* Synchronous migration */
37

38
	int order;			/* order a direct compactor needs */
39
	int migratetype;		/* MOVABLE, RECLAIMABLE etc */
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
	struct zone *zone;
};

static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

57 58 59 60 61 62 63 64 65 66
/*
 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
 * pages inside of the pageblock (even though it may still end up isolating
 * some pages).
 */
static unsigned long isolate_freepages_block(unsigned long blockpfn,
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
67
{
68
	int nr_scanned = 0, total_isolated = 0;
69 70 71 72 73 74 75 76 77
	struct page *cursor;

	cursor = pfn_to_page(blockpfn);

	/* Isolate free pages. This assumes the block is valid */
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

78 79 80
		if (!pfn_valid_within(blockpfn)) {
			if (strict)
				return 0;
81
			continue;
82
		}
83
		nr_scanned++;
84

85 86 87
		if (!PageBuddy(page)) {
			if (strict)
				return 0;
88
			continue;
89
		}
90 91 92

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
93 94
		if (!isolated && strict)
			return 0;
95 96 97 98 99 100 101 102 103 104 105 106 107
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
		}
	}

108
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
109 110 111
	return total_isolated;
}

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
static unsigned long
isolate_freepages_range(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long isolated, pfn, block_end_pfn, flags;
	struct zone *zone = NULL;
	LIST_HEAD(freelist);

	if (pfn_valid(start_pfn))
		zone = page_zone(pfn_to_page(start_pfn));

	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
		if (!pfn_valid(pfn) || zone != page_zone(pfn_to_page(pfn)))
			break;

		/*
		 * On subsequent iterations ALIGN() is actually not needed,
		 * but we keep it that we not to complicate the code.
		 */
		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		block_end_pfn = min(block_end_pfn, end_pfn);

		spin_lock_irqsave(&zone->lock, flags);
		isolated = isolate_freepages_block(pfn, block_end_pfn,
						   &freelist, true);
		spin_unlock_irqrestore(&zone->lock, flags);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{

	int migratetype = get_pageblock_migratetype(page);

	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
		return false;

	/* If the page is a large free page, then allow migration */
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
		return true;

	/* If the block is MIGRATE_MOVABLE, allow migration */
	if (migratetype == MIGRATE_MOVABLE)
		return true;

	/* Otherwise skip the block */
	return false;
}

201 202 203 204 205 206 207 208 209 210
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

211 212 213 214 215 216 217 218
/*
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
 */
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
{
	struct page *page;
219
	unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
220 221 222 223
	unsigned long flags;
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;

224 225 226 227 228
	/*
	 * Initialise the free scanner. The starting point is where we last
	 * scanned from (or the end of the zone if starting). The low point
	 * is the end of the pageblock the migration scanner is using.
	 */
229 230
	pfn = cc->free_pfn;
	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
231 232 233 234 235 236 237

	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
238

239 240
	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;

		if (!pfn_valid(pfn))
			continue;

		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
		if (!suitable_migration_target(page))
			continue;

268 269 270 271 272 273 274 275 276
		/*
		 * Found a block suitable for isolating free pages from. Now
		 * we disabled interrupts, double check things are ok and
		 * isolate the pages. This is to minimise the time IRQs
		 * are disabled
		 */
		isolated = 0;
		spin_lock_irqsave(&zone->lock, flags);
		if (suitable_migration_target(page)) {
277 278 279
			end_pfn = min(pfn + pageblock_nr_pages, zone_end_pfn);
			isolated = isolate_freepages_block(pfn, end_pfn,
							   freelist, false);
280 281 282
			nr_freepages += isolated;
		}
		spin_unlock_irqrestore(&zone->lock, flags);
283 284 285 286 287 288 289 290 291 292 293

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
		if (isolated)
			high_pfn = max(high_pfn, pfn);
	}

	/* split_free_page does not map the pages */
294
	map_pages(freelist);
295 296 297 298 299 300 301 302 303

	cc->free_pfn = high_pfn;
	cc->nr_freepages = nr_freepages;
}

/* Update the number of anon and file isolated pages in the zone */
static void acct_isolated(struct zone *zone, struct compact_control *cc)
{
	struct page *page;
304
	unsigned int count[2] = { 0, };
305

306 307
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
308

309 310
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
311 312 313 314 315
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
316
	unsigned long active, inactive, isolated;
317 318 319

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
320 321
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
322 323 324
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

325
	return isolated > (inactive + active) / 2;
326 327
}

328 329 330 331 332 333 334
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
353
 */
354 355 356
static unsigned long
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
			   unsigned long low_pfn, unsigned long end_pfn)
357
{
358
	unsigned long last_pageblock_nr = 0, pageblock_nr;
359
	unsigned long nr_scanned = 0, nr_isolated = 0;
360
	struct list_head *migratelist = &cc->migratepages;
361
	isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE;
362 363 364 365 366 367 368

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
369 370
		/* async migration should just abort */
		if (!cc->sync)
371
			return 0;
372

373 374 375
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
376
			return 0;
377 378 379
	}

	/* Time to isolate some pages for migration */
380
	cond_resched();
381 382 383
	spin_lock_irq(&zone->lru_lock);
	for (; low_pfn < end_pfn; low_pfn++) {
		struct page *page;
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
		bool locked = true;

		/* give a chance to irqs before checking need_resched() */
		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
			spin_unlock_irq(&zone->lru_lock);
			locked = false;
		}
		if (need_resched() || spin_is_contended(&zone->lru_lock)) {
			if (locked)
				spin_unlock_irq(&zone->lru_lock);
			cond_resched();
			spin_lock_irq(&zone->lru_lock);
			if (fatal_signal_pending(current))
				break;
		} else if (!locked)
			spin_lock_irq(&zone->lru_lock);

401 402 403 404 405 406 407 408 409 410 411 412 413
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

414 415
		if (!pfn_valid_within(low_pfn))
			continue;
416
		nr_scanned++;
417

418 419 420 421 422 423
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
424
		page = pfn_to_page(low_pfn);
425 426 427 428
		if (page_zone(page) != zone)
			continue;

		/* Skip if free */
429 430 431
		if (PageBuddy(page))
			continue;

432 433 434 435 436 437 438 439 440 441 442 443 444 445
		/*
		 * For async migration, also only scan in MOVABLE blocks. Async
		 * migration is optimistic to see if the minimum amount of work
		 * satisfies the allocation
		 */
		pageblock_nr = low_pfn >> pageblock_order;
		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
				get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
			low_pfn += pageblock_nr_pages;
			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
			last_pageblock_nr = pageblock_nr;
			continue;
		}

446 447 448 449 450 451 452 453 454 455 456 457 458
		if (!PageLRU(page))
			continue;

		/*
		 * PageLRU is set, and lru_lock excludes isolation,
		 * splitting and collapsing (collapsing has already
		 * happened if PageLRU is set).
		 */
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

459 460 461
		if (!cc->sync)
			mode |= ISOLATE_ASYNC_MIGRATE;

462
		/* Try isolate the page */
463
		if (__isolate_lru_page(page, mode, 0) != 0)
464 465
			continue;

466 467
		VM_BUG_ON(PageTransCompound(page));

468 469 470 471
		/* Successfully isolated */
		del_page_from_lru_list(zone, page, page_lru(page));
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
472
		nr_isolated++;
473 474

		/* Avoid isolating too much */
475 476
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
477
			break;
478
		}
479 480 481 482 483 484
	}

	acct_isolated(zone, cc);

	spin_unlock_irq(&zone->lru_lock);

485 486
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	return low_pfn;
}

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn);
	if (!low_pfn)
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

518
	return ISOLATE_SUCCESS;
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

static int compact_finished(struct zone *zone,
568
			    struct compact_control *cc)
569
{
570
	unsigned int order;
571
	unsigned long watermark;
572

573 574 575 576 577 578 579
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

	/* Compaction run completes if the migrate and free scanner meet */
	if (cc->free_pfn <= cc->migrate_pfn)
		return COMPACT_COMPLETE;

580 581 582 583
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
584 585 586
	if (cc->order == -1)
		return COMPACT_CONTINUE;

587 588 589 590 591 592 593
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

594 595 596 597 598 599 600 601 602 603 604
	/* Direct compactor: Is a suitable page free? */
	for (order = cc->order; order < MAX_ORDER; order++) {
		/* Job done if page is free of the right migratetype */
		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (order >= pageblock_order && zone->free_area[order].nr_free)
			return COMPACT_PARTIAL;
	}

605 606 607
	return COMPACT_CONTINUE;
}

608 609 610 611 612 613 614 615 616 617 618 619
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

620 621 622 623 624 625 626
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

627 628 629 630 631 632 633 634 635 636 637 638 639
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
640 641
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
642 643 644 645 646 647 648 649 650
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

651 652
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
653 654 655 656 657
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

658 659 660 661
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;

662 663 664 665 666 667 668 669 670 671 672
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

673 674 675 676 677 678 679 680 681
	/* Setup to move all movable pages to the end of the zone */
	cc->migrate_pfn = zone->zone_start_pfn;
	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
	cc->free_pfn &= ~(pageblock_nr_pages-1);

	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
682
		int err;
683

684 685 686 687 688
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
			goto out;
		case ISOLATE_NONE:
689
			continue;
690 691 692
		case ISOLATE_SUCCESS:
			;
		}
693 694

		nr_migrate = cc->nr_migratepages;
695
		err = migrate_pages(&cc->migratepages, compaction_alloc,
696
				(unsigned long)cc, false,
697
				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
698 699 700 701 702 703 704
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

		count_vm_event(COMPACTBLOCKS);
		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
		if (nr_remaining)
			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
705 706
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
707 708

		/* Release LRU pages not migrated */
709
		if (err) {
710 711 712 713 714 715
			putback_lru_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
		}

	}

716
out:
717 718 719 720 721 722
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

	return ret;
}
723

724
static unsigned long compact_zone_order(struct zone *zone,
725
				 int order, gfp_t gfp_mask,
726
				 bool sync)
727 728 729 730 731 732 733
{
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
734
		.sync = sync,
735 736 737 738 739 740 741
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

	return compact_zone(zone, &cc);
}

742 743
int sysctl_extfrag_threshold = 500;

744 745 746 747 748 749
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
750
 * @sync: Whether migration is synchronous or not
751 752 753 754
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
755 756
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
			bool sync)
757 758 759 760 761 762 763 764 765 766 767 768 769
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;

	/*
	 * Check whether it is worth even starting compaction. The order check is
	 * made because an assumption is made that the page allocator can satisfy
	 * the "cheaper" orders without taking special steps
	 */
770
	if (!order || !may_enter_fs || !may_perform_io)
771 772 773 774 775 776 777 778 779
		return rc;

	count_vm_event(COMPACTSTALL);

	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

780
		status = compact_zone_order(zone, order, gfp_mask, sync);
781 782
		rc = max(status, rc);

783 784
		/* If a normal allocation would succeed, stop compacting */
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
785 786 787 788 789 790 791
			break;
	}

	return rc;
}


792
/* Compact all zones within a node */
793
static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
794 795 796 797 798 799 800 801 802 803
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

804 805 806 807 808
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
809

810
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
811
			compact_zone(zone, cc);
812

813 814 815 816 817 818 819 820 821 822
		if (cc->order > 0) {
			int ok = zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0);
			if (ok && cc->order > zone->compact_order_failed)
				zone->compact_order_failed = cc->order + 1;
			/* Currently async compaction is never deferred. */
			else if (!ok && cc->sync)
				defer_compaction(zone, cc->order);
		}

823 824
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
825 826 827 828 829
	}

	return 0;
}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
int compact_pgdat(pg_data_t *pgdat, int order)
{
	struct compact_control cc = {
		.order = order,
		.sync = false,
	};

	return __compact_pgdat(pgdat, &cc);
}

static int compact_node(int nid)
{
	struct compact_control cc = {
		.order = -1,
		.sync = true,
	};

847
	return __compact_pgdat(NODE_DATA(nid), &cc);
848 849
}

850 851 852 853 854
/* Compact all nodes in the system */
static int compact_nodes(void)
{
	int nid;

855 856 857
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	for_each_online_node(nid)
		compact_node(nid);

	return COMPACT_COMPLETE;
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
		return compact_nodes();

	return 0;
}
876

877 878 879 880 881 882 883 884
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

885
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
886 887
ssize_t sysfs_compact_node(struct device *dev,
			struct device_attribute *attr,
888 889
			const char *buf, size_t count)
{
890 891 892 893 894 895 896 897
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
898 899 900

	return count;
}
901
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
902 903 904

int compaction_register_node(struct node *node)
{
905
	return device_create_file(&node->dev, &dev_attr_compact);
906 907 908 909
}

void compaction_unregister_node(struct node *node)
{
910
	return device_remove_file(&node->dev, &dev_attr_compact);
911 912
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */