compaction.c 58.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
11
#include <linux/cpu.h>
12 13 14 15
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
16
#include <linux/sched/signal.h>
17
#include <linux/backing-dev.h>
18
#include <linux/sysctl.h>
19
#include <linux/sysfs.h>
20
#include <linux/page-isolation.h>
21
#include <linux/kasan.h>
22 23
#include <linux/kthread.h>
#include <linux/freezer.h>
24
#include <linux/page_owner.h>
25
#include <linux/psi.h>
26 27
#include "internal.h"

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

43 44
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

45 46 47
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

48 49 50 51 52
#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)

53 54 55
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
56
	unsigned long high_pfn = 0;
57 58

	list_for_each_entry_safe(page, next, freelist, lru) {
59
		unsigned long pfn = page_to_pfn(page);
60 61
		list_del(&page->lru);
		__free_page(page);
62 63
		if (pfn > high_pfn)
			high_pfn = pfn;
64 65
	}

66
	return high_pfn;
67 68
}

69 70
static void map_pages(struct list_head *list)
{
71 72 73 74 75 76 77 78 79 80
	unsigned int i, order, nr_pages;
	struct page *page, *next;
	LIST_HEAD(tmp_list);

	list_for_each_entry_safe(page, next, list, lru) {
		list_del(&page->lru);

		order = page_private(page);
		nr_pages = 1 << order;

81
		post_alloc_hook(page, order, __GFP_MOVABLE);
82 83
		if (order)
			split_page(page, order);
84

85 86 87 88
		for (i = 0; i < nr_pages; i++) {
			list_add(&page->lru, &tmp_list);
			page++;
		}
89
	}
90 91

	list_splice(&tmp_list, list);
92 93
}

94
#ifdef CONFIG_COMPACTION
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
int PageMovable(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	if (!__PageMovable(page))
		return 0;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
		return 1;

	return 0;
}
EXPORT_SYMBOL(PageMovable);

void __SetPageMovable(struct page *page, struct address_space *mapping)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__SetPageMovable);

void __ClearPageMovable(struct page *page)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	/*
	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
	 * flag so that VM can catch up released page by driver after isolation.
	 * With it, VM migration doesn't try to put it back.
	 */
	page->mapping = (void *)((unsigned long)page->mapping &
				PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__ClearPageMovable);

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

204 205 206 207 208 209 210 211 212 213
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

214 215 216 217
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218
	zone->compact_cached_free_pfn =
219
				pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 221
}

222
/*
223 224 225
 * Compound pages of >= pageblock_order should consistenly be skipped until
 * released. It is always pointless to compact pages of such order (if they are
 * migratable), and the pageblocks they occupy cannot contain any free pages.
226
 */
227
static bool pageblock_skip_persistent(struct page *page)
228
{
229
	if (!PageCompound(page))
230
		return false;
231 232 233 234 235 236 237

	page = compound_head(page);

	if (compound_order(page) >= pageblock_order)
		return true;

	return false;
238 239
}

240 241 242 243 244
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
245
static void __reset_isolation_suitable(struct zone *zone)
246 247
{
	unsigned long start_pfn = zone->zone_start_pfn;
248
	unsigned long end_pfn = zone_end_pfn(zone);
249 250
	unsigned long pfn;

251
	zone->compact_blockskip_flush = false;
252 253 254 255 256 257 258

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

259 260
		page = pfn_to_online_page(pfn);
		if (!page)
261 262 263
			continue;
		if (zone != page_zone(page))
			continue;
264
		if (pageblock_skip_persistent(page))
265
			continue;
266 267 268

		clear_pageblock_skip(page);
	}
269 270

	reset_cached_positions(zone);
271 272
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

288 289
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
290
 * future. The information is later cleared by __reset_isolation_suitable().
291
 */
292 293
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
294
			bool migrate_scanner)
295
{
296
	struct zone *zone = cc->zone;
297
	unsigned long pfn;
298

299
	if (cc->no_set_skip_hint)
300 301
		return;

302 303 304
	if (!page)
		return;

305 306 307
	if (nr_isolated)
		return;

308
	set_pageblock_skip(page);
309

310 311 312 313 314 315
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
316 317
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
318 319 320 321
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
322
	}
323 324 325 326 327 328 329 330
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

331
static inline bool pageblock_skip_persistent(struct page *page)
332 333 334 335 336
{
	return false;
}

static inline void update_pageblock_skip(struct compact_control *cc,
337
			struct page *page, unsigned long nr_isolated,
338
			bool migrate_scanner)
339 340 341 342
{
}
#endif /* CONFIG_COMPACTION */

343 344 345 346 347 348 349 350 351 352
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
353
{
354 355
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
356
			cc->contended = true;
357 358 359 360 361
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
362

363
	return true;
364 365
}

366 367
/*
 * Compaction requires the taking of some coarse locks that are potentially
368 369 370 371 372 373 374
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
375
 *
376 377 378 379
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
380
 */
381 382
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
383
{
384 385 386 387
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
388

389
	if (fatal_signal_pending(current)) {
390
		cc->contended = true;
391 392
		return true;
	}
393

394
	if (need_resched()) {
395
		if (cc->mode == MIGRATE_ASYNC) {
396
			cc->contended = true;
397
			return true;
398 399 400 401
		}
		cond_resched();
	}

402
	return false;
403 404
}

405 406 407
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
408
 * compaction. This is similar to what compact_unlock_should_abort() does, but
409 410 411 412 413 414 415 416 417 418
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
419
			cc->contended = true;
420 421 422 423 424 425 426 427 428
			return true;
		}

		cond_resched();
	}

	return false;
}

429
/*
430 431 432
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
433
 */
434
static unsigned long isolate_freepages_block(struct compact_control *cc,
435
				unsigned long *start_pfn,
436 437 438
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
439
{
440
	int nr_scanned = 0, total_isolated = 0;
441
	struct page *cursor, *valid_page = NULL;
442
	unsigned long flags = 0;
443
	bool locked = false;
444
	unsigned long blockpfn = *start_pfn;
445
	unsigned int order;
446 447 448

	cursor = pfn_to_page(blockpfn);

449
	/* Isolate free pages. */
450
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
451
		int isolated;
452 453
		struct page *page = cursor;

454 455 456 457 458 459 460 461 462 463
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

464
		nr_scanned++;
465
		if (!pfn_valid_within(blockpfn))
466 467
			goto isolate_fail;

468 469
		if (!valid_page)
			valid_page = page;
470 471 472 473 474 475 476 477

		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
478 479
			const unsigned int order = compound_order(page);

480
			if (likely(order < MAX_ORDER)) {
481 482
				blockpfn += (1UL << order) - 1;
				cursor += (1UL << order) - 1;
483 484 485 486
			}
			goto isolate_fail;
		}

487
		if (!PageBuddy(page))
488
			goto isolate_fail;
489 490

		/*
491 492 493 494 495
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
496
		 */
497 498 499 500 501 502 503 504 505
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
506 507
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
508 509
			if (!locked)
				break;
510

511 512 513 514
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
515

516 517 518
		/* Found a free page, will break it into order-0 pages */
		order = page_order(page);
		isolated = __isolate_free_page(page, order);
519 520
		if (!isolated)
			break;
521
		set_page_private(page, order);
522

523
		total_isolated += isolated;
524
		cc->nr_freepages += isolated;
525 526
		list_add_tail(&page->lru, freelist);

527 528 529
		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
			blockpfn += isolated;
			break;
530
		}
531 532 533 534
		/* Advance to the end of split page */
		blockpfn += isolated - 1;
		cursor += isolated - 1;
		continue;
535 536 537 538 539 540 541

isolate_fail:
		if (strict)
			break;
		else
			continue;

542 543
	}

544 545 546
	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

547 548 549 550 551 552 553
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

554 555 556
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

557 558 559
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

560 561 562 563 564
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
565
	if (strict && blockpfn < end_pfn)
566 567
		total_isolated = 0;

568 569
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
570
		update_pageblock_skip(cc, valid_page, total_isolated, false);
571

572
	cc->total_free_scanned += nr_scanned;
573
	if (total_isolated)
574
		count_compact_events(COMPACTISOLATED, total_isolated);
575 576 577
	return total_isolated;
}

578 579
/**
 * isolate_freepages_range() - isolate free pages.
580
 * @cc:        Compaction control structure.
581 582 583 584 585 586 587 588 589 590 591
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
592
unsigned long
593 594
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
595
{
596
	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
597 598
	LIST_HEAD(freelist);

599
	pfn = start_pfn;
600
	block_start_pfn = pageblock_start_pfn(pfn);
601 602
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
603
	block_end_pfn = pageblock_end_pfn(pfn);
604 605

	for (; pfn < end_pfn; pfn += isolated,
606
				block_start_pfn = block_end_pfn,
607
				block_end_pfn += pageblock_nr_pages) {
608 609
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
610 611 612

		block_end_pfn = min(block_end_pfn, end_pfn);

613 614 615 616 617 618
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
619 620
			block_start_pfn = pageblock_start_pfn(pfn);
			block_end_pfn = pageblock_end_pfn(pfn);
621 622 623
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

624 625
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
626 627
			break;

628 629
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

646
	/* __isolate_free_page() does not map the pages */
647 648 649 650 651 652 653 654 655 656 657 658
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

659 660 661
/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
662
	unsigned long active, inactive, isolated;
663

M
Mel Gorman 已提交
664 665 666 667 668 669
	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
670

671
	return isolated > (inactive + active) / 2;
672 673
}

674
/**
675 676
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
677
 * @cc:		Compaction control structure.
678 679 680
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
681 682
 *
 * Isolate all pages that can be migrated from the range specified by
683 684 685 686
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
687
 *
688 689 690
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
691
 */
692 693 694
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
695
{
696
	struct zone *zone = cc->zone;
697
	unsigned long nr_scanned = 0, nr_isolated = 0;
698
	struct lruvec *lruvec;
699
	unsigned long flags = 0;
700
	bool locked = false;
701
	struct page *page = NULL, *valid_page = NULL;
702
	unsigned long start_pfn = low_pfn;
703 704
	bool skip_on_failure = false;
	unsigned long next_skip_pfn = 0;
705 706 707 708 709 710 711

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
712
		/* async migration should just abort */
713
		if (cc->mode == MIGRATE_ASYNC)
714
			return 0;
715

716 717 718
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
719
			return 0;
720 721
	}

722 723
	if (compact_should_abort(cc))
		return 0;
724

725 726 727 728 729
	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
		skip_on_failure = true;
		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
	}

730 731
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
		if (skip_on_failure && low_pfn >= next_skip_pfn) {
			/*
			 * We have isolated all migration candidates in the
			 * previous order-aligned block, and did not skip it due
			 * to failure. We should migrate the pages now and
			 * hopefully succeed compaction.
			 */
			if (nr_isolated)
				break;

			/*
			 * We failed to isolate in the previous order-aligned
			 * block. Set the new boundary to the end of the
			 * current block. Note we can't simply increase
			 * next_skip_pfn by 1 << order, as low_pfn might have
			 * been incremented by a higher number due to skipping
			 * a compound or a high-order buddy page in the
			 * previous loop iteration.
			 */
			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
		}

755 756 757 758 759 760
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
761
		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
762 763
								&locked, cc))
			break;
764

765
		if (!pfn_valid_within(low_pfn))
766
			goto isolate_fail;
767
		nr_scanned++;
768 769

		page = pfn_to_page(low_pfn);
770

771 772 773
		if (!valid_page)
			valid_page = page;

774
		/*
775 776 777 778
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
779
		 */
780 781 782 783 784 785 786 787 788 789
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
790
			continue;
791
		}
792

793
		/*
794 795 796 797 798
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
799
		 */
800
		if (PageCompound(page)) {
801
			const unsigned int order = compound_order(page);
802

803
			if (likely(order < MAX_ORDER))
804
				low_pfn += (1UL << order) - 1;
805
			goto isolate_fail;
806 807
		}

808 809 810 811 812 813 814 815 816 817 818 819 820
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU and non-lru movable pages.
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			/*
			 * __PageMovable can return false positive so we need
			 * to verify it under page_lock.
			 */
			if (unlikely(__PageMovable(page)) &&
					!PageIsolated(page)) {
				if (locked) {
821
					spin_unlock_irqrestore(zone_lru_lock(zone),
822 823 824 825
									flags);
					locked = false;
				}

826
				if (!isolate_movable_page(page, isolate_mode))
827 828 829
					goto isolate_success;
			}

830
			goto isolate_fail;
831
		}
832

833 834 835 836 837 838 839
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
840
			goto isolate_fail;
841

842 843 844 845 846 847 848
		/*
		 * Only allow to migrate anonymous pages in GFP_NOFS context
		 * because those do not depend on fs locks.
		 */
		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
			goto isolate_fail;

849 850
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
851
			locked = compact_trylock_irqsave(zone_lru_lock(zone),
852
								&flags, cc);
853 854
			if (!locked)
				break;
855

856
			/* Recheck PageLRU and PageCompound under lock */
857
			if (!PageLRU(page))
858
				goto isolate_fail;
859 860 861 862 863 864 865

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
866
				low_pfn += (1UL << compound_order(page)) - 1;
867
				goto isolate_fail;
868
			}
869 870
		}

M
Mel Gorman 已提交
871
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
872

873
		/* Try isolate the page */
874
		if (__isolate_lru_page(page, isolate_mode) != 0)
875
			goto isolate_fail;
876

877
		VM_BUG_ON_PAGE(PageCompound(page), page);
878

879
		/* Successfully isolated */
880
		del_page_from_lru_list(page, lruvec, page_lru(page));
881 882
		inc_node_page_state(page,
				NR_ISOLATED_ANON + page_is_file_cache(page));
883 884

isolate_success:
885
		list_add(&page->lru, &cc->migratepages);
886
		cc->nr_migratepages++;
887
		nr_isolated++;
888

889 890 891 892 893 894 895 896 897
		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator.
		 * - this is the lowest page that was isolated and likely be
		 * then freed by migration.
		 */
		if (!cc->last_migrated_pfn)
			cc->last_migrated_pfn = low_pfn;

898
		/* Avoid isolating too much */
899 900
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
901
			break;
902
		}
903 904 905 906 907 908 909 910 911 912 913 914 915

		continue;
isolate_fail:
		if (!skip_on_failure)
			continue;

		/*
		 * We have isolated some pages, but then failed. Release them
		 * instead of migrating, as we cannot form the cc->order buddy
		 * page anyway.
		 */
		if (nr_isolated) {
			if (locked) {
916
				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
				locked = false;
			}
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			cc->last_migrated_pfn = 0;
			nr_isolated = 0;
		}

		if (low_pfn < next_skip_pfn) {
			low_pfn = next_skip_pfn - 1;
			/*
			 * The check near the loop beginning would have updated
			 * next_skip_pfn too, but this is a bit simpler.
			 */
			next_skip_pfn += 1UL << cc->order;
		}
933 934
	}

935 936 937 938 939 940 941
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

942
	if (locked)
943
		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
944

945 946 947 948
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
949
	if (low_pfn == end_pfn)
950
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
951

952 953
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
954

955
	cc->total_migrate_scanned += nr_scanned;
956
	if (nr_isolated)
957
		count_compact_events(COMPACTISOLATED, nr_isolated);
958

959 960 961
	return low_pfn;
}

962 963 964 965 966 967 968 969 970 971 972 973 974 975
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
976
	unsigned long pfn, block_start_pfn, block_end_pfn;
977 978 979

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
980
	block_start_pfn = pageblock_start_pfn(pfn);
981 982
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
983
	block_end_pfn = pageblock_end_pfn(pfn);
984 985

	for (; pfn < end_pfn; pfn = block_end_pfn,
986
				block_start_pfn = block_end_pfn,
987 988 989 990
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

991 992
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
993 994 995 996 997
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

998
		if (!pfn)
999
			break;
1000 1001 1002

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
1003 1004 1005 1006 1007
	}

	return pfn;
}

1008 1009
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
1010

1011 1012 1013
static bool suitable_migration_source(struct compact_control *cc,
							struct page *page)
{
1014 1015 1016
	int block_mt;

	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1017 1018
		return true;

1019 1020 1021 1022 1023 1024
	block_mt = get_pageblock_migratetype(page);

	if (cc->migratetype == MIGRATE_MOVABLE)
		return is_migrate_movable(block_mt);
	else
		return block_mt == cc->migratetype;
1025 1026
}

1027
/* Returns true if the page is within a block suitable for migration to */
1028 1029
static bool suitable_migration_target(struct compact_control *cc,
							struct page *page)
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

1042 1043 1044
	if (cc->ignore_block_suitable)
		return true;

1045
	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1046
	if (is_migrate_movable(get_pageblock_migratetype(page)))
1047 1048 1049 1050 1051 1052
		return true;

	/* Otherwise skip the block */
	return false;
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

1063
/*
1064 1065
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
1066
 */
1067
static void isolate_freepages(struct compact_control *cc)
1068
{
1069
	struct zone *zone = cc->zone;
1070
	struct page *page;
1071
	unsigned long block_start_pfn;	/* start of current pageblock */
1072
	unsigned long isolate_start_pfn; /* exact pfn we start at */
1073 1074
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1075
	struct list_head *freelist = &cc->freepages;
1076

1077 1078
	/*
	 * Initialise the free scanner. The starting point is where we last
1079
	 * successfully isolated from, zone-cached value, or the end of the
1080 1081
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
1082 1083 1084
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
1085 1086
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
1087
	 */
1088
	isolate_start_pfn = cc->free_pfn;
1089
	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1090 1091
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
1092
	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1093

1094 1095 1096 1097 1098
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
1099
	for (; block_start_pfn >= low_pfn;
1100
				block_end_pfn = block_start_pfn,
1101 1102
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
1103 1104 1105
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
1106
		 * to schedule, or even abort async compaction.
1107
		 */
1108 1109 1110
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1111

1112 1113 1114
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
1115 1116 1117
			continue;

		/* Check the block is suitable for migration */
1118
		if (!suitable_migration_target(cc, page))
1119
			continue;
1120

1121 1122 1123 1124
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1125
		/* Found a block suitable for isolating free pages from. */
1126 1127
		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
					freelist, false);
1128

1129
		/*
1130 1131
		 * If we isolated enough freepages, or aborted due to lock
		 * contention, terminate.
1132
		 */
1133 1134
		if ((cc->nr_freepages >= cc->nr_migratepages)
							|| cc->contended) {
1135 1136 1137 1138 1139
			if (isolate_start_pfn >= block_end_pfn) {
				/*
				 * Restart at previous pageblock if more
				 * freepages can be isolated next time.
				 */
1140 1141
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1142
			}
1143
			break;
1144
		} else if (isolate_start_pfn < block_end_pfn) {
1145
			/*
1146 1147
			 * If isolation failed early, do not continue
			 * needlessly.
1148
			 */
1149
			break;
1150
		}
1151 1152
	}

1153
	/* __isolate_free_page() does not map the pages */
1154 1155
	map_pages(freelist);

1156
	/*
1157 1158 1159 1160
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1161
	 */
1162
	cc->free_pfn = isolate_start_pfn;
1163 1164 1165 1166 1167 1168 1169
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
1170
					unsigned long data)
1171 1172 1173 1174
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

1175 1176 1177 1178
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
1179
	if (list_empty(&cc->freepages)) {
1180
		if (!cc->contended)
1181
			isolate_freepages(cc);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1207 1208 1209 1210 1211 1212 1213
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1214 1215 1216 1217 1218 1219
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1220
/*
1221 1222 1223
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1224 1225 1226 1227
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
1228 1229 1230
	unsigned long block_start_pfn;
	unsigned long block_end_pfn;
	unsigned long low_pfn;
1231 1232
	struct page *page;
	const isolate_mode_t isolate_mode =
1233
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1234
		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1235

1236 1237 1238 1239 1240
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
1241
	block_start_pfn = pageblock_start_pfn(low_pfn);
1242 1243
	if (block_start_pfn < zone->zone_start_pfn)
		block_start_pfn = zone->zone_start_pfn;
1244 1245

	/* Only scan within a pageblock boundary */
1246
	block_end_pfn = pageblock_end_pfn(low_pfn);
1247

1248 1249 1250 1251
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
1252 1253 1254 1255
	for (; block_end_pfn <= cc->free_pfn;
			low_pfn = block_end_pfn,
			block_start_pfn = block_end_pfn,
			block_end_pfn += pageblock_nr_pages) {
1256

1257 1258 1259 1260 1261 1262 1263 1264
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1265

1266 1267
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
1268
		if (!page)
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
1280
		if (!suitable_migration_source(cc, page))
1281 1282 1283
			continue;

		/* Perform the isolation */
1284 1285
		low_pfn = isolate_migratepages_block(cc, low_pfn,
						block_end_pfn, isolate_mode);
1286

1287
		if (!low_pfn || cc->contended)
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

1298 1299
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1300

1301
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1302 1303
}

1304 1305 1306 1307 1308 1309 1310 1311 1312
/*
 * order == -1 is expected when compacting via
 * /proc/sys/vm/compact_memory
 */
static inline bool is_via_compact_memory(int order)
{
	return order == -1;
}

1313 1314
static enum compact_result __compact_finished(struct zone *zone,
						struct compact_control *cc)
1315
{
1316
	unsigned int order;
1317
	const int migratetype = cc->migratetype;
1318

1319
	if (cc->contended || fatal_signal_pending(current))
1320
		return COMPACT_CONTENDED;
1321

1322
	/* Compaction run completes if the migrate and free scanner meet */
1323
	if (compact_scanners_met(cc)) {
1324
		/* Let the next compaction start anew. */
1325
		reset_cached_positions(zone);
1326

1327 1328
		/*
		 * Mark that the PG_migrate_skip information should be cleared
1329
		 * by kswapd when it goes to sleep. kcompactd does not set the
1330 1331 1332
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
1333
		if (cc->direct_compaction)
1334 1335
			zone->compact_blockskip_flush = true;

1336 1337 1338 1339
		if (cc->whole_zone)
			return COMPACT_COMPLETE;
		else
			return COMPACT_PARTIAL_SKIPPED;
1340
	}
1341

1342
	if (is_via_compact_memory(cc->order))
1343 1344
		return COMPACT_CONTINUE;

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	if (cc->finishing_block) {
		/*
		 * We have finished the pageblock, but better check again that
		 * we really succeeded.
		 */
		if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
			cc->finishing_block = false;
		else
			return COMPACT_CONTINUE;
	}

1356
	/* Direct compactor: Is a suitable page free? */
1357 1358
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];
1359
		bool can_steal;
1360 1361

		/* Job done if page is free of the right migratetype */
1362
		if (!free_area_empty(area, migratetype))
1363
			return COMPACT_SUCCESS;
1364

1365 1366 1367
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
1368
			!free_area_empty(area, MIGRATE_CMA))
1369
			return COMPACT_SUCCESS;
1370 1371 1372 1373 1374 1375
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
						true, &can_steal) != -1) {

			/* movable pages are OK in any pageblock */
			if (migratetype == MIGRATE_MOVABLE)
				return COMPACT_SUCCESS;

			/*
			 * We are stealing for a non-movable allocation. Make
			 * sure we finish compacting the current pageblock
			 * first so it is as free as possible and we won't
			 * have to steal another one soon. This only applies
			 * to sync compaction, as async compaction operates
			 * on pageblocks of the same migratetype.
			 */
			if (cc->mode == MIGRATE_ASYNC ||
					IS_ALIGNED(cc->migrate_pfn,
							pageblock_nr_pages)) {
				return COMPACT_SUCCESS;
			}

			cc->finishing_block = true;
			return COMPACT_CONTINUE;
		}
1399 1400
	}

1401 1402 1403
	return COMPACT_NO_SUITABLE_PAGE;
}

1404
static enum compact_result compact_finished(struct zone *zone,
1405
			struct compact_control *cc)
1406 1407 1408
{
	int ret;

1409
	ret = __compact_finished(zone, cc);
1410 1411 1412 1413 1414
	trace_mm_compaction_finished(zone, cc->order, ret);
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1415 1416
}

1417 1418 1419 1420
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1421
 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1422 1423
 *   COMPACT_CONTINUE - If compaction should run now
 */
1424
static enum compact_result __compaction_suitable(struct zone *zone, int order,
1425
					unsigned int alloc_flags,
1426 1427
					int classzone_idx,
					unsigned long wmark_target)
1428 1429 1430
{
	unsigned long watermark;

1431
	if (is_via_compact_memory(order))
1432 1433
		return COMPACT_CONTINUE;

1434
	watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1435 1436 1437 1438 1439 1440
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
1441
		return COMPACT_SUCCESS;
1442

1443
	/*
1444
	 * Watermarks for order-0 must be met for compaction to be able to
1445 1446 1447 1448 1449 1450 1451
	 * isolate free pages for migration targets. This means that the
	 * watermark and alloc_flags have to match, or be more pessimistic than
	 * the check in __isolate_free_page(). We don't use the direct
	 * compactor's alloc_flags, as they are not relevant for freepage
	 * isolation. We however do use the direct compactor's classzone_idx to
	 * skip over zones where lowmem reserves would prevent allocation even
	 * if compaction succeeds.
1452 1453
	 * For costly orders, we require low watermark instead of min for
	 * compaction to proceed to increase its chances.
1454 1455
	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
	 * suitable migration targets
1456
	 */
1457 1458 1459
	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
				low_wmark_pages(zone) : min_wmark_pages(zone);
	watermark += compact_gap(order);
1460
	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1461
						ALLOC_CMA, wmark_target))
1462 1463
		return COMPACT_SKIPPED;

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	return COMPACT_CONTINUE;
}

enum compact_result compaction_suitable(struct zone *zone, int order,
					unsigned int alloc_flags,
					int classzone_idx)
{
	enum compact_result ret;
	int fragindex;

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
				    zone_page_state(zone, NR_FREE_PAGES));
1476 1477 1478 1479
	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1480 1481
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1482 1483 1484
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
1485 1486 1487 1488 1489 1490
	 * Only compact if a failure would be due to fragmentation. Also
	 * ignore fragindex for non-costly orders where the alternative to
	 * a successful reclaim/compaction is OOM. Fragindex and the
	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
	 * excessive compaction for costly orders, but it should not be at the
	 * expense of system stability.
1491
	 */
1492
	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1493 1494 1495 1496
		fragindex = fragmentation_index(zone, order);
		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
			ret = COMPACT_NOT_SUITABLE_ZONE;
	}
1497 1498 1499 1500 1501 1502 1503 1504

	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
		int alloc_flags)
{
	struct zone *zone;
	struct zoneref *z;

	/*
	 * Make sure at least one zone would pass __compaction_suitable if we continue
	 * retrying the reclaim.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
		enum compact_result compact_result;

		/*
		 * Do not consider all the reclaimable memory because we do not
		 * want to trash just for a single high order allocation which
		 * is even not guaranteed to appear even if __compaction_suitable
		 * is happy about the watermark check.
		 */
1526
		available = zone_reclaimable_pages(zone) / order;
1527 1528 1529
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
		compact_result = __compaction_suitable(zone, order, alloc_flags,
				ac_classzone_idx(ac), available);
1530
		if (compact_result != COMPACT_SKIPPED)
1531 1532 1533 1534 1535 1536
			return true;
	}

	return false;
}

1537
static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1538
{
1539
	enum compact_result ret;
1540
	unsigned long start_pfn = zone->zone_start_pfn;
1541
	unsigned long end_pfn = zone_end_pfn(zone);
1542
	const bool sync = cc->mode != MIGRATE_ASYNC;
1543

1544
	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1545 1546
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1547
	/* Compaction is likely to fail */
1548
	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1549
		return ret;
1550 1551 1552

	/* huh, compaction_suitable is returning something unexpected */
	VM_BUG_ON(ret != COMPACT_CONTINUE);
1553

1554 1555
	/*
	 * Clear pageblock skip if there were failures recently and compaction
1556
	 * is about to be retried after being deferred.
1557
	 */
1558
	if (compaction_restarting(zone, cc->order))
1559 1560
		__reset_isolation_suitable(zone);

1561 1562
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
1563 1564 1565
	 * information on where the scanners should start (unless we explicitly
	 * want to compact the whole zone), but check that it is initialised
	 * by ensuring the values are within zone boundaries.
1566
	 */
1567
	if (cc->whole_zone) {
1568
		cc->migrate_pfn = start_pfn;
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
	} else {
		cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
		cc->free_pfn = zone->compact_cached_free_pfn;
		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
			zone->compact_cached_free_pfn = cc->free_pfn;
		}
		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
			cc->migrate_pfn = start_pfn;
			zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
			zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
		}
1582

1583 1584 1585
		if (cc->migrate_pfn == start_pfn)
			cc->whole_zone = true;
	}
1586

1587
	cc->last_migrated_pfn = 0;
1588

1589 1590
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1591

1592 1593
	migrate_prep_local();

1594
	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1595
		int err;
1596

1597 1598
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
1599
			ret = COMPACT_CONTENDED;
1600
			putback_movable_pages(&cc->migratepages);
1601
			cc->nr_migratepages = 0;
1602 1603
			goto out;
		case ISOLATE_NONE:
1604 1605 1606 1607 1608 1609
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1610 1611 1612
		case ISOLATE_SUCCESS:
			;
		}
1613

1614
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1615
				compaction_free, (unsigned long)cc, cc->mode,
1616
				MR_COMPACTION);
1617

1618 1619
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1620

1621 1622
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1623
		if (err) {
1624
			putback_movable_pages(&cc->migratepages);
1625 1626 1627 1628
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
1629
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1630
				ret = COMPACT_CONTENDED;
1631 1632
				goto out;
			}
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
			/*
			 * We failed to migrate at least one page in the current
			 * order-aligned block, so skip the rest of it.
			 */
			if (cc->direct_compaction &&
						(cc->mode == MIGRATE_ASYNC)) {
				cc->migrate_pfn = block_end_pfn(
						cc->migrate_pfn - 1, cc->order);
				/* Draining pcplists is useless in this case */
				cc->last_migrated_pfn = 0;

			}
1645
		}
1646 1647 1648 1649 1650 1651 1652 1653 1654

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
1655
		if (cc->order > 0 && cc->last_migrated_pfn) {
1656 1657
			int cpu;
			unsigned long current_block_start =
1658
				block_start_pfn(cc->migrate_pfn, cc->order);
1659

1660
			if (cc->last_migrated_pfn < current_block_start) {
1661 1662 1663 1664 1665
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
1666
				cc->last_migrated_pfn = 0;
1667 1668 1669
			}
		}

1670 1671
	}

1672
out:
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
1683
		free_pfn = pageblock_start_pfn(free_pfn);
1684 1685 1686 1687 1688 1689 1690
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1691

1692 1693 1694
	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);

1695 1696
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1697

1698 1699
	return ret;
}
1700

1701
static enum compact_result compact_zone_order(struct zone *zone, int order,
1702
		gfp_t gfp_mask, enum compact_priority prio,
1703
		unsigned int alloc_flags, int classzone_idx)
1704
{
1705
	enum compact_result ret;
1706
	struct compact_control cc = {
1707 1708 1709 1710
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
1711
		.order = order,
1712
		.gfp_mask = gfp_mask,
1713
		.zone = zone,
1714 1715
		.mode = (prio == COMPACT_PRIO_ASYNC) ?
					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
1716 1717
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1718
		.direct_compaction = true,
1719
		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
1720 1721
		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1722
	};
1723 1724
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);
1725

1726 1727 1728 1729 1730 1731
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	return ret;
1732 1733
}

1734 1735
int sysctl_extfrag_threshold = 500;

1736 1737 1738
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1739 1740 1741
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1742
 * @prio: Determines how hard direct compaction should try to succeed
1743 1744 1745
 *
 * This is the main entry point for direct page compaction.
 */
1746
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1747
		unsigned int alloc_flags, const struct alloc_context *ac,
1748
		enum compact_priority prio)
1749 1750 1751 1752
{
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1753
	enum compact_result rc = COMPACT_SKIPPED;
1754

1755 1756 1757 1758 1759
	/*
	 * Check if the GFP flags allow compaction - GFP_NOIO is really
	 * tricky context because the migration might require IO
	 */
	if (!may_perform_io)
1760
		return COMPACT_SKIPPED;
1761

1762
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1763

1764
	/* Compact each zone in the list */
1765 1766
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1767
		enum compact_result status;
1768

1769 1770
		if (prio > MIN_COMPACT_PRIORITY
					&& compaction_deferred(zone, order)) {
1771
			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1772
			continue;
1773
		}
1774

1775
		status = compact_zone_order(zone, order, gfp_mask, prio,
1776
					alloc_flags, ac_classzone_idx(ac));
1777 1778
		rc = max(status, rc);

1779 1780
		/* The allocation should succeed, stop compacting */
		if (status == COMPACT_SUCCESS) {
1781 1782 1783 1784 1785 1786 1787
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1788

1789
			break;
1790 1791
		}

1792
		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1793
					status == COMPACT_PARTIAL_SKIPPED))
1794 1795 1796 1797 1798 1799
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
1800 1801 1802 1803

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
1804
		 * case do not try further zones
1805
		 */
1806 1807 1808
		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
					|| fatal_signal_pending(current))
			break;
1809 1810 1811 1812 1813 1814
	}

	return rc;
}


1815
/* Compact all zones within a node */
1816
static void compact_node(int nid)
1817
{
1818
	pg_data_t *pgdat = NODE_DATA(nid);
1819 1820
	int zoneid;
	struct zone *zone;
1821 1822
	struct compact_control cc = {
		.order = -1,
1823 1824
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
1825 1826 1827
		.mode = MIGRATE_SYNC,
		.ignore_skip_hint = true,
		.whole_zone = true,
1828
		.gfp_mask = GFP_KERNEL,
1829 1830
	};

1831 1832 1833 1834 1835 1836 1837

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1838 1839
		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
1840
		cc.zone = zone;
1841 1842
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);
1843

1844
		compact_zone(zone, &cc);
1845

1846 1847
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
1848 1849 1850 1851
	}
}

/* Compact all nodes in the system */
1852
static void compact_nodes(void)
1853 1854 1855
{
	int nid;

1856 1857 1858
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1859 1860 1861 1862 1863 1864 1865
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

1866 1867 1868 1869
/*
 * This is the entry point for compacting all nodes via
 * /proc/sys/vm/compact_memory
 */
1870 1871 1872 1873
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1874
		compact_nodes();
1875 1876 1877

	return 0;
}
1878

1879 1880 1881 1882 1883 1884 1885 1886
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1887
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1888
static ssize_t sysfs_compact_node(struct device *dev,
1889
			struct device_attribute *attr,
1890 1891
			const char *buf, size_t count)
{
1892 1893 1894 1895 1896 1897 1898 1899
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1900 1901 1902

	return count;
}
1903
static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
1904 1905 1906

int compaction_register_node(struct node *node)
{
1907
	return device_create_file(&node->dev, &dev_attr_compact);
1908 1909 1910 1911
}

void compaction_unregister_node(struct node *node)
{
1912
	return device_remove_file(&node->dev, &dev_attr_compact);
1913 1914
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1915

1916 1917
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
{
1918
	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1919 1920 1921 1922 1923 1924 1925 1926
}

static bool kcompactd_node_suitable(pg_data_t *pgdat)
{
	int zoneid;
	struct zone *zone;
	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;

1927
	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
		zone = &pgdat->node_zones[zoneid];

		if (!populated_zone(zone))
			continue;

		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
					classzone_idx) == COMPACT_CONTINUE)
			return true;
	}

	return false;
}

static void kcompactd_do_work(pg_data_t *pgdat)
{
	/*
	 * With no special task, compact all zones so that a page of requested
	 * order is allocatable.
	 */
	int zoneid;
	struct zone *zone;
	struct compact_control cc = {
		.order = pgdat->kcompactd_max_order,
1951 1952
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
1953 1954
		.classzone_idx = pgdat->kcompactd_classzone_idx,
		.mode = MIGRATE_SYNC_LIGHT,
1955
		.ignore_skip_hint = false,
1956
		.gfp_mask = GFP_KERNEL,
1957 1958 1959
	};
	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
							cc.classzone_idx);
1960
	count_compact_event(KCOMPACTD_WAKE);
1961

1962
	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
		int status;

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		if (compaction_deferred(zone, cc.order))
			continue;

		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
							COMPACT_CONTINUE)
			continue;

1976 1977 1978 1979 1980 1981 1982 1983
		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
		cc.total_migrate_scanned = 0;
		cc.total_free_scanned = 0;
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);

1984 1985
		if (kthread_should_stop())
			return;
1986 1987
		status = compact_zone(zone, &cc);

1988
		if (status == COMPACT_SUCCESS) {
1989
			compaction_defer_reset(zone, cc.order, false);
1990
		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1991 1992 1993 1994 1995 1996 1997 1998
			/*
			 * Buddy pages may become stranded on pcps that could
			 * otherwise coalesce on the zone's free area for
			 * order >= cc.order.  This is ratelimited by the
			 * upcoming deferral.
			 */
			drain_all_pages(zone);

1999 2000 2001 2002 2003 2004 2005
			/*
			 * We use sync migration mode here, so we defer like
			 * sync direct compaction does.
			 */
			defer_compaction(zone, cc.order);
		}

2006 2007 2008 2009 2010
		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
				     cc.total_migrate_scanned);
		count_compact_events(KCOMPACTD_FREE_SCANNED,
				     cc.total_free_scanned);

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
	}

	/*
	 * Regardless of success, we are done until woken up next. But remember
	 * the requested order/classzone_idx in case it was higher/tighter than
	 * our current ones
	 */
	if (pgdat->kcompactd_max_order <= cc.order)
		pgdat->kcompactd_max_order = 0;
	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
}

void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
{
	if (!order)
		return;

	if (pgdat->kcompactd_max_order < order)
		pgdat->kcompactd_max_order = order;

	if (pgdat->kcompactd_classzone_idx > classzone_idx)
		pgdat->kcompactd_classzone_idx = classzone_idx;

2037 2038 2039 2040 2041
	/*
	 * Pairs with implicit barrier in wait_event_freezable()
	 * such that wakeups are not missed.
	 */
	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
		return;

	if (!kcompactd_node_suitable(pgdat))
		return;

	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
							classzone_idx);
	wake_up_interruptible(&pgdat->kcompactd_wait);
}

/*
 * The background compaction daemon, started as a kernel thread
 * from the init process.
 */
static int kcompactd(void *p)
{
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;

	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);

	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(tsk, cpumask);

	set_freezable();

	pgdat->kcompactd_max_order = 0;
	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;

	while (!kthread_should_stop()) {
2072 2073
		unsigned long pflags;

2074 2075 2076 2077
		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
		wait_event_freezable(pgdat->kcompactd_wait,
				kcompactd_work_requested(pgdat));

2078
		psi_memstall_enter(&pflags);
2079
		kcompactd_do_work(pgdat);
2080
		psi_memstall_leave(&pflags);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	}

	return 0;
}

/*
 * This kcompactd start function will be called by init and node-hot-add.
 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
 */
int kcompactd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kcompactd)
		return 0;

	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
	if (IS_ERR(pgdat->kcompactd)) {
		pr_err("Failed to start kcompactd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kcompactd);
		pgdat->kcompactd = NULL;
	}
	return ret;
}

/*
 * Called by memory hotplug when all memory in a node is offlined. Caller must
 * hold mem_hotplug_begin/end().
 */
void kcompactd_stop(int nid)
{
	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;

	if (kcompactd) {
		kthread_stop(kcompactd);
		NODE_DATA(nid)->kcompactd = NULL;
	}
}

/*
 * It's optimal to keep kcompactd on the same CPUs as their memory, but
 * not required for correctness. So if the last cpu in a node goes
 * away, we get changed to run anywhere: as the first one comes back,
 * restore their cpu bindings.
 */
2127
static int kcompactd_cpu_online(unsigned int cpu)
2128 2129 2130
{
	int nid;

2131 2132 2133
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
2134

2135
		mask = cpumask_of_node(pgdat->node_id);
2136

2137 2138 2139
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2140
	}
2141
	return 0;
2142 2143 2144 2145 2146
}

static int __init kcompactd_init(void)
{
	int nid;
2147 2148 2149 2150 2151 2152 2153 2154 2155
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/compaction:online",
					kcompactd_cpu_online, NULL);
	if (ret < 0) {
		pr_err("kcompactd: failed to register hotplug callbacks.\n");
		return ret;
	}
2156 2157 2158 2159 2160 2161 2162

	for_each_node_state(nid, N_MEMORY)
		kcompactd_run(nid);
	return 0;
}
subsys_initcall(kcompactd_init)

2163
#endif /* CONFIG_COMPACTION */