compaction.c 34.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18 19
#include "internal.h"

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

35 36
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

37 38 39
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

40 41 42 43 44 45 46 47 48 49 50 51 52 53
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

54 55 56 57 58 59 60 61 62 63
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

64 65 66 67 68
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
85
static void __reset_isolation_suitable(struct zone *zone)
86 87 88 89 90
{
	unsigned long start_pfn = zone->zone_start_pfn;
	unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
	unsigned long pfn;

91 92
	zone->compact_cached_migrate_pfn = start_pfn;
	zone->compact_cached_free_pfn = end_pfn;
93
	zone->compact_blockskip_flush = false;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

127 128
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
129
 * future. The information is later cleared by __reset_isolation_suitable().
130
 */
131 132 133
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
134
{
135
	struct zone *zone = cc->zone;
136 137 138
	if (!page)
		return;

139 140
	if (!nr_isolated) {
		unsigned long pfn = page_to_pfn(page);
141
		set_pageblock_skip(page);
142 143 144 145 146 147 148 149 150 151 152 153

		/* Update where compaction should restart */
		if (migrate_scanner) {
			if (!cc->finished_update_migrate &&
			    pfn > zone->compact_cached_migrate_pfn)
				zone->compact_cached_migrate_pfn = pfn;
		} else {
			if (!cc->finished_update_free &&
			    pfn < zone->compact_cached_free_pfn)
				zone->compact_cached_free_pfn = pfn;
		}
	}
154 155 156 157 158 159 160 161
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

162 163 164
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
165 166 167 168
{
}
#endif /* CONFIG_COMPACTION */

169 170 171 172 173
static inline bool should_release_lock(spinlock_t *lock)
{
	return need_resched() || spin_is_contended(lock);
}

174 175 176 177 178 179 180 181 182 183 184 185
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. Check if the process needs to be scheduled or
 * if the lock is contended. For async compaction, back out in the event
 * if contention is severe. For sync compaction, schedule.
 *
 * Returns true if the lock is held.
 * Returns false if the lock is released and compaction should abort
 */
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
				      bool locked, struct compact_control *cc)
{
186
	if (should_release_lock(lock)) {
187 188 189 190 191 192 193
		if (locked) {
			spin_unlock_irqrestore(lock, *flags);
			locked = false;
		}

		/* async aborts if taking too long or contended */
		if (!cc->sync) {
194
			cc->contended = true;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
			return false;
		}

		cond_resched();
	}

	if (!locked)
		spin_lock_irqsave(lock, *flags);
	return true;
}

static inline bool compact_trylock_irqsave(spinlock_t *lock,
			unsigned long *flags, struct compact_control *cc)
{
	return compact_checklock_irqsave(lock, flags, false, cc);
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	int migratetype = get_pageblock_migratetype(page);

	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
		return false;

	/* If the page is a large free page, then allow migration */
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
		return true;

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(migratetype))
		return true;

	/* Otherwise skip the block */
	return false;
}

233 234 235 236 237 238
/*
 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
 * pages inside of the pageblock (even though it may still end up isolating
 * some pages).
 */
239 240
static unsigned long isolate_freepages_block(struct compact_control *cc,
				unsigned long blockpfn,
241 242 243
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
244
{
245
	int nr_scanned = 0, total_isolated = 0;
246
	struct page *cursor, *valid_page = NULL;
247 248 249
	unsigned long nr_strict_required = end_pfn - blockpfn;
	unsigned long flags;
	bool locked = false;
250 251 252

	cursor = pfn_to_page(blockpfn);

253
	/* Isolate free pages. */
254 255 256 257
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

258
		nr_scanned++;
259 260
		if (!pfn_valid_within(blockpfn))
			continue;
261 262
		if (!valid_page)
			valid_page = page;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
		if (!PageBuddy(page))
			continue;

		/*
		 * The zone lock must be held to isolate freepages.
		 * Unfortunately this is a very coarse lock and can be
		 * heavily contended if there are parallel allocations
		 * or parallel compactions. For async compaction do not
		 * spin on the lock and we acquire the lock as late as
		 * possible.
		 */
		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
								locked, cc);
		if (!locked)
			break;

		/* Recheck this is a suitable migration target under lock */
		if (!strict && !suitable_migration_target(page))
			break;
282

283 284
		/* Recheck this is a buddy page under lock */
		if (!PageBuddy(page))
285 286 287 288
			continue;

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
289
		if (!isolated && strict)
290
			break;
291 292 293 294 295 296 297 298 299 300 301 302 303
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
		}
	}

304
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
305 306 307 308 309 310

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
311
	if (strict && nr_strict_required > total_isolated)
312 313 314 315 316
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

317 318
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
319
		update_pageblock_skip(cc, valid_page, total_isolated, false);
320

321
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
322
	if (total_isolated)
323
		count_compact_events(COMPACTISOLATED, total_isolated);
324 325 326
	return total_isolated;
}

327 328 329 330 331 332 333 334 335 336 337 338 339
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
340
unsigned long
341 342
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
343
{
344
	unsigned long isolated, pfn, block_end_pfn;
345 346 347
	LIST_HEAD(freelist);

	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
348
		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
349 350 351 352 353 354 355 356 357
			break;

		/*
		 * On subsequent iterations ALIGN() is actually not needed,
		 * but we keep it that we not to complicate the code.
		 */
		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		block_end_pfn = min(block_end_pfn, end_pfn);

358
		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
						   &freelist, true);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

389
/* Update the number of anon and file isolated pages in the zone */
390
static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
391 392
{
	struct page *page;
393
	unsigned int count[2] = { 0, };
394

395 396
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
397

398 399 400 401 402 403 404 405
	/* If locked we can use the interrupt unsafe versions */
	if (locked) {
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	} else {
		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	}
406 407 408 409 410
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
411
	unsigned long active, inactive, isolated;
412 413 414

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
415 416
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
417 418 419
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

420
	return isolated > (inactive + active) / 2;
421 422
}

423 424 425 426 427 428
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
M
Minchan Kim 已提交
429
 * @unevictable: true if it allows to isolate unevictable pages
430 431 432 433 434 435 436 437 438 439 440 441
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
442
 */
443
unsigned long
444
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
M
Minchan Kim 已提交
445
		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
446
{
447
	unsigned long last_pageblock_nr = 0, pageblock_nr;
448
	unsigned long nr_scanned = 0, nr_isolated = 0;
449
	struct list_head *migratelist = &cc->migratepages;
450
	isolate_mode_t mode = 0;
451
	struct lruvec *lruvec;
452
	unsigned long flags;
453
	bool locked = false;
454
	struct page *page = NULL, *valid_page = NULL;
455 456 457 458 459 460 461

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
462
		/* async migration should just abort */
463
		if (!cc->sync)
464
			return 0;
465

466 467 468
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
469
			return 0;
470 471 472
	}

	/* Time to isolate some pages for migration */
473
	cond_resched();
474
	for (; low_pfn < end_pfn; low_pfn++) {
475
		/* give a chance to irqs before checking need_resched() */
476 477 478 479 480
		if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
			if (should_release_lock(&zone->lru_lock)) {
				spin_unlock_irqrestore(&zone->lru_lock, flags);
				locked = false;
			}
481
		}
482

483 484 485 486 487 488 489 490 491 492 493 494 495
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

496 497
		if (!pfn_valid_within(low_pfn))
			continue;
498
		nr_scanned++;
499

500 501 502 503 504 505
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
506
		page = pfn_to_page(low_pfn);
507 508 509
		if (page_zone(page) != zone)
			continue;

510 511 512 513 514 515 516 517
		if (!valid_page)
			valid_page = page;

		/* If isolation recently failed, do not retry */
		pageblock_nr = low_pfn >> pageblock_order;
		if (!isolation_suitable(cc, page))
			goto next_pageblock;

518
		/* Skip if free */
519 520 521
		if (PageBuddy(page))
			continue;

522 523 524 525 526
		/*
		 * For async migration, also only scan in MOVABLE blocks. Async
		 * migration is optimistic to see if the minimum amount of work
		 * satisfies the allocation
		 */
527
		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
528
		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
529
			cc->finished_update_migrate = true;
530
			goto next_pageblock;
531 532
		}

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
				if (locked && balloon_page_isolate(page)) {
					/* Successfully isolated */
					cc->finished_update_migrate = true;
					list_add(&page->lru, migratelist);
					cc->nr_migratepages++;
					nr_isolated++;
					goto check_compact_cluster;
				}
			}
549
			continue;
550
		}
551 552

		/*
553 554 555 556 557 558 559 560
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
561
		 */
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
		if (PageTransHuge(page)) {
			if (!locked)
				goto next_pageblock;
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

		/* Check if it is ok to still hold the lock */
		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
								locked, cc);
		if (!locked || fatal_signal_pending(current))
			break;

		/* Recheck PageLRU and PageTransHuge under lock */
		if (!PageLRU(page))
			continue;
578 579 580 581 582
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

583
		if (!cc->sync)
584 585
			mode |= ISOLATE_ASYNC_MIGRATE;

M
Minchan Kim 已提交
586 587 588
		if (unevictable)
			mode |= ISOLATE_UNEVICTABLE;

589 590
		lruvec = mem_cgroup_page_lruvec(page, zone);

591
		/* Try isolate the page */
592
		if (__isolate_lru_page(page, mode) != 0)
593 594
			continue;

595 596
		VM_BUG_ON(PageTransCompound(page));

597
		/* Successfully isolated */
598
		cc->finished_update_migrate = true;
599
		del_page_from_lru_list(page, lruvec, page_lru(page));
600 601
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
602
		nr_isolated++;
603

604
check_compact_cluster:
605
		/* Avoid isolating too much */
606 607
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
608
			break;
609
		}
610 611 612 613 614 615 616

		continue;

next_pageblock:
		low_pfn += pageblock_nr_pages;
		low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
		last_pageblock_nr = pageblock_nr;
617 618
	}

619
	acct_isolated(zone, locked, cc);
620

621 622
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
623

624 625
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (low_pfn == end_pfn)
626
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
627

628 629
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

630
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
631
	if (nr_isolated)
632
		count_compact_events(COMPACTISOLATED, nr_isolated);
633

634 635 636
	return low_pfn;
}

637 638
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
639
/*
640 641
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
642
 */
643 644
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
645
{
646 647 648 649
	struct page *page;
	unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
650

651 652 653 654 655 656 657
	/*
	 * Initialise the free scanner. The starting point is where we last
	 * scanned from (or the end of the zone if starting). The low point
	 * is the end of the pageblock the migration scanner is using.
	 */
	pfn = cc->free_pfn;
	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
658

659 660 661 662 663 664
	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
665

666
	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
667

668 669 670 671 672 673 674 675
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;
676

677 678
		if (!pfn_valid(pfn))
			continue;
679

680 681 682 683 684 685 686 687 688 689 690 691
		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
692
		if (!suitable_migration_target(page))
693
			continue;
694

695 696 697 698
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

699
		/* Found a block suitable for isolating free pages from */
700
		isolated = 0;
701 702 703 704 705 706 707 708 709

		/*
		 * As pfn may not start aligned, pfn+pageblock_nr_page
		 * may cross a MAX_ORDER_NR_PAGES boundary and miss
		 * a pfn_valid check. Ensure isolate_freepages_block()
		 * only scans within a pageblock
		 */
		end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		end_pfn = min(end_pfn, zone_end_pfn);
710 711 712
		isolated = isolate_freepages_block(cc, pfn, end_pfn,
						   freelist, false);
		nr_freepages += isolated;
713 714 715 716 717 718

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
719 720
		if (isolated) {
			cc->finished_update_free = true;
721
			high_pfn = max(high_pfn, pfn);
722
		}
723 724 725 726 727 728 729
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

	cc->free_pfn = high_pfn;
	cc->nr_freepages = nr_freepages;
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
M
Minchan Kim 已提交
807
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
808
	if (!low_pfn || cc->contended)
809 810 811 812 813 814 815
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

	return ISOLATE_SUCCESS;
}

816
static int compact_finished(struct zone *zone,
817
			    struct compact_control *cc)
818
{
819
	unsigned long watermark;
820

821 822 823
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

824
	/* Compaction run completes if the migrate and free scanner meet */
825
	if (cc->free_pfn <= cc->migrate_pfn) {
826 827 828 829 830 831 832 833 834
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

835
		return COMPACT_COMPLETE;
836
	}
837

838 839 840 841
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
842 843 844
	if (cc->order == -1)
		return COMPACT_CONTINUE;

845 846 847 848 849 850 851
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

852
	/* Direct compactor: Is a suitable page free? */
853 854 855
	if (cc->page) {
		/* Was a suitable page captured? */
		if (*cc->page)
856
			return COMPACT_PARTIAL;
857 858 859 860 861 862 863 864 865 866 867 868
	} else {
		unsigned int order;
		for (order = cc->order; order < MAX_ORDER; order++) {
			struct free_area *area = &zone->free_area[cc->order];
			/* Job done if page is free of the right migratetype */
			if (!list_empty(&area->free_list[cc->migratetype]))
				return COMPACT_PARTIAL;

			/* Job done if allocation would set block type */
			if (cc->order >= pageblock_order && area->nr_free)
				return COMPACT_PARTIAL;
		}
869 870
	}

871 872 873
	return COMPACT_CONTINUE;
}

874 875 876 877 878 879 880 881 882 883 884 885
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

886 887 888 889 890 891 892
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

893 894 895 896 897 898 899 900 901 902 903 904 905
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
906 907
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
908 909 910 911 912 913 914 915 916
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

917 918
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
919 920 921 922 923
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
static void compact_capture_page(struct compact_control *cc)
{
	unsigned long flags;
	int mtype, mtype_low, mtype_high;

	if (!cc->page || *cc->page)
		return;

	/*
	 * For MIGRATE_MOVABLE allocations we capture a suitable page ASAP
	 * regardless of the migratetype of the freelist is is captured from.
	 * This is fine because the order for a high-order MIGRATE_MOVABLE
	 * allocation is typically at least a pageblock size and overall
	 * fragmentation is not impaired. Other allocation types must
	 * capture pages from their own migratelist because otherwise they
	 * could pollute other pageblocks like MIGRATE_MOVABLE with
	 * difficult to move pages and making fragmentation worse overall.
	 */
	if (cc->migratetype == MIGRATE_MOVABLE) {
		mtype_low = 0;
		mtype_high = MIGRATE_PCPTYPES;
	} else {
		mtype_low = cc->migratetype;
		mtype_high = cc->migratetype + 1;
	}

	/* Speculatively examine the free lists without zone lock */
	for (mtype = mtype_low; mtype < mtype_high; mtype++) {
		int order;
		for (order = cc->order; order < MAX_ORDER; order++) {
			struct page *page;
			struct free_area *area;
			area = &(cc->zone->free_area[order]);
			if (list_empty(&area->free_list[mtype]))
				continue;

			/* Take the lock and attempt capture of the page */
			if (!compact_trylock_irqsave(&cc->zone->lock, &flags, cc))
				return;
			if (!list_empty(&area->free_list[mtype])) {
				page = list_entry(area->free_list[mtype].next,
							struct page, lru);
				if (capture_free_page(page, cc->order, mtype)) {
					spin_unlock_irqrestore(&cc->zone->lock,
									flags);
					*cc->page = page;
					return;
				}
			}
			spin_unlock_irqrestore(&cc->zone->lock, flags);
		}
	}
}

978 979 980
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
981 982
	unsigned long start_pfn = zone->zone_start_pfn;
	unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
983

984 985 986 987 988 989 990 991 992 993 994
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
	}
1010

1011 1012 1013 1014 1015 1016 1017
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);
1018

1019 1020 1021 1022
	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
1023
		int err;
1024

1025 1026 1027
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1028
			putback_movable_pages(&cc->migratepages);
1029
			cc->nr_migratepages = 0;
1030 1031
			goto out;
		case ISOLATE_NONE:
1032
			continue;
1033 1034 1035
		case ISOLATE_SUCCESS:
			;
		}
1036 1037

		nr_migrate = cc->nr_migratepages;
1038
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1039
				(unsigned long)cc, false,
1040 1041
				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
				MR_COMPACTION);
1042 1043 1044
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

1045 1046
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
1047

1048
		/* Release isolated pages not migrated */
1049
		if (err) {
1050
			putback_movable_pages(&cc->migratepages);
1051
			cc->nr_migratepages = 0;
1052 1053 1054 1055
			if (err == -ENOMEM) {
				ret = COMPACT_PARTIAL;
				goto out;
			}
1056
		}
1057 1058 1059

		/* Capture a page now if it is a suitable size */
		compact_capture_page(cc);
1060 1061
	}

1062
out:
1063 1064 1065 1066 1067 1068
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

	return ret;
}
1069

1070
static unsigned long compact_zone_order(struct zone *zone,
1071
				 int order, gfp_t gfp_mask,
1072 1073
				 bool sync, bool *contended,
				 struct page **page)
1074
{
1075
	unsigned long ret;
1076 1077 1078 1079 1080 1081
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
1082
		.sync = sync,
1083
		.page = page,
1084 1085 1086 1087
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1088 1089 1090 1091 1092 1093 1094
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1095 1096
}

1097 1098
int sysctl_extfrag_threshold = 500;

1099 1100 1101 1102 1103 1104
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
1105
 * @sync: Whether migration is synchronous or not
1106 1107
 * @contended: Return value that is true if compaction was aborted due to lock contention
 * @page: Optionally capture a free page of the requested order during compaction
1108 1109 1110 1111
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
1112
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1113
			bool sync, bool *contended, struct page **page)
1114 1115 1116 1117 1118 1119 1120
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;
1121
	int alloc_flags = 0;
1122

1123
	/* Check if the GFP flags allow compaction */
1124
	if (!order || !may_enter_fs || !may_perform_io)
1125 1126
		return rc;

1127
	count_compact_event(COMPACTSTALL);
1128

1129 1130 1131 1132
#ifdef CONFIG_CMA
	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
1133 1134 1135 1136 1137
	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

1138
		status = compact_zone_order(zone, order, gfp_mask, sync,
1139
						contended, page);
1140 1141
		rc = max(status, rc);

1142
		/* If a normal allocation would succeed, stop compacting */
1143 1144
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
				      alloc_flags))
1145 1146 1147 1148 1149 1150 1151
			break;
	}

	return rc;
}


1152
/* Compact all zones within a node */
1153
static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1164 1165 1166 1167 1168
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1169

1170
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1171
			compact_zone(zone, cc);
1172

1173 1174 1175
		if (cc->order > 0) {
			int ok = zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0);
1176
			if (ok && cc->order >= zone->compact_order_failed)
1177 1178
				zone->compact_order_failed = cc->order + 1;
			/* Currently async compaction is never deferred. */
1179
			else if (!ok && cc->sync)
1180 1181 1182
				defer_compaction(zone, cc->order);
		}

1183 1184
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1185 1186 1187 1188 1189
	}

	return 0;
}

1190 1191 1192 1193
int compact_pgdat(pg_data_t *pgdat, int order)
{
	struct compact_control cc = {
		.order = order,
1194
		.sync = false,
1195
		.page = NULL,
1196 1197 1198 1199 1200 1201 1202 1203 1204
	};

	return __compact_pgdat(pgdat, &cc);
}

static int compact_node(int nid)
{
	struct compact_control cc = {
		.order = -1,
1205
		.sync = true,
1206
		.page = NULL,
1207 1208
	};

1209
	return __compact_pgdat(NODE_DATA(nid), &cc);
1210 1211
}

1212
/* Compact all nodes in the system */
1213
static void compact_nodes(void)
1214 1215 1216
{
	int nid;

1217 1218 1219
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1232
		compact_nodes();
1233 1234 1235

	return 0;
}
1236

1237 1238 1239 1240 1241 1242 1243 1244
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1245
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1246 1247
ssize_t sysfs_compact_node(struct device *dev,
			struct device_attribute *attr,
1248 1249
			const char *buf, size_t count)
{
1250 1251 1252 1253 1254 1255 1256 1257
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1258 1259 1260

	return count;
}
1261
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1262 1263 1264

int compaction_register_node(struct node *node)
{
1265
	return device_create_file(&node->dev, &dev_attr_compact);
1266 1267 1268 1269
}

void compaction_unregister_node(struct node *node)
{
1270
	return device_remove_file(&node->dev, &dev_attr_compact);
1271 1272
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1273 1274

#endif /* CONFIG_COMPACTION */