compaction.c 32.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19 20
#include "internal.h"

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

36 37
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

38 39 40
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

41 42 43 44 45 46 47 48 49 50 51 52 53 54
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

55 56 57 58 59 60 61 62 63 64
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

65 66 67 68 69
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
86
static void __reset_isolation_suitable(struct zone *zone)
87 88
{
	unsigned long start_pfn = zone->zone_start_pfn;
89
	unsigned long end_pfn = zone_end_pfn(zone);
90 91
	unsigned long pfn;

92 93
	zone->compact_cached_migrate_pfn = start_pfn;
	zone->compact_cached_free_pfn = end_pfn;
94
	zone->compact_blockskip_flush = false;
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

128 129
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
130
 * future. The information is later cleared by __reset_isolation_suitable().
131
 */
132 133 134
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
135
{
136
	struct zone *zone = cc->zone;
137 138 139 140

	if (cc->ignore_skip_hint)
		return;

141 142 143
	if (!page)
		return;

144 145
	if (!nr_isolated) {
		unsigned long pfn = page_to_pfn(page);
146
		set_pageblock_skip(page);
147 148 149 150 151 152 153 154 155 156 157 158

		/* Update where compaction should restart */
		if (migrate_scanner) {
			if (!cc->finished_update_migrate &&
			    pfn > zone->compact_cached_migrate_pfn)
				zone->compact_cached_migrate_pfn = pfn;
		} else {
			if (!cc->finished_update_free &&
			    pfn < zone->compact_cached_free_pfn)
				zone->compact_cached_free_pfn = pfn;
		}
	}
159 160 161 162 163 164 165 166
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

167 168 169
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
170 171 172 173
{
}
#endif /* CONFIG_COMPACTION */

174 175 176 177 178
static inline bool should_release_lock(spinlock_t *lock)
{
	return need_resched() || spin_is_contended(lock);
}

179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. Check if the process needs to be scheduled or
 * if the lock is contended. For async compaction, back out in the event
 * if contention is severe. For sync compaction, schedule.
 *
 * Returns true if the lock is held.
 * Returns false if the lock is released and compaction should abort
 */
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
				      bool locked, struct compact_control *cc)
{
191
	if (should_release_lock(lock)) {
192 193 194 195 196 197 198
		if (locked) {
			spin_unlock_irqrestore(lock, *flags);
			locked = false;
		}

		/* async aborts if taking too long or contended */
		if (!cc->sync) {
199
			cc->contended = true;
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
			return false;
		}

		cond_resched();
	}

	if (!locked)
		spin_lock_irqsave(lock, *flags);
	return true;
}

static inline bool compact_trylock_irqsave(spinlock_t *lock,
			unsigned long *flags, struct compact_control *cc)
{
	return compact_checklock_irqsave(lock, flags, false, cc);
}

217 218 219 220 221 222
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	int migratetype = get_pageblock_migratetype(page);

	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
223 224 225 226
	if (migratetype == MIGRATE_RESERVE)
		return false;

	if (is_migrate_isolate(migratetype))
227 228 229 230 231 232 233 234 235 236 237 238 239 240
		return false;

	/* If the page is a large free page, then allow migration */
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
		return true;

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(migratetype))
		return true;

	/* Otherwise skip the block */
	return false;
}

241
/*
242 243 244
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
245
 */
246 247
static unsigned long isolate_freepages_block(struct compact_control *cc,
				unsigned long blockpfn,
248 249 250
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
251
{
252
	int nr_scanned = 0, total_isolated = 0;
253
	struct page *cursor, *valid_page = NULL;
254 255 256
	unsigned long nr_strict_required = end_pfn - blockpfn;
	unsigned long flags;
	bool locked = false;
257 258 259

	cursor = pfn_to_page(blockpfn);

260
	/* Isolate free pages. */
261 262 263 264
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

265
		nr_scanned++;
266 267
		if (!pfn_valid_within(blockpfn))
			continue;
268 269
		if (!valid_page)
			valid_page = page;
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
		if (!PageBuddy(page))
			continue;

		/*
		 * The zone lock must be held to isolate freepages.
		 * Unfortunately this is a very coarse lock and can be
		 * heavily contended if there are parallel allocations
		 * or parallel compactions. For async compaction do not
		 * spin on the lock and we acquire the lock as late as
		 * possible.
		 */
		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
								locked, cc);
		if (!locked)
			break;

		/* Recheck this is a suitable migration target under lock */
		if (!strict && !suitable_migration_target(page))
			break;
289

290 291
		/* Recheck this is a buddy page under lock */
		if (!PageBuddy(page))
292 293 294 295
			continue;

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
296
		if (!isolated && strict)
297
			break;
298 299 300 301 302 303 304 305 306 307 308 309 310
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
		}
	}

311
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
312 313 314 315 316 317

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
318
	if (strict && nr_strict_required > total_isolated)
319 320 321 322 323
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

324 325
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
326
		update_pageblock_skip(cc, valid_page, total_isolated, false);
327

328
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
329
	if (total_isolated)
330
		count_compact_events(COMPACTISOLATED, total_isolated);
331 332 333
	return total_isolated;
}

334 335 336 337 338 339 340 341 342 343 344 345 346
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
347
unsigned long
348 349
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
350
{
351
	unsigned long isolated, pfn, block_end_pfn;
352 353 354
	LIST_HEAD(freelist);

	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
355
		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
356 357 358 359 360 361 362 363 364
			break;

		/*
		 * On subsequent iterations ALIGN() is actually not needed,
		 * but we keep it that we not to complicate the code.
		 */
		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		block_end_pfn = min(block_end_pfn, end_pfn);

365
		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
						   &freelist, true);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

396
/* Update the number of anon and file isolated pages in the zone */
397
static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
398 399
{
	struct page *page;
400
	unsigned int count[2] = { 0, };
401

402 403
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
404

405 406 407 408 409 410 411 412
	/* If locked we can use the interrupt unsafe versions */
	if (locked) {
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	} else {
		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	}
413 414 415 416 417
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
418
	unsigned long active, inactive, isolated;
419 420 421

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
422 423
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
424 425 426
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

427
	return isolated > (inactive + active) / 2;
428 429
}

430 431 432 433 434 435
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
M
Minchan Kim 已提交
436
 * @unevictable: true if it allows to isolate unevictable pages
437 438 439 440 441 442 443 444 445 446 447 448
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
449
 */
450
unsigned long
451
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
M
Minchan Kim 已提交
452
		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
453
{
454
	unsigned long last_pageblock_nr = 0, pageblock_nr;
455
	unsigned long nr_scanned = 0, nr_isolated = 0;
456
	struct list_head *migratelist = &cc->migratepages;
457
	isolate_mode_t mode = 0;
458
	struct lruvec *lruvec;
459
	unsigned long flags;
460
	bool locked = false;
461
	struct page *page = NULL, *valid_page = NULL;
462 463 464 465 466 467 468

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
469
		/* async migration should just abort */
470
		if (!cc->sync)
471
			return 0;
472

473 474 475
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
476
			return 0;
477 478 479
	}

	/* Time to isolate some pages for migration */
480
	cond_resched();
481
	for (; low_pfn < end_pfn; low_pfn++) {
482
		/* give a chance to irqs before checking need_resched() */
483 484 485 486 487
		if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
			if (should_release_lock(&zone->lru_lock)) {
				spin_unlock_irqrestore(&zone->lru_lock, flags);
				locked = false;
			}
488
		}
489

490 491 492 493 494 495 496 497 498 499 500 501 502
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

503 504
		if (!pfn_valid_within(low_pfn))
			continue;
505
		nr_scanned++;
506

507 508 509 510 511 512
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
513
		page = pfn_to_page(low_pfn);
514 515 516
		if (page_zone(page) != zone)
			continue;

517 518 519 520 521 522 523 524
		if (!valid_page)
			valid_page = page;

		/* If isolation recently failed, do not retry */
		pageblock_nr = low_pfn >> pageblock_order;
		if (!isolation_suitable(cc, page))
			goto next_pageblock;

525
		/* Skip if free */
526 527 528
		if (PageBuddy(page))
			continue;

529 530 531 532 533
		/*
		 * For async migration, also only scan in MOVABLE blocks. Async
		 * migration is optimistic to see if the minimum amount of work
		 * satisfies the allocation
		 */
534
		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
535
		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
536
			cc->finished_update_migrate = true;
537
			goto next_pageblock;
538 539
		}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
				if (locked && balloon_page_isolate(page)) {
					/* Successfully isolated */
					cc->finished_update_migrate = true;
					list_add(&page->lru, migratelist);
					cc->nr_migratepages++;
					nr_isolated++;
					goto check_compact_cluster;
				}
			}
556
			continue;
557
		}
558 559

		/*
560 561 562 563 564 565 566 567
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
568
		 */
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
		if (PageTransHuge(page)) {
			if (!locked)
				goto next_pageblock;
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

		/* Check if it is ok to still hold the lock */
		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
								locked, cc);
		if (!locked || fatal_signal_pending(current))
			break;

		/* Recheck PageLRU and PageTransHuge under lock */
		if (!PageLRU(page))
			continue;
585 586 587 588 589
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

590
		if (!cc->sync)
591 592
			mode |= ISOLATE_ASYNC_MIGRATE;

M
Minchan Kim 已提交
593 594 595
		if (unevictable)
			mode |= ISOLATE_UNEVICTABLE;

596 597
		lruvec = mem_cgroup_page_lruvec(page, zone);

598
		/* Try isolate the page */
599
		if (__isolate_lru_page(page, mode) != 0)
600 601
			continue;

602 603
		VM_BUG_ON(PageTransCompound(page));

604
		/* Successfully isolated */
605
		cc->finished_update_migrate = true;
606
		del_page_from_lru_list(page, lruvec, page_lru(page));
607 608
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
609
		nr_isolated++;
610

611
check_compact_cluster:
612
		/* Avoid isolating too much */
613 614
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
615
			break;
616
		}
617 618 619 620

		continue;

next_pageblock:
621
		low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
622
		last_pageblock_nr = pageblock_nr;
623 624
	}

625
	acct_isolated(zone, locked, cc);
626

627 628
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
629

630 631
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (low_pfn == end_pfn)
632
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
633

634 635
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

636
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
637
	if (nr_isolated)
638
		count_compact_events(COMPACTISOLATED, nr_isolated);
639

640 641 642
	return low_pfn;
}

643 644
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
645
/*
646 647
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
648
 */
649 650
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
651
{
652
	struct page *page;
653
	unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn;
654 655
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
656

657 658 659 660 661 662 663
	/*
	 * Initialise the free scanner. The starting point is where we last
	 * scanned from (or the end of the zone if starting). The low point
	 * is the end of the pageblock the migration scanner is using.
	 */
	pfn = cc->free_pfn;
	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
664

665 666 667 668 669 670
	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
671

672
	z_end_pfn = zone_end_pfn(zone);
673

674 675 676 677 678 679 680 681
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;
682

683 684 685 686 687 688 689
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
		 * to schedule.
		 */
		cond_resched();

690 691
		if (!pfn_valid(pfn))
			continue;
692

693 694 695 696 697 698 699 700 701 702 703 704
		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
705
		if (!suitable_migration_target(page))
706
			continue;
707

708 709 710 711
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

712
		/* Found a block suitable for isolating free pages from */
713
		isolated = 0;
714 715 716 717 718 719 720 721

		/*
		 * As pfn may not start aligned, pfn+pageblock_nr_page
		 * may cross a MAX_ORDER_NR_PAGES boundary and miss
		 * a pfn_valid check. Ensure isolate_freepages_block()
		 * only scans within a pageblock
		 */
		end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
722
		end_pfn = min(end_pfn, z_end_pfn);
723 724 725
		isolated = isolate_freepages_block(cc, pfn, end_pfn,
						   freelist, false);
		nr_freepages += isolated;
726 727 728 729 730 731

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
732 733
		if (isolated) {
			cc->finished_update_free = true;
734
			high_pfn = max(high_pfn, pfn);
735
		}
736 737 738 739 740 741 742
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

	cc->free_pfn = high_pfn;
	cc->nr_freepages = nr_freepages;
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
811
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
812 813 814 815 816 817 818 819

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
M
Minchan Kim 已提交
820
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
821
	if (!low_pfn || cc->contended)
822 823 824 825 826 827 828
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

	return ISOLATE_SUCCESS;
}

829
static int compact_finished(struct zone *zone,
830
			    struct compact_control *cc)
831
{
832
	unsigned int order;
833
	unsigned long watermark;
834

835 836 837
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

838
	/* Compaction run completes if the migrate and free scanner meet */
839
	if (cc->free_pfn <= cc->migrate_pfn) {
840 841 842 843 844 845 846 847 848
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

849
		return COMPACT_COMPLETE;
850
	}
851

852 853 854 855
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
856 857 858
	if (cc->order == -1)
		return COMPACT_CONTINUE;

859 860 861 862 863 864 865
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

866
	/* Direct compactor: Is a suitable page free? */
867 868 869 870 871 872 873 874 875
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];

		/* Job done if page is free of the right migratetype */
		if (!list_empty(&area->free_list[cc->migratetype]))
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (cc->order >= pageblock_order && area->nr_free)
876 877 878
			return COMPACT_PARTIAL;
	}

879 880 881
	return COMPACT_CONTINUE;
}

882 883 884 885 886 887 888 889 890 891 892 893
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

894 895 896 897 898 899 900
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

901 902 903 904 905 906 907 908 909 910 911 912 913
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
914 915
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
916 917 918 919 920 921 922 923 924
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

925 926
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
927 928 929 930 931
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

932 933 934
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
935
	unsigned long start_pfn = zone->zone_start_pfn;
936
	unsigned long end_pfn = zone_end_pfn(zone);
937

938 939 940 941 942 943 944 945 946 947 948
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

949 950 951 952 953 954 955 956
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
	}
972

973 974
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);

975 976 977 978
	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
979
		int err;
980

981 982 983
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
984
			putback_movable_pages(&cc->migratepages);
985
			cc->nr_migratepages = 0;
986 987
			goto out;
		case ISOLATE_NONE:
988
			continue;
989 990 991
		case ISOLATE_SUCCESS:
			;
		}
992 993

		nr_migrate = cc->nr_migratepages;
994
		err = migrate_pages(&cc->migratepages, compaction_alloc,
995
				(unsigned long)cc,
996 997
				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
				MR_COMPACTION);
998 999 1000
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

1001 1002
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
1003

1004
		/* Release isolated pages not migrated */
1005
		if (err) {
1006
			putback_movable_pages(&cc->migratepages);
1007
			cc->nr_migratepages = 0;
1008 1009 1010 1011
			if (err == -ENOMEM) {
				ret = COMPACT_PARTIAL;
				goto out;
			}
1012 1013 1014
		}
	}

1015
out:
1016 1017 1018 1019
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

1020 1021
	trace_mm_compaction_end(ret);

1022 1023
	return ret;
}
1024

1025
static unsigned long compact_zone_order(struct zone *zone,
1026
				 int order, gfp_t gfp_mask,
1027
				 bool sync, bool *contended)
1028
{
1029
	unsigned long ret;
1030 1031 1032 1033 1034 1035
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
1036
		.sync = sync,
1037 1038 1039 1040
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1041 1042 1043 1044 1045 1046 1047
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1048 1049
}

1050 1051
int sysctl_extfrag_threshold = 500;

1052 1053 1054 1055 1056 1057
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
1058
 * @sync: Whether migration is synchronous or not
1059 1060
 * @contended: Return value that is true if compaction was aborted due to lock contention
 * @page: Optionally capture a free page of the requested order during compaction
1061 1062 1063 1064
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
1065
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1066
			bool sync, bool *contended)
1067 1068 1069 1070 1071 1072 1073
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;
1074
	int alloc_flags = 0;
1075

1076
	/* Check if the GFP flags allow compaction */
1077
	if (!order || !may_enter_fs || !may_perform_io)
1078 1079
		return rc;

1080
	count_compact_event(COMPACTSTALL);
1081

1082 1083 1084 1085
#ifdef CONFIG_CMA
	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
1086 1087 1088 1089 1090
	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

1091
		status = compact_zone_order(zone, order, gfp_mask, sync,
1092
						contended);
1093 1094
		rc = max(status, rc);

1095
		/* If a normal allocation would succeed, stop compacting */
1096 1097
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
				      alloc_flags))
1098 1099 1100 1101 1102 1103 1104
			break;
	}

	return rc;
}


1105
/* Compact all zones within a node */
1106
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1117 1118 1119 1120 1121
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1122

1123
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1124
			compact_zone(zone, cc);
1125

1126
		if (cc->order > 0) {
1127 1128 1129
			if (zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0))
				compaction_defer_reset(zone, cc->order, false);
1130
			/* Currently async compaction is never deferred. */
1131
			else if (cc->sync)
1132 1133 1134
				defer_compaction(zone, cc->order);
		}

1135 1136
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1137 1138 1139
	}
}

1140
void compact_pgdat(pg_data_t *pgdat, int order)
1141 1142 1143
{
	struct compact_control cc = {
		.order = order,
1144
		.sync = false,
1145 1146
	};

1147 1148 1149
	if (!order)
		return;

1150
	__compact_pgdat(pgdat, &cc);
1151 1152
}

1153
static void compact_node(int nid)
1154 1155 1156
{
	struct compact_control cc = {
		.order = -1,
1157
		.sync = true,
1158 1159
	};

1160
	__compact_pgdat(NODE_DATA(nid), &cc);
1161 1162
}

1163
/* Compact all nodes in the system */
1164
static void compact_nodes(void)
1165 1166 1167
{
	int nid;

1168 1169 1170
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1183
		compact_nodes();
1184 1185 1186

	return 0;
}
1187

1188 1189 1190 1191 1192 1193 1194 1195
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1196
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1197 1198
ssize_t sysfs_compact_node(struct device *dev,
			struct device_attribute *attr,
1199 1200
			const char *buf, size_t count)
{
1201 1202 1203 1204 1205 1206 1207 1208
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1209 1210 1211

	return count;
}
1212
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1213 1214 1215

int compaction_register_node(struct node *node)
{
1216
	return device_create_file(&node->dev, &dev_attr_compact);
1217 1218 1219 1220
}

void compaction_unregister_node(struct node *node)
{
1221
	return device_remove_file(&node->dev, &dev_attr_compact);
1222 1223
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1224 1225

#endif /* CONFIG_COMPACTION */