compaction.c 70.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
11
#include <linux/cpu.h>
12 13 14 15
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
16
#include <linux/sched/signal.h>
17
#include <linux/backing-dev.h>
18
#include <linux/sysctl.h>
19
#include <linux/sysfs.h>
20
#include <linux/page-isolation.h>
21
#include <linux/kasan.h>
22 23
#include <linux/kthread.h>
#include <linux/freezer.h>
24
#include <linux/page_owner.h>
25
#include <linux/psi.h>
26 27
#include "internal.h"

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

43 44
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

45 46 47
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

48 49 50 51 52
#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)

53 54 55
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
56
	unsigned long high_pfn = 0;
57 58

	list_for_each_entry_safe(page, next, freelist, lru) {
59
		unsigned long pfn = page_to_pfn(page);
60 61
		list_del(&page->lru);
		__free_page(page);
62 63
		if (pfn > high_pfn)
			high_pfn = pfn;
64 65
	}

66
	return high_pfn;
67 68
}

69
static void split_map_pages(struct list_head *list)
70
{
71 72 73 74 75 76 77 78 79 80
	unsigned int i, order, nr_pages;
	struct page *page, *next;
	LIST_HEAD(tmp_list);

	list_for_each_entry_safe(page, next, list, lru) {
		list_del(&page->lru);

		order = page_private(page);
		nr_pages = 1 << order;

81
		post_alloc_hook(page, order, __GFP_MOVABLE);
82 83
		if (order)
			split_page(page, order);
84

85 86 87 88
		for (i = 0; i < nr_pages; i++) {
			list_add(&page->lru, &tmp_list);
			page++;
		}
89
	}
90 91

	list_splice(&tmp_list, list);
92 93
}

94
#ifdef CONFIG_COMPACTION
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
int PageMovable(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	if (!__PageMovable(page))
		return 0;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
		return 1;

	return 0;
}
EXPORT_SYMBOL(PageMovable);

void __SetPageMovable(struct page *page, struct address_space *mapping)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__SetPageMovable);

void __ClearPageMovable(struct page *page)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	/*
	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
	 * flag so that VM can catch up released page by driver after isolation.
	 * With it, VM migration doesn't try to put it back.
	 */
	page->mapping = (void *)((unsigned long)page->mapping &
				PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__ClearPageMovable);

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

204 205 206 207 208 209 210 211 212 213
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

214 215 216 217
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218
	zone->compact_cached_free_pfn =
219
				pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 221
}

222
/*
223 224 225
 * Compound pages of >= pageblock_order should consistenly be skipped until
 * released. It is always pointless to compact pages of such order (if they are
 * migratable), and the pageblocks they occupy cannot contain any free pages.
226
 */
227
static bool pageblock_skip_persistent(struct page *page)
228
{
229
	if (!PageCompound(page))
230
		return false;
231 232 233 234 235 236 237

	page = compound_head(page);

	if (compound_order(page) >= pageblock_order)
		return true;

	return false;
238 239
}

240 241 242 243 244
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
245
static void __reset_isolation_suitable(struct zone *zone)
246 247
{
	unsigned long start_pfn = zone->zone_start_pfn;
248
	unsigned long end_pfn = zone_end_pfn(zone);
249 250
	unsigned long pfn;

251
	zone->compact_blockskip_flush = false;
252 253 254 255 256 257 258

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

259 260
		page = pfn_to_online_page(pfn);
		if (!page)
261 262 263
			continue;
		if (zone != page_zone(page))
			continue;
264
		if (pageblock_skip_persistent(page))
265
			continue;
266 267 268

		clear_pageblock_skip(page);
	}
269 270

	reset_cached_positions(zone);
271 272
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 * locks are not required for read/writers. Returns true if it was already set.
 */
static bool test_and_set_skip(struct compact_control *cc, struct page *page,
							unsigned long pfn)
{
	bool skip;

	/* Do no update if skip hint is being ignored */
	if (cc->ignore_skip_hint)
		return false;

	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
		return false;

	skip = get_pageblock_skip(page);
	if (!skip && !cc->no_set_skip_hint)
		set_pageblock_skip(page);

	return skip;
}

static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
{
	struct zone *zone = cc->zone;

	pfn = pageblock_end_pfn(pfn);

	/* Set for isolation rather than compaction */
	if (cc->no_set_skip_hint)
		return;

	if (pfn > zone->compact_cached_migrate_pfn[0])
		zone->compact_cached_migrate_pfn[0] = pfn;
	if (cc->mode != MIGRATE_ASYNC &&
	    pfn > zone->compact_cached_migrate_pfn[1])
		zone->compact_cached_migrate_pfn[1] = pfn;
}

328 329
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
330
 * future. The information is later cleared by __reset_isolation_suitable().
331
 */
332
static void update_pageblock_skip(struct compact_control *cc,
333
			struct page *page, unsigned long nr_isolated)
334
{
335
	struct zone *zone = cc->zone;
336
	unsigned long pfn;
337

338
	if (cc->no_set_skip_hint)
339 340
		return;

341 342 343
	if (!page)
		return;

344 345 346
	if (nr_isolated)
		return;

347
	set_pageblock_skip(page);
348

349 350 351
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
352 353
	if (pfn < zone->compact_cached_free_pfn)
		zone->compact_cached_free_pfn = pfn;
354 355 356 357 358 359 360 361
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

362
static inline bool pageblock_skip_persistent(struct page *page)
363 364 365 366 367
{
	return false;
}

static inline void update_pageblock_skip(struct compact_control *cc,
368
			struct page *page, unsigned long nr_isolated)
369 370
{
}
371 372 373 374 375 376 377 378 379 380

static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
{
}

static bool test_and_set_skip(struct compact_control *cc, struct page *page,
							unsigned long pfn)
{
	return false;
}
381 382
#endif /* CONFIG_COMPACTION */

383 384 385 386 387 388 389 390 391 392
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
393
{
394 395
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
396
			cc->contended = true;
397 398 399 400 401
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
402

403
	return true;
404 405
}

406 407
/*
 * Compaction requires the taking of some coarse locks that are potentially
408 409 410 411 412 413 414
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
415
 *
416 417 418 419
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
420
 */
421 422
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
423
{
424 425 426 427
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
428

429
	if (fatal_signal_pending(current)) {
430
		cc->contended = true;
431 432
		return true;
	}
433

434
	if (need_resched()) {
435
		if (cc->mode == MIGRATE_ASYNC) {
436
			cc->contended = true;
437
			return true;
438 439 440 441
		}
		cond_resched();
	}

442
	return false;
443 444
}

445 446 447
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
448
 * compaction. This is similar to what compact_unlock_should_abort() does, but
449 450 451 452 453 454 455 456 457 458
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
459
			cc->contended = true;
460 461 462 463 464 465 466 467 468
			return true;
		}

		cond_resched();
	}

	return false;
}

469
/*
470 471 472
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
473
 */
474
static unsigned long isolate_freepages_block(struct compact_control *cc,
475
				unsigned long *start_pfn,
476 477 478
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
479
{
480
	int nr_scanned = 0, total_isolated = 0;
481
	struct page *cursor, *valid_page = NULL;
482
	unsigned long flags = 0;
483
	bool locked = false;
484
	unsigned long blockpfn = *start_pfn;
485
	unsigned int order;
486 487 488

	cursor = pfn_to_page(blockpfn);

489
	/* Isolate free pages. */
490
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
491
		int isolated;
492 493
		struct page *page = cursor;

494 495 496 497 498 499 500 501 502 503
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

504
		nr_scanned++;
505
		if (!pfn_valid_within(blockpfn))
506 507
			goto isolate_fail;

508 509
		if (!valid_page)
			valid_page = page;
510 511 512 513 514 515 516 517

		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
518 519
			const unsigned int order = compound_order(page);

520
			if (likely(order < MAX_ORDER)) {
521 522
				blockpfn += (1UL << order) - 1;
				cursor += (1UL << order) - 1;
523 524 525 526
			}
			goto isolate_fail;
		}

527
		if (!PageBuddy(page))
528
			goto isolate_fail;
529 530

		/*
531 532 533 534 535
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
536
		 */
537 538 539 540 541 542 543 544 545
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
546 547
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
548 549
			if (!locked)
				break;
550

551 552 553 554
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
555

556 557 558
		/* Found a free page, will break it into order-0 pages */
		order = page_order(page);
		isolated = __isolate_free_page(page, order);
559 560
		if (!isolated)
			break;
561
		set_page_private(page, order);
562

563
		total_isolated += isolated;
564
		cc->nr_freepages += isolated;
565 566
		list_add_tail(&page->lru, freelist);

567 568 569
		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
			blockpfn += isolated;
			break;
570
		}
571 572 573 574
		/* Advance to the end of split page */
		blockpfn += isolated - 1;
		cursor += isolated - 1;
		continue;
575 576 577 578 579 580 581

isolate_fail:
		if (strict)
			break;
		else
			continue;

582 583
	}

584 585 586
	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

587 588 589 590 591 592 593
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

594 595 596
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

597 598 599
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

600 601 602 603 604
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
605
	if (strict && blockpfn < end_pfn)
606 607
		total_isolated = 0;

608 609
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
610
		update_pageblock_skip(cc, valid_page, total_isolated);
611

612
	cc->total_free_scanned += nr_scanned;
613
	if (total_isolated)
614
		count_compact_events(COMPACTISOLATED, total_isolated);
615 616 617
	return total_isolated;
}

618 619
/**
 * isolate_freepages_range() - isolate free pages.
620
 * @cc:        Compaction control structure.
621 622 623 624 625 626 627 628 629 630 631
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
632
unsigned long
633 634
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
635
{
636
	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
637 638
	LIST_HEAD(freelist);

639
	pfn = start_pfn;
640
	block_start_pfn = pageblock_start_pfn(pfn);
641 642
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
643
	block_end_pfn = pageblock_end_pfn(pfn);
644 645

	for (; pfn < end_pfn; pfn += isolated,
646
				block_start_pfn = block_end_pfn,
647
				block_end_pfn += pageblock_nr_pages) {
648 649
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
650 651 652

		block_end_pfn = min(block_end_pfn, end_pfn);

653 654 655 656 657 658
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
659 660
			block_start_pfn = pageblock_start_pfn(pfn);
			block_end_pfn = pageblock_end_pfn(pfn);
661 662 663
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

664 665
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
666 667
			break;

668 669
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

686
	/* __isolate_free_page() does not map the pages */
687
	split_map_pages(&freelist);
688 689 690 691 692 693 694 695 696 697 698

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

699 700 701
/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
702
	unsigned long active, inactive, isolated;
703

M
Mel Gorman 已提交
704 705 706 707 708 709
	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
710

711
	return isolated > (inactive + active) / 2;
712 713
}

714
/**
715 716
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
717
 * @cc:		Compaction control structure.
718 719 720
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
721 722
 *
 * Isolate all pages that can be migrated from the range specified by
723 724 725 726
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
727
 *
728 729 730
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
731
 */
732 733 734
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
735
{
736
	struct zone *zone = cc->zone;
737
	unsigned long nr_scanned = 0, nr_isolated = 0;
738
	struct lruvec *lruvec;
739
	unsigned long flags = 0;
740
	bool locked = false;
741
	struct page *page = NULL, *valid_page = NULL;
742
	unsigned long start_pfn = low_pfn;
743 744
	bool skip_on_failure = false;
	unsigned long next_skip_pfn = 0;
745
	bool skip_updated = false;
746 747 748 749 750 751 752

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
753
		/* async migration should just abort */
754
		if (cc->mode == MIGRATE_ASYNC)
755
			return 0;
756

757 758 759
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
760
			return 0;
761 762
	}

763 764
	if (compact_should_abort(cc))
		return 0;
765

766 767 768 769 770
	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
		skip_on_failure = true;
		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
	}

771 772
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
773

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
		if (skip_on_failure && low_pfn >= next_skip_pfn) {
			/*
			 * We have isolated all migration candidates in the
			 * previous order-aligned block, and did not skip it due
			 * to failure. We should migrate the pages now and
			 * hopefully succeed compaction.
			 */
			if (nr_isolated)
				break;

			/*
			 * We failed to isolate in the previous order-aligned
			 * block. Set the new boundary to the end of the
			 * current block. Note we can't simply increase
			 * next_skip_pfn by 1 << order, as low_pfn might have
			 * been incremented by a higher number due to skipping
			 * a compound or a high-order buddy page in the
			 * previous loop iteration.
			 */
			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
		}

796 797 798 799 800 801
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
802
		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
803 804
								&locked, cc))
			break;
805

806
		if (!pfn_valid_within(low_pfn))
807
			goto isolate_fail;
808
		nr_scanned++;
809 810

		page = pfn_to_page(low_pfn);
811

812 813 814 815 816 817 818 819 820 821 822
		/*
		 * Check if the pageblock has already been marked skipped.
		 * Only the aligned PFN is checked as the caller isolates
		 * COMPACT_CLUSTER_MAX at a time so the second call must
		 * not falsely conclude that the block should be skipped.
		 */
		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
				low_pfn = end_pfn;
				goto isolate_abort;
			}
823
			valid_page = page;
824
		}
825

826
		/*
827 828 829 830
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
831
		 */
832 833 834 835 836 837 838 839 840 841
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
842
			continue;
843
		}
844

845
		/*
846 847 848 849 850
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
851
		 */
852
		if (PageCompound(page)) {
853
			const unsigned int order = compound_order(page);
854

855
			if (likely(order < MAX_ORDER))
856
				low_pfn += (1UL << order) - 1;
857
			goto isolate_fail;
858 859
		}

860 861 862 863 864 865 866 867 868 869 870 871 872
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU and non-lru movable pages.
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			/*
			 * __PageMovable can return false positive so we need
			 * to verify it under page_lock.
			 */
			if (unlikely(__PageMovable(page)) &&
					!PageIsolated(page)) {
				if (locked) {
873
					spin_unlock_irqrestore(zone_lru_lock(zone),
874 875 876 877
									flags);
					locked = false;
				}

878
				if (!isolate_movable_page(page, isolate_mode))
879 880 881
					goto isolate_success;
			}

882
			goto isolate_fail;
883
		}
884

885 886 887 888 889 890 891
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
892
			goto isolate_fail;
893

894 895 896 897 898 899 900
		/*
		 * Only allow to migrate anonymous pages in GFP_NOFS context
		 * because those do not depend on fs locks.
		 */
		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
			goto isolate_fail;

901 902
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
903
			locked = compact_trylock_irqsave(zone_lru_lock(zone),
904
								&flags, cc);
905 906 907 908

			/* Allow future scanning if the lock is contended */
			if (!locked) {
				clear_pageblock_skip(page);
909
				break;
910 911 912 913 914 915 916 917
			}

			/* Try get exclusive access under lock */
			if (!skip_updated) {
				skip_updated = true;
				if (test_and_set_skip(cc, page, low_pfn))
					goto isolate_abort;
			}
918

919
			/* Recheck PageLRU and PageCompound under lock */
920
			if (!PageLRU(page))
921
				goto isolate_fail;
922 923 924 925 926 927 928

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
929
				low_pfn += (1UL << compound_order(page)) - 1;
930
				goto isolate_fail;
931
			}
932 933
		}

M
Mel Gorman 已提交
934
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
935

936
		/* Try isolate the page */
937
		if (__isolate_lru_page(page, isolate_mode) != 0)
938
			goto isolate_fail;
939

940
		VM_BUG_ON_PAGE(PageCompound(page), page);
941

942
		/* Successfully isolated */
943
		del_page_from_lru_list(page, lruvec, page_lru(page));
944 945
		inc_node_page_state(page,
				NR_ISOLATED_ANON + page_is_file_cache(page));
946 947

isolate_success:
948
		list_add(&page->lru, &cc->migratepages);
949
		cc->nr_migratepages++;
950
		nr_isolated++;
951 952

		/* Avoid isolating too much */
953 954
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
955
			break;
956
		}
957 958 959 960 961 962 963 964 965 966 967 968 969

		continue;
isolate_fail:
		if (!skip_on_failure)
			continue;

		/*
		 * We have isolated some pages, but then failed. Release them
		 * instead of migrating, as we cannot form the cc->order buddy
		 * page anyway.
		 */
		if (nr_isolated) {
			if (locked) {
970
				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
				locked = false;
			}
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			nr_isolated = 0;
		}

		if (low_pfn < next_skip_pfn) {
			low_pfn = next_skip_pfn - 1;
			/*
			 * The check near the loop beginning would have updated
			 * next_skip_pfn too, but this is a bit simpler.
			 */
			next_skip_pfn += 1UL << cc->order;
		}
986 987
	}

988 989 990 991 992 993 994
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

995
isolate_abort:
996
	if (locked)
997
		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
998

999
	/*
1000 1001 1002
	 * Updated the cached scanner pfn if the pageblock was scanned
	 * without isolating a page. The pageblock may not be marked
	 * skipped already if there were no LRU pages in the block.
1003
	 */
1004 1005 1006 1007 1008
	if (low_pfn == end_pfn && !nr_isolated) {
		if (valid_page && !skip_updated)
			set_pageblock_skip(valid_page);
		update_cached_migrate(cc, low_pfn);
	}
1009

1010 1011
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
1012

1013
	cc->total_migrate_scanned += nr_scanned;
1014
	if (nr_isolated)
1015
		count_compact_events(COMPACTISOLATED, nr_isolated);
1016

1017 1018 1019
	return low_pfn;
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
1034
	unsigned long pfn, block_start_pfn, block_end_pfn;
1035 1036 1037

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
1038
	block_start_pfn = pageblock_start_pfn(pfn);
1039 1040
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
1041
	block_end_pfn = pageblock_end_pfn(pfn);
1042 1043

	for (; pfn < end_pfn; pfn = block_end_pfn,
1044
				block_start_pfn = block_end_pfn,
1045 1046 1047 1048
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

1049 1050
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
1051 1052 1053 1054 1055
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

1056
		if (!pfn)
1057
			break;
1058 1059 1060

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
1061 1062 1063 1064 1065
	}

	return pfn;
}

1066 1067
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
1068

1069 1070 1071
static bool suitable_migration_source(struct compact_control *cc,
							struct page *page)
{
1072 1073 1074
	int block_mt;

	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1075 1076
		return true;

1077 1078 1079 1080 1081 1082
	block_mt = get_pageblock_migratetype(page);

	if (cc->migratetype == MIGRATE_MOVABLE)
		return is_migrate_movable(block_mt);
	else
		return block_mt == cc->migratetype;
1083 1084
}

1085
/* Returns true if the page is within a block suitable for migration to */
1086 1087
static bool suitable_migration_target(struct compact_control *cc,
							struct page *page)
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

1100 1101 1102
	if (cc->ignore_block_suitable)
		return true;

1103
	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1104
	if (is_migrate_movable(get_pageblock_migratetype(page)))
1105 1106 1107 1108 1109 1110
		return true;

	/* Otherwise skip the block */
	return false;
}

1111 1112 1113 1114 1115 1116
static inline unsigned int
freelist_scan_limit(struct compact_control *cc)
{
	return (COMPACT_CLUSTER_MAX >> cc->fast_search_fail) + 1;
}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
/*
 * Used when scanning for a suitable migration target which scans freelists
 * in reverse. Reorders the list such as the unscanned pages are scanned
 * first on the next iteration of the free scanner
 */
static void
move_freelist_head(struct list_head *freelist, struct page *freepage)
{
	LIST_HEAD(sublist);

	if (!list_is_last(freelist, &freepage->lru)) {
		list_cut_before(&sublist, freelist, &freepage->lru);
		if (!list_empty(&sublist))
			list_splice_tail(&sublist, freelist);
	}
}

/*
 * Similar to move_freelist_head except used by the migration scanner
 * when scanning forward. It's possible for these list operations to
 * move against each other if they search the free list exactly in
 * lockstep.
 */
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static void
move_freelist_tail(struct list_head *freelist, struct page *freepage)
{
	LIST_HEAD(sublist);

	if (!list_is_first(freelist, &freepage->lru)) {
		list_cut_position(&sublist, freelist, &freepage->lru);
		if (!list_empty(&sublist))
			list_splice_tail(&sublist, freelist);
	}
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
static void
fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
{
	unsigned long start_pfn, end_pfn;
	struct page *page = pfn_to_page(pfn);

	/* Do not search around if there are enough pages already */
	if (cc->nr_freepages >= cc->nr_migratepages)
		return;

	/* Minimise scanning during async compaction */
	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
		return;

	/* Pageblock boundaries */
	start_pfn = pageblock_start_pfn(pfn);
	end_pfn = min(start_pfn + pageblock_nr_pages, zone_end_pfn(cc->zone));

	/* Scan before */
	if (start_pfn != pfn) {
		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, false);
		if (cc->nr_freepages >= cc->nr_migratepages)
			return;
	}

	/* Scan after */
	start_pfn = pfn + nr_isolated;
	if (start_pfn != end_pfn)
		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, false);

	/* Skip this pageblock in the future as it's full or nearly full */
	if (cc->nr_freepages < cc->nr_migratepages)
		set_pageblock_skip(page);
}

static unsigned long
fast_isolate_freepages(struct compact_control *cc)
{
	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
	unsigned int nr_scanned = 0;
	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
	unsigned long nr_isolated = 0;
	unsigned long distance;
	struct page *page = NULL;
	bool scan_start = false;
	int order;

	/* Full compaction passes in a negative order */
	if (cc->order <= 0)
		return cc->free_pfn;

	/*
	 * If starting the scan, use a deeper search and use the highest
	 * PFN found if a suitable one is not found.
	 */
	if (cc->free_pfn == pageblock_start_pfn(zone_end_pfn(cc->zone) - 1)) {
		limit = pageblock_nr_pages >> 1;
		scan_start = true;
	}

	/*
	 * Preferred point is in the top quarter of the scan space but take
	 * a pfn from the top half if the search is problematic.
	 */
	distance = (cc->free_pfn - cc->migrate_pfn);
	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));

	if (WARN_ON_ONCE(min_pfn > low_pfn))
		low_pfn = min_pfn;

	for (order = cc->order - 1;
	     order >= 0 && !page;
	     order--) {
		struct free_area *area = &cc->zone->free_area[order];
		struct list_head *freelist;
		struct page *freepage;
		unsigned long flags;
		unsigned int order_scanned = 0;

		if (!area->nr_free)
			continue;

		spin_lock_irqsave(&cc->zone->lock, flags);
		freelist = &area->free_list[MIGRATE_MOVABLE];
		list_for_each_entry_reverse(freepage, freelist, lru) {
			unsigned long pfn;

			order_scanned++;
			nr_scanned++;
			pfn = page_to_pfn(freepage);

			if (pfn >= highest)
				highest = pageblock_start_pfn(pfn);

			if (pfn >= low_pfn) {
				cc->fast_search_fail = 0;
				page = freepage;
				break;
			}

			if (pfn >= min_pfn && pfn > high_pfn) {
				high_pfn = pfn;

				/* Shorten the scan if a candidate is found */
				limit >>= 1;
			}

			if (order_scanned >= limit)
				break;
		}

		/* Use a minimum pfn if a preferred one was not found */
		if (!page && high_pfn) {
			page = pfn_to_page(high_pfn);

			/* Update freepage for the list reorder below */
			freepage = page;
		}

		/* Reorder to so a future search skips recent pages */
		move_freelist_head(freelist, freepage);

		/* Isolate the page if available */
		if (page) {
			if (__isolate_free_page(page, order)) {
				set_page_private(page, order);
				nr_isolated = 1 << order;
				cc->nr_freepages += nr_isolated;
				list_add_tail(&page->lru, &cc->freepages);
				count_compact_events(COMPACTISOLATED, nr_isolated);
			} else {
				/* If isolation fails, abort the search */
				order = -1;
				page = NULL;
			}
		}

		spin_unlock_irqrestore(&cc->zone->lock, flags);

		/*
		 * Smaller scan on next order so the total scan ig related
		 * to freelist_scan_limit.
		 */
		if (order_scanned >= limit)
			limit = min(1U, limit >> 1);
	}

	if (!page) {
		cc->fast_search_fail++;
		if (scan_start) {
			/*
			 * Use the highest PFN found above min. If one was
			 * not found, be pessemistic for direct compaction
			 * and use the min mark.
			 */
			if (highest) {
				page = pfn_to_page(highest);
				cc->free_pfn = highest;
			} else {
				if (cc->direct_compaction) {
					page = pfn_to_page(min_pfn);
					cc->free_pfn = min_pfn;
				}
			}
		}
	}

	if (highest && highest > cc->zone->compact_cached_free_pfn)
		cc->zone->compact_cached_free_pfn = highest;

	cc->total_free_scanned += nr_scanned;
	if (!page)
		return cc->free_pfn;

	low_pfn = page_to_pfn(page);
	fast_isolate_around(cc, low_pfn, nr_isolated);
	return low_pfn;
}

1342
/*
1343 1344
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
1345
 */
1346
static void isolate_freepages(struct compact_control *cc)
1347
{
1348
	struct zone *zone = cc->zone;
1349
	struct page *page;
1350
	unsigned long block_start_pfn;	/* start of current pageblock */
1351
	unsigned long isolate_start_pfn; /* exact pfn we start at */
1352 1353
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1354
	struct list_head *freelist = &cc->freepages;
1355

1356 1357 1358 1359 1360
	/* Try a small search of the free lists for a candidate */
	isolate_start_pfn = fast_isolate_freepages(cc);
	if (cc->nr_freepages)
		goto splitmap;

1361 1362
	/*
	 * Initialise the free scanner. The starting point is where we last
1363
	 * successfully isolated from, zone-cached value, or the end of the
1364 1365
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
1366 1367 1368
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
1369 1370
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
1371
	 */
1372
	isolate_start_pfn = cc->free_pfn;
1373
	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1374 1375
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
1376
	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1377

1378 1379 1380 1381 1382
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
1383
	for (; block_start_pfn >= low_pfn;
1384
				block_end_pfn = block_start_pfn,
1385 1386
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
1387 1388 1389
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
1390
		 * to schedule, or even abort async compaction.
1391
		 */
1392 1393 1394
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1395

1396 1397 1398
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
1399 1400 1401
			continue;

		/* Check the block is suitable for migration */
1402
		if (!suitable_migration_target(cc, page))
1403
			continue;
1404

1405 1406 1407 1408
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1409
		/* Found a block suitable for isolating free pages from. */
1410 1411
		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
					freelist, false);
1412

1413
		/*
1414 1415
		 * If we isolated enough freepages, or aborted due to lock
		 * contention, terminate.
1416
		 */
1417 1418
		if ((cc->nr_freepages >= cc->nr_migratepages)
							|| cc->contended) {
1419 1420 1421 1422 1423
			if (isolate_start_pfn >= block_end_pfn) {
				/*
				 * Restart at previous pageblock if more
				 * freepages can be isolated next time.
				 */
1424 1425
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1426
			}
1427
			break;
1428
		} else if (isolate_start_pfn < block_end_pfn) {
1429
			/*
1430 1431
			 * If isolation failed early, do not continue
			 * needlessly.
1432
			 */
1433
			break;
1434
		}
1435 1436
	}

1437
	/*
1438 1439 1440 1441
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1442
	 */
1443
	cc->free_pfn = isolate_start_pfn;
1444 1445 1446 1447

splitmap:
	/* __isolate_free_page() does not map the pages */
	split_map_pages(freelist);
1448 1449 1450 1451 1452 1453 1454
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
1455
					unsigned long data)
1456 1457 1458 1459
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

1460 1461 1462 1463
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
1464
	if (list_empty(&cc->freepages)) {
1465
		if (!cc->contended)
1466
			isolate_freepages(cc);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1492 1493 1494 1495 1496 1497 1498
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1499 1500 1501 1502 1503 1504
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
static inline void
update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
{
	if (cc->fast_start_pfn == ULONG_MAX)
		return;

	if (!cc->fast_start_pfn)
		cc->fast_start_pfn = pfn;

	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
}

static inline unsigned long
reinit_migrate_pfn(struct compact_control *cc)
{
	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
		return cc->migrate_pfn;

	cc->migrate_pfn = cc->fast_start_pfn;
	cc->fast_start_pfn = ULONG_MAX;

	return cc->migrate_pfn;
}

/*
 * Briefly search the free lists for a migration source that already has
 * some free pages to reduce the number of pages that need migration
 * before a pageblock is free.
 */
static unsigned long fast_find_migrateblock(struct compact_control *cc)
{
	unsigned int limit = freelist_scan_limit(cc);
	unsigned int nr_scanned = 0;
	unsigned long distance;
	unsigned long pfn = cc->migrate_pfn;
	unsigned long high_pfn;
	int order;

	/* Skip hints are relied on to avoid repeats on the fast search */
	if (cc->ignore_skip_hint)
		return pfn;

	/*
	 * If the migrate_pfn is not at the start of a zone or the start
	 * of a pageblock then assume this is a continuation of a previous
	 * scan restarted due to COMPACT_CLUSTER_MAX.
	 */
	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
		return pfn;

	/*
	 * For smaller orders, just linearly scan as the number of pages
	 * to migrate should be relatively small and does not necessarily
	 * justify freeing up a large block for a small allocation.
	 */
	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return pfn;

	/*
	 * Only allow kcompactd and direct requests for movable pages to
	 * quickly clear out a MOVABLE pageblock for allocation. This
	 * reduces the risk that a large movable pageblock is freed for
	 * an unmovable/reclaimable small allocation.
	 */
	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
		return pfn;

	/*
	 * When starting the migration scanner, pick any pageblock within the
	 * first half of the search space. Otherwise try and pick a pageblock
	 * within the first eighth to reduce the chances that a migration
	 * target later becomes a source.
	 */
	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
		distance >>= 2;
	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);

	for (order = cc->order - 1;
	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
	     order--) {
		struct free_area *area = &cc->zone->free_area[order];
		struct list_head *freelist;
		unsigned long flags;
		struct page *freepage;

		if (!area->nr_free)
			continue;

		spin_lock_irqsave(&cc->zone->lock, flags);
		freelist = &area->free_list[MIGRATE_MOVABLE];
		list_for_each_entry(freepage, freelist, lru) {
			unsigned long free_pfn;

			nr_scanned++;
			free_pfn = page_to_pfn(freepage);
			if (free_pfn < high_pfn) {
				/*
				 * Avoid if skipped recently. Ideally it would
				 * move to the tail but even safe iteration of
				 * the list assumes an entry is deleted, not
				 * reordered.
				 */
				if (get_pageblock_skip(freepage)) {
					if (list_is_last(freelist, &freepage->lru))
						break;

					continue;
				}

				/* Reorder to so a future search skips recent pages */
				move_freelist_tail(freelist, freepage);

1618
				update_fast_start_pfn(cc, free_pfn);
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
				pfn = pageblock_start_pfn(free_pfn);
				cc->fast_search_fail = 0;
				set_pageblock_skip(freepage);
				break;
			}

			if (nr_scanned >= limit) {
				cc->fast_search_fail++;
				move_freelist_tail(freelist, freepage);
				break;
			}
		}
		spin_unlock_irqrestore(&cc->zone->lock, flags);
	}

	cc->total_migrate_scanned += nr_scanned;

	/*
	 * If fast scanning failed then use a cached entry for a page block
	 * that had free pages as the basis for starting a linear scan.
	 */
	if (pfn == cc->migrate_pfn)
		pfn = reinit_migrate_pfn(cc);

	return pfn;
}

1646
/*
1647 1648 1649
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1650 1651 1652 1653
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
1654 1655 1656
	unsigned long block_start_pfn;
	unsigned long block_end_pfn;
	unsigned long low_pfn;
1657 1658
	struct page *page;
	const isolate_mode_t isolate_mode =
1659
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1660
		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1661
	bool fast_find_block;
1662

1663 1664
	/*
	 * Start at where we last stopped, or beginning of the zone as
1665 1666
	 * initialized by compact_zone(). The first failure will use
	 * the lowest PFN as the starting point for linear scanning.
1667
	 */
1668
	low_pfn = fast_find_migrateblock(cc);
1669
	block_start_pfn = pageblock_start_pfn(low_pfn);
1670 1671
	if (block_start_pfn < zone->zone_start_pfn)
		block_start_pfn = zone->zone_start_pfn;
1672

1673 1674 1675 1676 1677 1678 1679
	/*
	 * fast_find_migrateblock marks a pageblock skipped so to avoid
	 * the isolation_suitable check below, check whether the fast
	 * search was successful.
	 */
	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;

1680
	/* Only scan within a pageblock boundary */
1681
	block_end_pfn = pageblock_end_pfn(low_pfn);
1682

1683 1684 1685 1686
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
1687
	for (; block_end_pfn <= cc->free_pfn;
1688
			fast_find_block = false,
1689 1690 1691
			low_pfn = block_end_pfn,
			block_start_pfn = block_end_pfn,
			block_end_pfn += pageblock_nr_pages) {
1692

1693 1694 1695 1696 1697 1698 1699 1700
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1701

1702 1703
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
1704
		if (!page)
1705 1706
			continue;

1707 1708 1709 1710 1711 1712 1713 1714 1715
		/*
		 * If isolation recently failed, do not retry. Only check the
		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
		 * to be visited multiple times. Assume skip was checked
		 * before making it "skip" so other compaction instances do
		 * not scan the same block.
		 */
		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
		    !fast_find_block && !isolation_suitable(cc, page))
1716 1717 1718 1719 1720 1721 1722
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
1723
		if (!suitable_migration_source(cc, page))
1724 1725 1726
			continue;

		/* Perform the isolation */
1727 1728
		low_pfn = isolate_migratepages_block(cc, low_pfn,
						block_end_pfn, isolate_mode);
1729

1730
		if (!low_pfn || cc->contended)
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

1741 1742
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1743

1744
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1745 1746
}

1747 1748 1749 1750 1751 1752 1753 1754 1755
/*
 * order == -1 is expected when compacting via
 * /proc/sys/vm/compact_memory
 */
static inline bool is_via_compact_memory(int order)
{
	return order == -1;
}

1756
static enum compact_result __compact_finished(struct compact_control *cc)
1757
{
1758
	unsigned int order;
1759
	const int migratetype = cc->migratetype;
1760

1761
	if (cc->contended || fatal_signal_pending(current))
1762
		return COMPACT_CONTENDED;
1763

1764
	/* Compaction run completes if the migrate and free scanner meet */
1765
	if (compact_scanners_met(cc)) {
1766
		/* Let the next compaction start anew. */
1767
		reset_cached_positions(cc->zone);
1768

1769 1770
		/*
		 * Mark that the PG_migrate_skip information should be cleared
1771
		 * by kswapd when it goes to sleep. kcompactd does not set the
1772 1773 1774
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
1775
		if (cc->direct_compaction)
1776
			cc->zone->compact_blockskip_flush = true;
1777

1778 1779 1780 1781
		if (cc->whole_zone)
			return COMPACT_COMPLETE;
		else
			return COMPACT_PARTIAL_SKIPPED;
1782
	}
1783

1784
	if (is_via_compact_memory(cc->order))
1785 1786
		return COMPACT_CONTINUE;

1787 1788 1789 1790 1791 1792 1793 1794
	/*
	 * Always finish scanning a pageblock to reduce the possibility of
	 * fallbacks in the future. This is particularly important when
	 * migration source is unmovable/reclaimable but it's not worth
	 * special casing.
	 */
	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
		return COMPACT_CONTINUE;
1795

1796
	/* Direct compactor: Is a suitable page free? */
1797
	for (order = cc->order; order < MAX_ORDER; order++) {
1798
		struct free_area *area = &cc->zone->free_area[order];
1799
		bool can_steal;
1800 1801

		/* Job done if page is free of the right migratetype */
1802
		if (!free_area_empty(area, migratetype))
1803
			return COMPACT_SUCCESS;
1804

1805 1806 1807
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
1808
			!free_area_empty(area, MIGRATE_CMA))
1809
			return COMPACT_SUCCESS;
1810 1811 1812 1813 1814 1815
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
						true, &can_steal) != -1) {

			/* movable pages are OK in any pageblock */
			if (migratetype == MIGRATE_MOVABLE)
				return COMPACT_SUCCESS;

			/*
			 * We are stealing for a non-movable allocation. Make
			 * sure we finish compacting the current pageblock
			 * first so it is as free as possible and we won't
			 * have to steal another one soon. This only applies
			 * to sync compaction, as async compaction operates
			 * on pageblocks of the same migratetype.
			 */
			if (cc->mode == MIGRATE_ASYNC ||
					IS_ALIGNED(cc->migrate_pfn,
							pageblock_nr_pages)) {
				return COMPACT_SUCCESS;
			}

			return COMPACT_CONTINUE;
		}
1838 1839
	}

1840 1841 1842
	return COMPACT_NO_SUITABLE_PAGE;
}

1843
static enum compact_result compact_finished(struct compact_control *cc)
1844 1845 1846
{
	int ret;

1847 1848
	ret = __compact_finished(cc);
	trace_mm_compaction_finished(cc->zone, cc->order, ret);
1849 1850 1851 1852
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1853 1854
}

1855 1856 1857 1858
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1859
 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1860 1861
 *   COMPACT_CONTINUE - If compaction should run now
 */
1862
static enum compact_result __compaction_suitable(struct zone *zone, int order,
1863
					unsigned int alloc_flags,
1864 1865
					int classzone_idx,
					unsigned long wmark_target)
1866 1867 1868
{
	unsigned long watermark;

1869
	if (is_via_compact_memory(order))
1870 1871
		return COMPACT_CONTINUE;

1872
	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1873 1874 1875 1876 1877 1878
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
1879
		return COMPACT_SUCCESS;
1880

1881
	/*
1882
	 * Watermarks for order-0 must be met for compaction to be able to
1883 1884 1885 1886 1887 1888 1889
	 * isolate free pages for migration targets. This means that the
	 * watermark and alloc_flags have to match, or be more pessimistic than
	 * the check in __isolate_free_page(). We don't use the direct
	 * compactor's alloc_flags, as they are not relevant for freepage
	 * isolation. We however do use the direct compactor's classzone_idx to
	 * skip over zones where lowmem reserves would prevent allocation even
	 * if compaction succeeds.
1890 1891
	 * For costly orders, we require low watermark instead of min for
	 * compaction to proceed to increase its chances.
1892 1893
	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
	 * suitable migration targets
1894
	 */
1895 1896 1897
	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
				low_wmark_pages(zone) : min_wmark_pages(zone);
	watermark += compact_gap(order);
1898
	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1899
						ALLOC_CMA, wmark_target))
1900 1901
		return COMPACT_SKIPPED;

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	return COMPACT_CONTINUE;
}

enum compact_result compaction_suitable(struct zone *zone, int order,
					unsigned int alloc_flags,
					int classzone_idx)
{
	enum compact_result ret;
	int fragindex;

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
				    zone_page_state(zone, NR_FREE_PAGES));
1914 1915 1916 1917
	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1918 1919
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1920 1921 1922
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
1923 1924 1925 1926 1927 1928
	 * Only compact if a failure would be due to fragmentation. Also
	 * ignore fragindex for non-costly orders where the alternative to
	 * a successful reclaim/compaction is OOM. Fragindex and the
	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
	 * excessive compaction for costly orders, but it should not be at the
	 * expense of system stability.
1929
	 */
1930
	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1931 1932 1933 1934
		fragindex = fragmentation_index(zone, order);
		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
			ret = COMPACT_NOT_SUITABLE_ZONE;
	}
1935 1936 1937 1938 1939 1940 1941 1942

	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
		int alloc_flags)
{
	struct zone *zone;
	struct zoneref *z;

	/*
	 * Make sure at least one zone would pass __compaction_suitable if we continue
	 * retrying the reclaim.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
		enum compact_result compact_result;

		/*
		 * Do not consider all the reclaimable memory because we do not
		 * want to trash just for a single high order allocation which
		 * is even not guaranteed to appear even if __compaction_suitable
		 * is happy about the watermark check.
		 */
1964
		available = zone_reclaimable_pages(zone) / order;
1965 1966 1967
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
		compact_result = __compaction_suitable(zone, order, alloc_flags,
				ac_classzone_idx(ac), available);
1968
		if (compact_result != COMPACT_SKIPPED)
1969 1970 1971 1972 1973 1974
			return true;
	}

	return false;
}

1975
static enum compact_result compact_zone(struct compact_control *cc)
1976
{
1977
	enum compact_result ret;
1978 1979
	unsigned long start_pfn = cc->zone->zone_start_pfn;
	unsigned long end_pfn = zone_end_pfn(cc->zone);
1980
	unsigned long last_migrated_pfn;
1981
	const bool sync = cc->mode != MIGRATE_ASYNC;
1982

1983
	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1984
	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
1985
							cc->classzone_idx);
1986
	/* Compaction is likely to fail */
1987
	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1988
		return ret;
1989 1990 1991

	/* huh, compaction_suitable is returning something unexpected */
	VM_BUG_ON(ret != COMPACT_CONTINUE);
1992

1993 1994
	/*
	 * Clear pageblock skip if there were failures recently and compaction
1995
	 * is about to be retried after being deferred.
1996
	 */
1997 1998
	if (compaction_restarting(cc->zone, cc->order))
		__reset_isolation_suitable(cc->zone);
1999

2000 2001
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
2002 2003 2004
	 * information on where the scanners should start (unless we explicitly
	 * want to compact the whole zone), but check that it is initialised
	 * by ensuring the values are within zone boundaries.
2005
	 */
2006
	cc->fast_start_pfn = 0;
2007
	if (cc->whole_zone) {
2008
		cc->migrate_pfn = start_pfn;
2009 2010
		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
	} else {
2011 2012
		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2013 2014
		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2015
			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2016 2017 2018
		}
		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
			cc->migrate_pfn = start_pfn;
2019 2020
			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2021
		}
2022

2023 2024 2025
		if (cc->migrate_pfn == start_pfn)
			cc->whole_zone = true;
	}
2026

2027
	last_migrated_pfn = 0;
2028

2029 2030
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
2031

2032 2033
	migrate_prep_local();

2034
	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2035
		int err;
2036
		unsigned long start_pfn = cc->migrate_pfn;
2037

2038
		switch (isolate_migratepages(cc->zone, cc)) {
2039
		case ISOLATE_ABORT:
2040
			ret = COMPACT_CONTENDED;
2041
			putback_movable_pages(&cc->migratepages);
2042
			cc->nr_migratepages = 0;
2043
			last_migrated_pfn = 0;
2044 2045
			goto out;
		case ISOLATE_NONE:
2046 2047 2048 2049 2050 2051
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
2052
		case ISOLATE_SUCCESS:
2053
			last_migrated_pfn = start_pfn;
2054 2055
			;
		}
2056

2057
		err = migrate_pages(&cc->migratepages, compaction_alloc,
2058
				compaction_free, (unsigned long)cc, cc->mode,
2059
				MR_COMPACTION);
2060

2061 2062
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
2063

2064 2065
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
2066
		if (err) {
2067
			putback_movable_pages(&cc->migratepages);
2068 2069 2070 2071
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
2072
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2073
				ret = COMPACT_CONTENDED;
2074 2075
				goto out;
			}
2076 2077 2078 2079 2080 2081 2082 2083 2084
			/*
			 * We failed to migrate at least one page in the current
			 * order-aligned block, so skip the rest of it.
			 */
			if (cc->direct_compaction &&
						(cc->mode == MIGRATE_ASYNC)) {
				cc->migrate_pfn = block_end_pfn(
						cc->migrate_pfn - 1, cc->order);
				/* Draining pcplists is useless in this case */
2085
				last_migrated_pfn = 0;
2086
			}
2087
		}
2088 2089 2090 2091 2092 2093 2094 2095 2096

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
2097
		if (cc->order > 0 && last_migrated_pfn) {
2098 2099
			int cpu;
			unsigned long current_block_start =
2100
				block_start_pfn(cc->migrate_pfn, cc->order);
2101

2102
			if (last_migrated_pfn < current_block_start) {
2103 2104
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
2105
				drain_local_pages(cc->zone);
2106 2107
				put_cpu();
				/* No more flushing until we migrate again */
2108
				last_migrated_pfn = 0;
2109 2110 2111
			}
		}

2112 2113
	}

2114
out:
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
2125
		free_pfn = pageblock_start_pfn(free_pfn);
2126 2127 2128 2129
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
2130 2131
		if (free_pfn > cc->zone->compact_cached_free_pfn)
			cc->zone->compact_cached_free_pfn = free_pfn;
2132
	}
2133

2134 2135 2136
	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);

2137 2138
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
2139

2140 2141
	return ret;
}
2142

2143
static enum compact_result compact_zone_order(struct zone *zone, int order,
2144
		gfp_t gfp_mask, enum compact_priority prio,
2145
		unsigned int alloc_flags, int classzone_idx)
2146
{
2147
	enum compact_result ret;
2148
	struct compact_control cc = {
2149 2150 2151 2152
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
2153
		.order = order,
2154
		.gfp_mask = gfp_mask,
2155
		.zone = zone,
2156 2157
		.mode = (prio == COMPACT_PRIO_ASYNC) ?
					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2158 2159
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
2160
		.direct_compaction = true,
2161
		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2162 2163
		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2164
	};
2165 2166
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);
2167

2168
	ret = compact_zone(&cc);
2169 2170 2171 2172 2173

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	return ret;
2174 2175
}

2176 2177
int sysctl_extfrag_threshold = 500;

2178 2179 2180
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
2181 2182 2183
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
2184
 * @prio: Determines how hard direct compaction should try to succeed
2185 2186 2187
 *
 * This is the main entry point for direct page compaction.
 */
2188
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2189
		unsigned int alloc_flags, const struct alloc_context *ac,
2190
		enum compact_priority prio)
2191 2192 2193 2194
{
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
2195
	enum compact_result rc = COMPACT_SKIPPED;
2196

2197 2198 2199 2200 2201
	/*
	 * Check if the GFP flags allow compaction - GFP_NOIO is really
	 * tricky context because the migration might require IO
	 */
	if (!may_perform_io)
2202
		return COMPACT_SKIPPED;
2203

2204
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2205

2206
	/* Compact each zone in the list */
2207 2208
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
2209
		enum compact_result status;
2210

2211 2212
		if (prio > MIN_COMPACT_PRIORITY
					&& compaction_deferred(zone, order)) {
2213
			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2214
			continue;
2215
		}
2216

2217
		status = compact_zone_order(zone, order, gfp_mask, prio,
2218
					alloc_flags, ac_classzone_idx(ac));
2219 2220
		rc = max(status, rc);

2221 2222
		/* The allocation should succeed, stop compacting */
		if (status == COMPACT_SUCCESS) {
2223 2224 2225 2226 2227 2228 2229
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
2230

2231
			break;
2232 2233
		}

2234
		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2235
					status == COMPACT_PARTIAL_SKIPPED))
2236 2237 2238 2239 2240 2241
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
2242 2243 2244 2245

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
2246
		 * case do not try further zones
2247
		 */
2248 2249 2250
		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
					|| fatal_signal_pending(current))
			break;
2251 2252 2253 2254 2255 2256
	}

	return rc;
}


2257
/* Compact all zones within a node */
2258
static void compact_node(int nid)
2259
{
2260
	pg_data_t *pgdat = NODE_DATA(nid);
2261 2262
	int zoneid;
	struct zone *zone;
2263 2264
	struct compact_control cc = {
		.order = -1,
2265 2266
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
2267 2268 2269
		.mode = MIGRATE_SYNC,
		.ignore_skip_hint = true,
		.whole_zone = true,
2270
		.gfp_mask = GFP_KERNEL,
2271 2272
	};

2273 2274 2275 2276 2277 2278 2279

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

2280 2281
		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
2282
		cc.zone = zone;
2283 2284
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);
2285

2286
		compact_zone(&cc);
2287

2288 2289
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
2290 2291 2292 2293
	}
}

/* Compact all nodes in the system */
2294
static void compact_nodes(void)
2295 2296 2297
{
	int nid;

2298 2299 2300
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

2301 2302 2303 2304 2305 2306 2307
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

2308 2309 2310 2311
/*
 * This is the entry point for compacting all nodes via
 * /proc/sys/vm/compact_memory
 */
2312 2313 2314 2315
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
2316
		compact_nodes();
2317 2318 2319

	return 0;
}
2320

2321 2322 2323 2324 2325 2326 2327 2328
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

2329
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2330
static ssize_t sysfs_compact_node(struct device *dev,
2331
			struct device_attribute *attr,
2332 2333
			const char *buf, size_t count)
{
2334 2335 2336 2337 2338 2339 2340 2341
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
2342 2343 2344

	return count;
}
2345
static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2346 2347 2348

int compaction_register_node(struct node *node)
{
2349
	return device_create_file(&node->dev, &dev_attr_compact);
2350 2351 2352 2353
}

void compaction_unregister_node(struct node *node)
{
2354
	return device_remove_file(&node->dev, &dev_attr_compact);
2355 2356
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2357

2358 2359
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
{
2360
	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2361 2362 2363 2364 2365 2366 2367 2368
}

static bool kcompactd_node_suitable(pg_data_t *pgdat)
{
	int zoneid;
	struct zone *zone;
	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;

2369
	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
		zone = &pgdat->node_zones[zoneid];

		if (!populated_zone(zone))
			continue;

		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
					classzone_idx) == COMPACT_CONTINUE)
			return true;
	}

	return false;
}

static void kcompactd_do_work(pg_data_t *pgdat)
{
	/*
	 * With no special task, compact all zones so that a page of requested
	 * order is allocatable.
	 */
	int zoneid;
	struct zone *zone;
	struct compact_control cc = {
		.order = pgdat->kcompactd_max_order,
2393 2394
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
2395 2396
		.classzone_idx = pgdat->kcompactd_classzone_idx,
		.mode = MIGRATE_SYNC_LIGHT,
2397
		.ignore_skip_hint = false,
2398
		.gfp_mask = GFP_KERNEL,
2399 2400 2401
	};
	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
							cc.classzone_idx);
2402
	count_compact_event(KCOMPACTD_WAKE);
2403

2404
	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
		int status;

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		if (compaction_deferred(zone, cc.order))
			continue;

		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
							COMPACT_CONTINUE)
			continue;

2418 2419 2420 2421 2422 2423 2424 2425
		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
		cc.total_migrate_scanned = 0;
		cc.total_free_scanned = 0;
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);

2426 2427
		if (kthread_should_stop())
			return;
2428
		status = compact_zone(&cc);
2429

2430
		if (status == COMPACT_SUCCESS) {
2431
			compaction_defer_reset(zone, cc.order, false);
2432
		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2433 2434 2435 2436 2437 2438 2439 2440
			/*
			 * Buddy pages may become stranded on pcps that could
			 * otherwise coalesce on the zone's free area for
			 * order >= cc.order.  This is ratelimited by the
			 * upcoming deferral.
			 */
			drain_all_pages(zone);

2441 2442 2443 2444 2445 2446 2447
			/*
			 * We use sync migration mode here, so we defer like
			 * sync direct compaction does.
			 */
			defer_compaction(zone, cc.order);
		}

2448 2449 2450 2451 2452
		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
				     cc.total_migrate_scanned);
		count_compact_events(KCOMPACTD_FREE_SCANNED,
				     cc.total_free_scanned);

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
	}

	/*
	 * Regardless of success, we are done until woken up next. But remember
	 * the requested order/classzone_idx in case it was higher/tighter than
	 * our current ones
	 */
	if (pgdat->kcompactd_max_order <= cc.order)
		pgdat->kcompactd_max_order = 0;
	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
}

void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
{
	if (!order)
		return;

	if (pgdat->kcompactd_max_order < order)
		pgdat->kcompactd_max_order = order;

	if (pgdat->kcompactd_classzone_idx > classzone_idx)
		pgdat->kcompactd_classzone_idx = classzone_idx;

2479 2480 2481 2482 2483
	/*
	 * Pairs with implicit barrier in wait_event_freezable()
	 * such that wakeups are not missed.
	 */
	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
		return;

	if (!kcompactd_node_suitable(pgdat))
		return;

	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
							classzone_idx);
	wake_up_interruptible(&pgdat->kcompactd_wait);
}

/*
 * The background compaction daemon, started as a kernel thread
 * from the init process.
 */
static int kcompactd(void *p)
{
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;

	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);

	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(tsk, cpumask);

	set_freezable();

	pgdat->kcompactd_max_order = 0;
	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;

	while (!kthread_should_stop()) {
2514 2515
		unsigned long pflags;

2516 2517 2518 2519
		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
		wait_event_freezable(pgdat->kcompactd_wait,
				kcompactd_work_requested(pgdat));

2520
		psi_memstall_enter(&pflags);
2521
		kcompactd_do_work(pgdat);
2522
		psi_memstall_leave(&pflags);
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	}

	return 0;
}

/*
 * This kcompactd start function will be called by init and node-hot-add.
 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
 */
int kcompactd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kcompactd)
		return 0;

	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
	if (IS_ERR(pgdat->kcompactd)) {
		pr_err("Failed to start kcompactd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kcompactd);
		pgdat->kcompactd = NULL;
	}
	return ret;
}

/*
 * Called by memory hotplug when all memory in a node is offlined. Caller must
 * hold mem_hotplug_begin/end().
 */
void kcompactd_stop(int nid)
{
	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;

	if (kcompactd) {
		kthread_stop(kcompactd);
		NODE_DATA(nid)->kcompactd = NULL;
	}
}

/*
 * It's optimal to keep kcompactd on the same CPUs as their memory, but
 * not required for correctness. So if the last cpu in a node goes
 * away, we get changed to run anywhere: as the first one comes back,
 * restore their cpu bindings.
 */
2569
static int kcompactd_cpu_online(unsigned int cpu)
2570 2571 2572
{
	int nid;

2573 2574 2575
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
2576

2577
		mask = cpumask_of_node(pgdat->node_id);
2578

2579 2580 2581
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2582
	}
2583
	return 0;
2584 2585 2586 2587 2588
}

static int __init kcompactd_init(void)
{
	int nid;
2589 2590 2591 2592 2593 2594 2595 2596 2597
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/compaction:online",
					kcompactd_cpu_online, NULL);
	if (ret < 0) {
		pr_err("kcompactd: failed to register hotplug callbacks.\n");
		return ret;
	}
2598 2599 2600 2601 2602 2603 2604

	for_each_node_state(nid, N_MEMORY)
		kcompactd_run(nid);
	return 0;
}
subsys_initcall(kcompactd_init)

2605
#endif /* CONFIG_COMPACTION */