compaction.c 71.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
11
#include <linux/cpu.h>
12 13 14 15
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
16
#include <linux/sched/signal.h>
17
#include <linux/backing-dev.h>
18
#include <linux/sysctl.h>
19
#include <linux/sysfs.h>
20
#include <linux/page-isolation.h>
21
#include <linux/kasan.h>
22 23
#include <linux/kthread.h>
#include <linux/freezer.h>
24
#include <linux/page_owner.h>
25
#include <linux/psi.h>
26 27
#include "internal.h"

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

43 44
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

45 46 47
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

48 49 50 51 52
#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)

53 54 55
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
56
	unsigned long high_pfn = 0;
57 58

	list_for_each_entry_safe(page, next, freelist, lru) {
59
		unsigned long pfn = page_to_pfn(page);
60 61
		list_del(&page->lru);
		__free_page(page);
62 63
		if (pfn > high_pfn)
			high_pfn = pfn;
64 65
	}

66
	return high_pfn;
67 68
}

69
static void split_map_pages(struct list_head *list)
70
{
71 72 73 74 75 76 77 78 79 80
	unsigned int i, order, nr_pages;
	struct page *page, *next;
	LIST_HEAD(tmp_list);

	list_for_each_entry_safe(page, next, list, lru) {
		list_del(&page->lru);

		order = page_private(page);
		nr_pages = 1 << order;

81
		post_alloc_hook(page, order, __GFP_MOVABLE);
82 83
		if (order)
			split_page(page, order);
84

85 86 87 88
		for (i = 0; i < nr_pages; i++) {
			list_add(&page->lru, &tmp_list);
			page++;
		}
89
	}
90 91

	list_splice(&tmp_list, list);
92 93
}

94
#ifdef CONFIG_COMPACTION
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
int PageMovable(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	if (!__PageMovable(page))
		return 0;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
		return 1;

	return 0;
}
EXPORT_SYMBOL(PageMovable);

void __SetPageMovable(struct page *page, struct address_space *mapping)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__SetPageMovable);

void __ClearPageMovable(struct page *page)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	/*
	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
	 * flag so that VM can catch up released page by driver after isolation.
	 * With it, VM migration doesn't try to put it back.
	 */
	page->mapping = (void *)((unsigned long)page->mapping &
				PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__ClearPageMovable);

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

204 205 206 207 208 209 210 211 212 213
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

214 215 216 217
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218
	zone->compact_cached_free_pfn =
219
				pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 221
}

222
/*
223 224 225
 * Compound pages of >= pageblock_order should consistenly be skipped until
 * released. It is always pointless to compact pages of such order (if they are
 * migratable), and the pageblocks they occupy cannot contain any free pages.
226
 */
227
static bool pageblock_skip_persistent(struct page *page)
228
{
229
	if (!PageCompound(page))
230
		return false;
231 232 233 234 235 236 237

	page = compound_head(page);

	if (compound_order(page) >= pageblock_order)
		return true;

	return false;
238 239
}

240 241 242 243 244
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
245
static void __reset_isolation_suitable(struct zone *zone)
246 247
{
	unsigned long start_pfn = zone->zone_start_pfn;
248
	unsigned long end_pfn = zone_end_pfn(zone);
249 250
	unsigned long pfn;

251
	zone->compact_blockskip_flush = false;
252 253 254 255 256 257 258

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

259 260
		page = pfn_to_online_page(pfn);
		if (!page)
261 262 263
			continue;
		if (zone != page_zone(page))
			continue;
264
		if (pageblock_skip_persistent(page))
265
			continue;
266 267 268

		clear_pageblock_skip(page);
	}
269 270

	reset_cached_positions(zone);
271 272
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 * locks are not required for read/writers. Returns true if it was already set.
 */
static bool test_and_set_skip(struct compact_control *cc, struct page *page,
							unsigned long pfn)
{
	bool skip;

	/* Do no update if skip hint is being ignored */
	if (cc->ignore_skip_hint)
		return false;

	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
		return false;

	skip = get_pageblock_skip(page);
	if (!skip && !cc->no_set_skip_hint)
		set_pageblock_skip(page);

	return skip;
}

static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
{
	struct zone *zone = cc->zone;

	pfn = pageblock_end_pfn(pfn);

	/* Set for isolation rather than compaction */
	if (cc->no_set_skip_hint)
		return;

	if (pfn > zone->compact_cached_migrate_pfn[0])
		zone->compact_cached_migrate_pfn[0] = pfn;
	if (cc->mode != MIGRATE_ASYNC &&
	    pfn > zone->compact_cached_migrate_pfn[1])
		zone->compact_cached_migrate_pfn[1] = pfn;
}

328 329
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
330
 * future. The information is later cleared by __reset_isolation_suitable().
331
 */
332
static void update_pageblock_skip(struct compact_control *cc,
333
			struct page *page, unsigned long nr_isolated)
334
{
335
	struct zone *zone = cc->zone;
336
	unsigned long pfn;
337

338
	if (cc->no_set_skip_hint)
339 340
		return;

341 342 343
	if (!page)
		return;

344 345 346
	if (nr_isolated)
		return;

347
	set_pageblock_skip(page);
348

349 350 351
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
352 353
	if (pfn < zone->compact_cached_free_pfn)
		zone->compact_cached_free_pfn = pfn;
354 355 356 357 358 359 360 361
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

362
static inline bool pageblock_skip_persistent(struct page *page)
363 364 365 366 367
{
	return false;
}

static inline void update_pageblock_skip(struct compact_control *cc,
368
			struct page *page, unsigned long nr_isolated)
369 370
{
}
371 372 373 374 375 376 377 378 379 380

static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
{
}

static bool test_and_set_skip(struct compact_control *cc, struct page *page,
							unsigned long pfn)
{
	return false;
}
381 382
#endif /* CONFIG_COMPACTION */

383 384
/*
 * Compaction requires the taking of some coarse locks that are potentially
385 386 387 388
 * very heavily contended. For async compaction, trylock and record if the
 * lock is contended. The lock will still be acquired but compaction will
 * abort when the current block is finished regardless of success rate.
 * Sync compaction acquires the lock.
389
 *
390
 * Always returns true which makes it easier to track lock state in callers.
391
 */
392
static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
393
						struct compact_control *cc)
394
{
395 396 397 398 399 400
	/* Track if the lock is contended in async mode */
	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
		if (spin_trylock_irqsave(lock, *flags))
			return true;

		cc->contended = true;
401
	}
402

403
	spin_lock_irqsave(lock, *flags);
404
	return true;
405 406
}

407 408
/*
 * Compaction requires the taking of some coarse locks that are potentially
409 410 411 412 413 414 415
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
416
 *
417 418 419 420
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
421
 */
422 423
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
424
{
425 426 427 428
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
429

430
	if (fatal_signal_pending(current)) {
431
		cc->contended = true;
432 433
		return true;
	}
434

435
	cond_resched();
436 437 438 439

	return false;
}

440
/*
441 442 443
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
444
 */
445
static unsigned long isolate_freepages_block(struct compact_control *cc,
446
				unsigned long *start_pfn,
447 448 449
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
450
{
451
	int nr_scanned = 0, total_isolated = 0;
452
	struct page *cursor, *valid_page = NULL;
453
	unsigned long flags = 0;
454
	bool locked = false;
455
	unsigned long blockpfn = *start_pfn;
456
	unsigned int order;
457 458 459

	cursor = pfn_to_page(blockpfn);

460
	/* Isolate free pages. */
461
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
462
		int isolated;
463 464
		struct page *page = cursor;

465 466 467 468 469 470 471 472 473 474
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

475
		nr_scanned++;
476
		if (!pfn_valid_within(blockpfn))
477 478
			goto isolate_fail;

479 480
		if (!valid_page)
			valid_page = page;
481 482 483 484 485 486 487 488

		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
489 490
			const unsigned int order = compound_order(page);

491
			if (likely(order < MAX_ORDER)) {
492 493
				blockpfn += (1UL << order) - 1;
				cursor += (1UL << order) - 1;
494 495 496 497
			}
			goto isolate_fail;
		}

498
		if (!PageBuddy(page))
499
			goto isolate_fail;
500 501

		/*
502 503 504 505 506
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
507
		 */
508
		if (!locked) {
509
			locked = compact_lock_irqsave(&cc->zone->lock,
510
								&flags, cc);
511

512 513 514 515
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
516

517 518 519
		/* Found a free page, will break it into order-0 pages */
		order = page_order(page);
		isolated = __isolate_free_page(page, order);
520 521
		if (!isolated)
			break;
522
		set_page_private(page, order);
523

524
		total_isolated += isolated;
525
		cc->nr_freepages += isolated;
526 527
		list_add_tail(&page->lru, freelist);

528 529 530
		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
			blockpfn += isolated;
			break;
531
		}
532 533 534 535
		/* Advance to the end of split page */
		blockpfn += isolated - 1;
		cursor += isolated - 1;
		continue;
536 537 538 539 540 541 542

isolate_fail:
		if (strict)
			break;
		else
			continue;

543 544
	}

545 546 547
	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

548 549 550 551 552 553 554
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

555 556 557
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

558 559 560
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

561 562 563 564 565
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
566
	if (strict && blockpfn < end_pfn)
567 568
		total_isolated = 0;

569 570
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
571
		update_pageblock_skip(cc, valid_page, total_isolated);
572

573
	cc->total_free_scanned += nr_scanned;
574
	if (total_isolated)
575
		count_compact_events(COMPACTISOLATED, total_isolated);
576 577 578
	return total_isolated;
}

579 580
/**
 * isolate_freepages_range() - isolate free pages.
581
 * @cc:        Compaction control structure.
582 583 584 585 586 587 588 589 590 591 592
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
593
unsigned long
594 595
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
596
{
597
	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
598 599
	LIST_HEAD(freelist);

600
	pfn = start_pfn;
601
	block_start_pfn = pageblock_start_pfn(pfn);
602 603
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
604
	block_end_pfn = pageblock_end_pfn(pfn);
605 606

	for (; pfn < end_pfn; pfn += isolated,
607
				block_start_pfn = block_end_pfn,
608
				block_end_pfn += pageblock_nr_pages) {
609 610
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
611 612 613

		block_end_pfn = min(block_end_pfn, end_pfn);

614 615 616 617 618 619
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
620 621
			block_start_pfn = pageblock_start_pfn(pfn);
			block_end_pfn = pageblock_end_pfn(pfn);
622 623 624
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

625 626
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
627 628
			break;

629 630
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

647
	/* __isolate_free_page() does not map the pages */
648
	split_map_pages(&freelist);
649 650 651 652 653 654 655 656 657 658 659

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

660 661 662
/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
663
	unsigned long active, inactive, isolated;
664

M
Mel Gorman 已提交
665 666 667 668 669 670
	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
671

672
	return isolated > (inactive + active) / 2;
673 674
}

675
/**
676 677
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
678
 * @cc:		Compaction control structure.
679 680 681
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
682 683
 *
 * Isolate all pages that can be migrated from the range specified by
684 685 686 687
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
688
 *
689 690 691
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
692
 */
693 694 695
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
696
{
697
	struct zone *zone = cc->zone;
698
	unsigned long nr_scanned = 0, nr_isolated = 0;
699
	struct lruvec *lruvec;
700
	unsigned long flags = 0;
701
	bool locked = false;
702
	struct page *page = NULL, *valid_page = NULL;
703
	unsigned long start_pfn = low_pfn;
704 705
	bool skip_on_failure = false;
	unsigned long next_skip_pfn = 0;
706
	bool skip_updated = false;
707 708 709 710 711 712 713

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
714
		/* async migration should just abort */
715
		if (cc->mode == MIGRATE_ASYNC)
716
			return 0;
717

718 719 720
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
721
			return 0;
722 723
	}

724
	cond_resched();
725

726 727 728 729 730
	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
		skip_on_failure = true;
		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
	}

731 732
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
733

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
		if (skip_on_failure && low_pfn >= next_skip_pfn) {
			/*
			 * We have isolated all migration candidates in the
			 * previous order-aligned block, and did not skip it due
			 * to failure. We should migrate the pages now and
			 * hopefully succeed compaction.
			 */
			if (nr_isolated)
				break;

			/*
			 * We failed to isolate in the previous order-aligned
			 * block. Set the new boundary to the end of the
			 * current block. Note we can't simply increase
			 * next_skip_pfn by 1 << order, as low_pfn might have
			 * been incremented by a higher number due to skipping
			 * a compound or a high-order buddy page in the
			 * previous loop iteration.
			 */
			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
		}

756 757 758 759 760 761
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
762
		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
763 764
								&locked, cc))
			break;
765

766
		if (!pfn_valid_within(low_pfn))
767
			goto isolate_fail;
768
		nr_scanned++;
769 770

		page = pfn_to_page(low_pfn);
771

772 773 774 775 776 777 778 779 780 781 782
		/*
		 * Check if the pageblock has already been marked skipped.
		 * Only the aligned PFN is checked as the caller isolates
		 * COMPACT_CLUSTER_MAX at a time so the second call must
		 * not falsely conclude that the block should be skipped.
		 */
		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
				low_pfn = end_pfn;
				goto isolate_abort;
			}
783
			valid_page = page;
784
		}
785

786
		/*
787 788 789 790
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
791
		 */
792 793 794 795 796 797 798 799 800 801
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
802
			continue;
803
		}
804

805
		/*
806 807 808 809 810
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
811
		 */
812
		if (PageCompound(page)) {
813
			const unsigned int order = compound_order(page);
814

815
			if (likely(order < MAX_ORDER))
816
				low_pfn += (1UL << order) - 1;
817
			goto isolate_fail;
818 819
		}

820 821 822 823 824 825 826 827 828 829 830 831 832
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU and non-lru movable pages.
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			/*
			 * __PageMovable can return false positive so we need
			 * to verify it under page_lock.
			 */
			if (unlikely(__PageMovable(page)) &&
					!PageIsolated(page)) {
				if (locked) {
833
					spin_unlock_irqrestore(zone_lru_lock(zone),
834 835 836 837
									flags);
					locked = false;
				}

838
				if (!isolate_movable_page(page, isolate_mode))
839 840 841
					goto isolate_success;
			}

842
			goto isolate_fail;
843
		}
844

845 846 847 848 849 850 851
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
852
			goto isolate_fail;
853

854 855 856 857 858 859 860
		/*
		 * Only allow to migrate anonymous pages in GFP_NOFS context
		 * because those do not depend on fs locks.
		 */
		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
			goto isolate_fail;

861 862
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
863
			locked = compact_lock_irqsave(zone_lru_lock(zone),
864
								&flags, cc);
865 866 867 868 869 870 871

			/* Try get exclusive access under lock */
			if (!skip_updated) {
				skip_updated = true;
				if (test_and_set_skip(cc, page, low_pfn))
					goto isolate_abort;
			}
872

873
			/* Recheck PageLRU and PageCompound under lock */
874
			if (!PageLRU(page))
875
				goto isolate_fail;
876 877 878 879 880 881 882

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
883
				low_pfn += (1UL << compound_order(page)) - 1;
884
				goto isolate_fail;
885
			}
886 887
		}

M
Mel Gorman 已提交
888
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
889

890
		/* Try isolate the page */
891
		if (__isolate_lru_page(page, isolate_mode) != 0)
892
			goto isolate_fail;
893

894
		VM_BUG_ON_PAGE(PageCompound(page), page);
895

896
		/* Successfully isolated */
897
		del_page_from_lru_list(page, lruvec, page_lru(page));
898 899
		inc_node_page_state(page,
				NR_ISOLATED_ANON + page_is_file_cache(page));
900 901

isolate_success:
902
		list_add(&page->lru, &cc->migratepages);
903
		cc->nr_migratepages++;
904
		nr_isolated++;
905

906 907
		/*
		 * Avoid isolating too much unless this block is being
908 909 910
		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
		 * or a lock is contended. For contention, isolate quickly to
		 * potentially remove one source of contention.
911
		 */
912 913
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
		    !cc->rescan && !cc->contended) {
914
			++low_pfn;
915
			break;
916
		}
917 918 919 920 921 922 923 924 925 926 927 928 929

		continue;
isolate_fail:
		if (!skip_on_failure)
			continue;

		/*
		 * We have isolated some pages, but then failed. Release them
		 * instead of migrating, as we cannot form the cc->order buddy
		 * page anyway.
		 */
		if (nr_isolated) {
			if (locked) {
930
				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
				locked = false;
			}
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			nr_isolated = 0;
		}

		if (low_pfn < next_skip_pfn) {
			low_pfn = next_skip_pfn - 1;
			/*
			 * The check near the loop beginning would have updated
			 * next_skip_pfn too, but this is a bit simpler.
			 */
			next_skip_pfn += 1UL << cc->order;
		}
946 947
	}

948 949 950 951 952 953 954
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

955
isolate_abort:
956
	if (locked)
957
		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
958

959
	/*
960 961 962 963 964 965
	 * Updated the cached scanner pfn once the pageblock has been scanned
	 * Pages will either be migrated in which case there is no point
	 * scanning in the near future or migration failed in which case the
	 * failure reason may persist. The block is marked for skipping if
	 * there were no pages isolated in the block or if the block is
	 * rescanned twice in a row.
966
	 */
967
	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
968 969 970 971
		if (valid_page && !skip_updated)
			set_pageblock_skip(valid_page);
		update_cached_migrate(cc, low_pfn);
	}
972

973 974
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
975

976
	cc->total_migrate_scanned += nr_scanned;
977
	if (nr_isolated)
978
		count_compact_events(COMPACTISOLATED, nr_isolated);
979

980 981 982
	return low_pfn;
}

983 984 985 986 987 988 989 990 991 992 993 994 995 996
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
997
	unsigned long pfn, block_start_pfn, block_end_pfn;
998 999 1000

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
1001
	block_start_pfn = pageblock_start_pfn(pfn);
1002 1003
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
1004
	block_end_pfn = pageblock_end_pfn(pfn);
1005 1006

	for (; pfn < end_pfn; pfn = block_end_pfn,
1007
				block_start_pfn = block_end_pfn,
1008 1009 1010 1011
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

1012 1013
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
1014 1015 1016 1017 1018
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

1019
		if (!pfn)
1020
			break;
1021 1022 1023

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
1024 1025 1026 1027 1028
	}

	return pfn;
}

1029 1030
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
1031

1032 1033 1034
static bool suitable_migration_source(struct compact_control *cc,
							struct page *page)
{
1035 1036
	int block_mt;

1037 1038 1039
	if (pageblock_skip_persistent(page))
		return false;

1040
	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1041 1042
		return true;

1043 1044 1045 1046 1047 1048
	block_mt = get_pageblock_migratetype(page);

	if (cc->migratetype == MIGRATE_MOVABLE)
		return is_migrate_movable(block_mt);
	else
		return block_mt == cc->migratetype;
1049 1050
}

1051
/* Returns true if the page is within a block suitable for migration to */
1052 1053
static bool suitable_migration_target(struct compact_control *cc,
							struct page *page)
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

1066 1067 1068
	if (cc->ignore_block_suitable)
		return true;

1069
	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1070
	if (is_migrate_movable(get_pageblock_migratetype(page)))
1071 1072 1073 1074 1075 1076
		return true;

	/* Otherwise skip the block */
	return false;
}

1077 1078 1079 1080 1081 1082
static inline unsigned int
freelist_scan_limit(struct compact_control *cc)
{
	return (COMPACT_CLUSTER_MAX >> cc->fast_search_fail) + 1;
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
/*
 * Used when scanning for a suitable migration target which scans freelists
 * in reverse. Reorders the list such as the unscanned pages are scanned
 * first on the next iteration of the free scanner
 */
static void
move_freelist_head(struct list_head *freelist, struct page *freepage)
{
	LIST_HEAD(sublist);

	if (!list_is_last(freelist, &freepage->lru)) {
		list_cut_before(&sublist, freelist, &freepage->lru);
		if (!list_empty(&sublist))
			list_splice_tail(&sublist, freelist);
	}
}

/*
 * Similar to move_freelist_head except used by the migration scanner
 * when scanning forward. It's possible for these list operations to
 * move against each other if they search the free list exactly in
 * lockstep.
 */
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
static void
move_freelist_tail(struct list_head *freelist, struct page *freepage)
{
	LIST_HEAD(sublist);

	if (!list_is_first(freelist, &freepage->lru)) {
		list_cut_position(&sublist, freelist, &freepage->lru);
		if (!list_empty(&sublist))
			list_splice_tail(&sublist, freelist);
	}
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
static void
fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
{
	unsigned long start_pfn, end_pfn;
	struct page *page = pfn_to_page(pfn);

	/* Do not search around if there are enough pages already */
	if (cc->nr_freepages >= cc->nr_migratepages)
		return;

	/* Minimise scanning during async compaction */
	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
		return;

	/* Pageblock boundaries */
	start_pfn = pageblock_start_pfn(pfn);
	end_pfn = min(start_pfn + pageblock_nr_pages, zone_end_pfn(cc->zone));

	/* Scan before */
	if (start_pfn != pfn) {
		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, false);
		if (cc->nr_freepages >= cc->nr_migratepages)
			return;
	}

	/* Scan after */
	start_pfn = pfn + nr_isolated;
	if (start_pfn != end_pfn)
		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, false);

	/* Skip this pageblock in the future as it's full or nearly full */
	if (cc->nr_freepages < cc->nr_migratepages)
		set_pageblock_skip(page);
}

static unsigned long
fast_isolate_freepages(struct compact_control *cc)
{
	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
	unsigned int nr_scanned = 0;
	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
	unsigned long nr_isolated = 0;
	unsigned long distance;
	struct page *page = NULL;
	bool scan_start = false;
	int order;

	/* Full compaction passes in a negative order */
	if (cc->order <= 0)
		return cc->free_pfn;

	/*
	 * If starting the scan, use a deeper search and use the highest
	 * PFN found if a suitable one is not found.
	 */
	if (cc->free_pfn == pageblock_start_pfn(zone_end_pfn(cc->zone) - 1)) {
		limit = pageblock_nr_pages >> 1;
		scan_start = true;
	}

	/*
	 * Preferred point is in the top quarter of the scan space but take
	 * a pfn from the top half if the search is problematic.
	 */
	distance = (cc->free_pfn - cc->migrate_pfn);
	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));

	if (WARN_ON_ONCE(min_pfn > low_pfn))
		low_pfn = min_pfn;

	for (order = cc->order - 1;
	     order >= 0 && !page;
	     order--) {
		struct free_area *area = &cc->zone->free_area[order];
		struct list_head *freelist;
		struct page *freepage;
		unsigned long flags;
		unsigned int order_scanned = 0;

		if (!area->nr_free)
			continue;

		spin_lock_irqsave(&cc->zone->lock, flags);
		freelist = &area->free_list[MIGRATE_MOVABLE];
		list_for_each_entry_reverse(freepage, freelist, lru) {
			unsigned long pfn;

			order_scanned++;
			nr_scanned++;
			pfn = page_to_pfn(freepage);

			if (pfn >= highest)
				highest = pageblock_start_pfn(pfn);

			if (pfn >= low_pfn) {
				cc->fast_search_fail = 0;
				page = freepage;
				break;
			}

			if (pfn >= min_pfn && pfn > high_pfn) {
				high_pfn = pfn;

				/* Shorten the scan if a candidate is found */
				limit >>= 1;
			}

			if (order_scanned >= limit)
				break;
		}

		/* Use a minimum pfn if a preferred one was not found */
		if (!page && high_pfn) {
			page = pfn_to_page(high_pfn);

			/* Update freepage for the list reorder below */
			freepage = page;
		}

		/* Reorder to so a future search skips recent pages */
		move_freelist_head(freelist, freepage);

		/* Isolate the page if available */
		if (page) {
			if (__isolate_free_page(page, order)) {
				set_page_private(page, order);
				nr_isolated = 1 << order;
				cc->nr_freepages += nr_isolated;
				list_add_tail(&page->lru, &cc->freepages);
				count_compact_events(COMPACTISOLATED, nr_isolated);
			} else {
				/* If isolation fails, abort the search */
				order = -1;
				page = NULL;
			}
		}

		spin_unlock_irqrestore(&cc->zone->lock, flags);

		/*
		 * Smaller scan on next order so the total scan ig related
		 * to freelist_scan_limit.
		 */
		if (order_scanned >= limit)
			limit = min(1U, limit >> 1);
	}

	if (!page) {
		cc->fast_search_fail++;
		if (scan_start) {
			/*
			 * Use the highest PFN found above min. If one was
			 * not found, be pessemistic for direct compaction
			 * and use the min mark.
			 */
			if (highest) {
				page = pfn_to_page(highest);
				cc->free_pfn = highest;
			} else {
				if (cc->direct_compaction) {
					page = pfn_to_page(min_pfn);
					cc->free_pfn = min_pfn;
				}
			}
		}
	}

	if (highest && highest > cc->zone->compact_cached_free_pfn)
		cc->zone->compact_cached_free_pfn = highest;

	cc->total_free_scanned += nr_scanned;
	if (!page)
		return cc->free_pfn;

	low_pfn = page_to_pfn(page);
	fast_isolate_around(cc, low_pfn, nr_isolated);
	return low_pfn;
}

1308
/*
1309 1310
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
1311
 */
1312
static void isolate_freepages(struct compact_control *cc)
1313
{
1314
	struct zone *zone = cc->zone;
1315
	struct page *page;
1316
	unsigned long block_start_pfn;	/* start of current pageblock */
1317
	unsigned long isolate_start_pfn; /* exact pfn we start at */
1318 1319
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1320
	struct list_head *freelist = &cc->freepages;
1321

1322 1323 1324 1325 1326
	/* Try a small search of the free lists for a candidate */
	isolate_start_pfn = fast_isolate_freepages(cc);
	if (cc->nr_freepages)
		goto splitmap;

1327 1328
	/*
	 * Initialise the free scanner. The starting point is where we last
1329
	 * successfully isolated from, zone-cached value, or the end of the
1330 1331
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
1332 1333 1334
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
1335 1336
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
1337
	 */
1338
	isolate_start_pfn = cc->free_pfn;
1339
	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1340 1341
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
1342
	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1343

1344 1345 1346 1347 1348
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
1349
	for (; block_start_pfn >= low_pfn;
1350
				block_end_pfn = block_start_pfn,
1351 1352
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
1353 1354
		/*
		 * This can iterate a massively long zone without finding any
1355
		 * suitable migration targets, so periodically check resched.
1356
		 */
1357
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1358
			cond_resched();
1359

1360 1361 1362
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
1363 1364 1365
			continue;

		/* Check the block is suitable for migration */
1366
		if (!suitable_migration_target(cc, page))
1367
			continue;
1368

1369 1370 1371 1372
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1373
		/* Found a block suitable for isolating free pages from. */
1374 1375
		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
					freelist, false);
1376

1377 1378
		/* Are enough freepages isolated? */
		if (cc->nr_freepages >= cc->nr_migratepages) {
1379 1380 1381 1382 1383
			if (isolate_start_pfn >= block_end_pfn) {
				/*
				 * Restart at previous pageblock if more
				 * freepages can be isolated next time.
				 */
1384 1385
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1386
			}
1387
			break;
1388
		} else if (isolate_start_pfn < block_end_pfn) {
1389
			/*
1390 1391
			 * If isolation failed early, do not continue
			 * needlessly.
1392
			 */
1393
			break;
1394
		}
1395 1396
	}

1397
	/*
1398 1399 1400 1401
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1402
	 */
1403
	cc->free_pfn = isolate_start_pfn;
1404 1405 1406 1407

splitmap:
	/* __isolate_free_page() does not map the pages */
	split_map_pages(freelist);
1408 1409 1410 1411 1412 1413 1414
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
1415
					unsigned long data)
1416 1417 1418 1419 1420
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	if (list_empty(&cc->freepages)) {
1421
		isolate_freepages(cc);
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1447 1448 1449 1450 1451 1452 1453
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1454 1455 1456 1457 1458 1459
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
static inline void
update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
{
	if (cc->fast_start_pfn == ULONG_MAX)
		return;

	if (!cc->fast_start_pfn)
		cc->fast_start_pfn = pfn;

	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
}

static inline unsigned long
reinit_migrate_pfn(struct compact_control *cc)
{
	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
		return cc->migrate_pfn;

	cc->migrate_pfn = cc->fast_start_pfn;
	cc->fast_start_pfn = ULONG_MAX;

	return cc->migrate_pfn;
}

/*
 * Briefly search the free lists for a migration source that already has
 * some free pages to reduce the number of pages that need migration
 * before a pageblock is free.
 */
static unsigned long fast_find_migrateblock(struct compact_control *cc)
{
	unsigned int limit = freelist_scan_limit(cc);
	unsigned int nr_scanned = 0;
	unsigned long distance;
	unsigned long pfn = cc->migrate_pfn;
	unsigned long high_pfn;
	int order;

	/* Skip hints are relied on to avoid repeats on the fast search */
	if (cc->ignore_skip_hint)
		return pfn;

	/*
	 * If the migrate_pfn is not at the start of a zone or the start
	 * of a pageblock then assume this is a continuation of a previous
	 * scan restarted due to COMPACT_CLUSTER_MAX.
	 */
	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
		return pfn;

	/*
	 * For smaller orders, just linearly scan as the number of pages
	 * to migrate should be relatively small and does not necessarily
	 * justify freeing up a large block for a small allocation.
	 */
	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return pfn;

	/*
	 * Only allow kcompactd and direct requests for movable pages to
	 * quickly clear out a MOVABLE pageblock for allocation. This
	 * reduces the risk that a large movable pageblock is freed for
	 * an unmovable/reclaimable small allocation.
	 */
	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
		return pfn;

	/*
	 * When starting the migration scanner, pick any pageblock within the
	 * first half of the search space. Otherwise try and pick a pageblock
	 * within the first eighth to reduce the chances that a migration
	 * target later becomes a source.
	 */
	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
		distance >>= 2;
	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);

	for (order = cc->order - 1;
	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
	     order--) {
		struct free_area *area = &cc->zone->free_area[order];
		struct list_head *freelist;
		unsigned long flags;
		struct page *freepage;

		if (!area->nr_free)
			continue;

		spin_lock_irqsave(&cc->zone->lock, flags);
		freelist = &area->free_list[MIGRATE_MOVABLE];
		list_for_each_entry(freepage, freelist, lru) {
			unsigned long free_pfn;

			nr_scanned++;
			free_pfn = page_to_pfn(freepage);
			if (free_pfn < high_pfn) {
				/*
				 * Avoid if skipped recently. Ideally it would
				 * move to the tail but even safe iteration of
				 * the list assumes an entry is deleted, not
				 * reordered.
				 */
				if (get_pageblock_skip(freepage)) {
					if (list_is_last(freelist, &freepage->lru))
						break;

					continue;
				}

				/* Reorder to so a future search skips recent pages */
				move_freelist_tail(freelist, freepage);

1573
				update_fast_start_pfn(cc, free_pfn);
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
				pfn = pageblock_start_pfn(free_pfn);
				cc->fast_search_fail = 0;
				set_pageblock_skip(freepage);
				break;
			}

			if (nr_scanned >= limit) {
				cc->fast_search_fail++;
				move_freelist_tail(freelist, freepage);
				break;
			}
		}
		spin_unlock_irqrestore(&cc->zone->lock, flags);
	}

	cc->total_migrate_scanned += nr_scanned;

	/*
	 * If fast scanning failed then use a cached entry for a page block
	 * that had free pages as the basis for starting a linear scan.
	 */
	if (pfn == cc->migrate_pfn)
		pfn = reinit_migrate_pfn(cc);

	return pfn;
}

1601
/*
1602 1603 1604
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1605 1606 1607 1608
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
1609 1610 1611
	unsigned long block_start_pfn;
	unsigned long block_end_pfn;
	unsigned long low_pfn;
1612 1613
	struct page *page;
	const isolate_mode_t isolate_mode =
1614
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1615
		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1616
	bool fast_find_block;
1617

1618 1619
	/*
	 * Start at where we last stopped, or beginning of the zone as
1620 1621
	 * initialized by compact_zone(). The first failure will use
	 * the lowest PFN as the starting point for linear scanning.
1622
	 */
1623
	low_pfn = fast_find_migrateblock(cc);
1624
	block_start_pfn = pageblock_start_pfn(low_pfn);
1625 1626
	if (block_start_pfn < zone->zone_start_pfn)
		block_start_pfn = zone->zone_start_pfn;
1627

1628 1629 1630 1631 1632 1633 1634
	/*
	 * fast_find_migrateblock marks a pageblock skipped so to avoid
	 * the isolation_suitable check below, check whether the fast
	 * search was successful.
	 */
	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;

1635
	/* Only scan within a pageblock boundary */
1636
	block_end_pfn = pageblock_end_pfn(low_pfn);
1637

1638 1639 1640 1641
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
1642
	for (; block_end_pfn <= cc->free_pfn;
1643
			fast_find_block = false,
1644 1645 1646
			low_pfn = block_end_pfn,
			block_start_pfn = block_end_pfn,
			block_end_pfn += pageblock_nr_pages) {
1647

1648 1649 1650
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
1651
		 * need to schedule.
1652
		 */
1653
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1654
			cond_resched();
1655

1656 1657
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
1658
		if (!page)
1659 1660
			continue;

1661 1662 1663 1664 1665 1666 1667 1668 1669
		/*
		 * If isolation recently failed, do not retry. Only check the
		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
		 * to be visited multiple times. Assume skip was checked
		 * before making it "skip" so other compaction instances do
		 * not scan the same block.
		 */
		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
		    !fast_find_block && !isolation_suitable(cc, page))
1670 1671 1672
			continue;

		/*
1673 1674 1675 1676 1677 1678
		 * For async compaction, also only scan in MOVABLE blocks
		 * without huge pages. Async compaction is optimistic to see
		 * if the minimum amount of work satisfies the allocation.
		 * The cached PFN is updated as it's possible that all
		 * remaining blocks between source and target are unsuitable
		 * and the compaction scanners fail to meet.
1679
		 */
1680 1681
		if (!suitable_migration_source(cc, page)) {
			update_cached_migrate(cc, block_end_pfn);
1682
			continue;
1683
		}
1684 1685

		/* Perform the isolation */
1686 1687
		low_pfn = isolate_migratepages_block(cc, low_pfn,
						block_end_pfn, isolate_mode);
1688

1689
		if (!low_pfn)
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

1700 1701
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1702

1703
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1704 1705
}

1706 1707 1708 1709 1710 1711 1712 1713 1714
/*
 * order == -1 is expected when compacting via
 * /proc/sys/vm/compact_memory
 */
static inline bool is_via_compact_memory(int order)
{
	return order == -1;
}

1715
static enum compact_result __compact_finished(struct compact_control *cc)
1716
{
1717
	unsigned int order;
1718
	const int migratetype = cc->migratetype;
1719
	int ret;
1720

1721
	/* Compaction run completes if the migrate and free scanner meet */
1722
	if (compact_scanners_met(cc)) {
1723
		/* Let the next compaction start anew. */
1724
		reset_cached_positions(cc->zone);
1725

1726 1727
		/*
		 * Mark that the PG_migrate_skip information should be cleared
1728
		 * by kswapd when it goes to sleep. kcompactd does not set the
1729 1730 1731
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
1732
		if (cc->direct_compaction)
1733
			cc->zone->compact_blockskip_flush = true;
1734

1735 1736 1737 1738
		if (cc->whole_zone)
			return COMPACT_COMPLETE;
		else
			return COMPACT_PARTIAL_SKIPPED;
1739
	}
1740

1741
	if (is_via_compact_memory(cc->order))
1742 1743
		return COMPACT_CONTINUE;

1744 1745 1746 1747 1748 1749 1750 1751
	/*
	 * Always finish scanning a pageblock to reduce the possibility of
	 * fallbacks in the future. This is particularly important when
	 * migration source is unmovable/reclaimable but it's not worth
	 * special casing.
	 */
	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
		return COMPACT_CONTINUE;
1752

1753
	/* Direct compactor: Is a suitable page free? */
1754
	ret = COMPACT_NO_SUITABLE_PAGE;
1755
	for (order = cc->order; order < MAX_ORDER; order++) {
1756
		struct free_area *area = &cc->zone->free_area[order];
1757
		bool can_steal;
1758 1759

		/* Job done if page is free of the right migratetype */
1760
		if (!free_area_empty(area, migratetype))
1761
			return COMPACT_SUCCESS;
1762

1763 1764 1765
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
1766
			!free_area_empty(area, MIGRATE_CMA))
1767
			return COMPACT_SUCCESS;
1768 1769 1770 1771 1772 1773
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
						true, &can_steal) != -1) {

			/* movable pages are OK in any pageblock */
			if (migratetype == MIGRATE_MOVABLE)
				return COMPACT_SUCCESS;

			/*
			 * We are stealing for a non-movable allocation. Make
			 * sure we finish compacting the current pageblock
			 * first so it is as free as possible and we won't
			 * have to steal another one soon. This only applies
			 * to sync compaction, as async compaction operates
			 * on pageblocks of the same migratetype.
			 */
			if (cc->mode == MIGRATE_ASYNC ||
					IS_ALIGNED(cc->migrate_pfn,
							pageblock_nr_pages)) {
				return COMPACT_SUCCESS;
			}

1794 1795
			ret = COMPACT_CONTINUE;
			break;
1796
		}
1797 1798
	}

1799 1800 1801 1802
	if (cc->contended || fatal_signal_pending(current))
		ret = COMPACT_CONTENDED;

	return ret;
1803 1804
}

1805
static enum compact_result compact_finished(struct compact_control *cc)
1806 1807 1808
{
	int ret;

1809 1810
	ret = __compact_finished(cc);
	trace_mm_compaction_finished(cc->zone, cc->order, ret);
1811 1812 1813 1814
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1815 1816
}

1817 1818 1819 1820
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1821
 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1822 1823
 *   COMPACT_CONTINUE - If compaction should run now
 */
1824
static enum compact_result __compaction_suitable(struct zone *zone, int order,
1825
					unsigned int alloc_flags,
1826 1827
					int classzone_idx,
					unsigned long wmark_target)
1828 1829 1830
{
	unsigned long watermark;

1831
	if (is_via_compact_memory(order))
1832 1833
		return COMPACT_CONTINUE;

1834
	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1835 1836 1837 1838 1839 1840
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
1841
		return COMPACT_SUCCESS;
1842

1843
	/*
1844
	 * Watermarks for order-0 must be met for compaction to be able to
1845 1846 1847 1848 1849 1850 1851
	 * isolate free pages for migration targets. This means that the
	 * watermark and alloc_flags have to match, or be more pessimistic than
	 * the check in __isolate_free_page(). We don't use the direct
	 * compactor's alloc_flags, as they are not relevant for freepage
	 * isolation. We however do use the direct compactor's classzone_idx to
	 * skip over zones where lowmem reserves would prevent allocation even
	 * if compaction succeeds.
1852 1853
	 * For costly orders, we require low watermark instead of min for
	 * compaction to proceed to increase its chances.
1854 1855
	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
	 * suitable migration targets
1856
	 */
1857 1858 1859
	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
				low_wmark_pages(zone) : min_wmark_pages(zone);
	watermark += compact_gap(order);
1860
	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1861
						ALLOC_CMA, wmark_target))
1862 1863
		return COMPACT_SKIPPED;

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	return COMPACT_CONTINUE;
}

enum compact_result compaction_suitable(struct zone *zone, int order,
					unsigned int alloc_flags,
					int classzone_idx)
{
	enum compact_result ret;
	int fragindex;

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
				    zone_page_state(zone, NR_FREE_PAGES));
1876 1877 1878 1879
	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1880 1881
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1882 1883 1884
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
1885 1886 1887 1888 1889 1890
	 * Only compact if a failure would be due to fragmentation. Also
	 * ignore fragindex for non-costly orders where the alternative to
	 * a successful reclaim/compaction is OOM. Fragindex and the
	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
	 * excessive compaction for costly orders, but it should not be at the
	 * expense of system stability.
1891
	 */
1892
	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1893 1894 1895 1896
		fragindex = fragmentation_index(zone, order);
		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
			ret = COMPACT_NOT_SUITABLE_ZONE;
	}
1897 1898 1899 1900 1901 1902 1903 1904

	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
		int alloc_flags)
{
	struct zone *zone;
	struct zoneref *z;

	/*
	 * Make sure at least one zone would pass __compaction_suitable if we continue
	 * retrying the reclaim.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
		enum compact_result compact_result;

		/*
		 * Do not consider all the reclaimable memory because we do not
		 * want to trash just for a single high order allocation which
		 * is even not guaranteed to appear even if __compaction_suitable
		 * is happy about the watermark check.
		 */
1926
		available = zone_reclaimable_pages(zone) / order;
1927 1928 1929
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
		compact_result = __compaction_suitable(zone, order, alloc_flags,
				ac_classzone_idx(ac), available);
1930
		if (compact_result != COMPACT_SKIPPED)
1931 1932 1933 1934 1935 1936
			return true;
	}

	return false;
}

1937
static enum compact_result compact_zone(struct compact_control *cc)
1938
{
1939
	enum compact_result ret;
1940 1941
	unsigned long start_pfn = cc->zone->zone_start_pfn;
	unsigned long end_pfn = zone_end_pfn(cc->zone);
1942
	unsigned long last_migrated_pfn;
1943
	const bool sync = cc->mode != MIGRATE_ASYNC;
1944
	bool update_cached;
1945

1946
	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1947
	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
1948
							cc->classzone_idx);
1949
	/* Compaction is likely to fail */
1950
	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1951
		return ret;
1952 1953 1954

	/* huh, compaction_suitable is returning something unexpected */
	VM_BUG_ON(ret != COMPACT_CONTINUE);
1955

1956 1957
	/*
	 * Clear pageblock skip if there were failures recently and compaction
1958
	 * is about to be retried after being deferred.
1959
	 */
1960 1961
	if (compaction_restarting(cc->zone, cc->order))
		__reset_isolation_suitable(cc->zone);
1962

1963 1964
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
1965 1966 1967
	 * information on where the scanners should start (unless we explicitly
	 * want to compact the whole zone), but check that it is initialised
	 * by ensuring the values are within zone boundaries.
1968
	 */
1969
	cc->fast_start_pfn = 0;
1970
	if (cc->whole_zone) {
1971
		cc->migrate_pfn = start_pfn;
1972 1973
		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
	} else {
1974 1975
		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
		cc->free_pfn = cc->zone->compact_cached_free_pfn;
1976 1977
		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1978
			cc->zone->compact_cached_free_pfn = cc->free_pfn;
1979 1980 1981
		}
		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
			cc->migrate_pfn = start_pfn;
1982 1983
			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1984
		}
1985

1986 1987 1988
		if (cc->migrate_pfn == start_pfn)
			cc->whole_zone = true;
	}
1989

1990
	last_migrated_pfn = 0;
1991

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	/*
	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
	 * the basis that some migrations will fail in ASYNC mode. However,
	 * if the cached PFNs match and pageblocks are skipped due to having
	 * no isolation candidates, then the sync state does not matter.
	 * Until a pageblock with isolation candidates is found, keep the
	 * cached PFNs in sync to avoid revisiting the same blocks.
	 */
	update_cached = !sync &&
		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];

2003 2004
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
2005

2006 2007
	migrate_prep_local();

2008
	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2009
		int err;
2010
		unsigned long start_pfn = cc->migrate_pfn;
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
		/*
		 * Avoid multiple rescans which can happen if a page cannot be
		 * isolated (dirty/writeback in async mode) or if the migrated
		 * pages are being allocated before the pageblock is cleared.
		 * The first rescan will capture the entire pageblock for
		 * migration. If it fails, it'll be marked skip and scanning
		 * will proceed as normal.
		 */
		cc->rescan = false;
		if (pageblock_start_pfn(last_migrated_pfn) ==
		    pageblock_start_pfn(start_pfn)) {
			cc->rescan = true;
		}

2026
		switch (isolate_migratepages(cc->zone, cc)) {
2027
		case ISOLATE_ABORT:
2028
			ret = COMPACT_CONTENDED;
2029
			putback_movable_pages(&cc->migratepages);
2030
			cc->nr_migratepages = 0;
2031
			last_migrated_pfn = 0;
2032 2033
			goto out;
		case ISOLATE_NONE:
2034 2035 2036 2037 2038
			if (update_cached) {
				cc->zone->compact_cached_migrate_pfn[1] =
					cc->zone->compact_cached_migrate_pfn[0];
			}

2039 2040 2041 2042 2043 2044
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
2045
		case ISOLATE_SUCCESS:
2046
			update_cached = false;
2047
			last_migrated_pfn = start_pfn;
2048 2049
			;
		}
2050

2051
		err = migrate_pages(&cc->migratepages, compaction_alloc,
2052
				compaction_free, (unsigned long)cc, cc->mode,
2053
				MR_COMPACTION);
2054

2055 2056
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
2057

2058 2059
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
2060
		if (err) {
2061
			putback_movable_pages(&cc->migratepages);
2062 2063 2064 2065
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
2066
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2067
				ret = COMPACT_CONTENDED;
2068 2069
				goto out;
			}
2070 2071 2072 2073 2074 2075 2076 2077 2078
			/*
			 * We failed to migrate at least one page in the current
			 * order-aligned block, so skip the rest of it.
			 */
			if (cc->direct_compaction &&
						(cc->mode == MIGRATE_ASYNC)) {
				cc->migrate_pfn = block_end_pfn(
						cc->migrate_pfn - 1, cc->order);
				/* Draining pcplists is useless in this case */
2079
				last_migrated_pfn = 0;
2080
			}
2081
		}
2082 2083 2084 2085 2086 2087 2088 2089 2090

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
2091
		if (cc->order > 0 && last_migrated_pfn) {
2092 2093
			int cpu;
			unsigned long current_block_start =
2094
				block_start_pfn(cc->migrate_pfn, cc->order);
2095

2096
			if (last_migrated_pfn < current_block_start) {
2097 2098
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
2099
				drain_local_pages(cc->zone);
2100 2101
				put_cpu();
				/* No more flushing until we migrate again */
2102
				last_migrated_pfn = 0;
2103 2104 2105
			}
		}

2106 2107
	}

2108
out:
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
2119
		free_pfn = pageblock_start_pfn(free_pfn);
2120 2121 2122 2123
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
2124 2125
		if (free_pfn > cc->zone->compact_cached_free_pfn)
			cc->zone->compact_cached_free_pfn = free_pfn;
2126
	}
2127

2128 2129 2130
	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);

2131 2132
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
2133

2134 2135
	return ret;
}
2136

2137
static enum compact_result compact_zone_order(struct zone *zone, int order,
2138
		gfp_t gfp_mask, enum compact_priority prio,
2139
		unsigned int alloc_flags, int classzone_idx)
2140
{
2141
	enum compact_result ret;
2142
	struct compact_control cc = {
2143 2144 2145 2146
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
2147
		.order = order,
2148
		.gfp_mask = gfp_mask,
2149
		.zone = zone,
2150 2151
		.mode = (prio == COMPACT_PRIO_ASYNC) ?
					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2152 2153
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
2154
		.direct_compaction = true,
2155
		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2156 2157
		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2158
	};
2159 2160
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);
2161

2162
	ret = compact_zone(&cc);
2163 2164 2165 2166 2167

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	return ret;
2168 2169
}

2170 2171
int sysctl_extfrag_threshold = 500;

2172 2173 2174
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
2175 2176 2177
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
2178
 * @prio: Determines how hard direct compaction should try to succeed
2179 2180 2181
 *
 * This is the main entry point for direct page compaction.
 */
2182
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2183
		unsigned int alloc_flags, const struct alloc_context *ac,
2184
		enum compact_priority prio)
2185 2186 2187 2188
{
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
2189
	enum compact_result rc = COMPACT_SKIPPED;
2190

2191 2192 2193 2194 2195
	/*
	 * Check if the GFP flags allow compaction - GFP_NOIO is really
	 * tricky context because the migration might require IO
	 */
	if (!may_perform_io)
2196
		return COMPACT_SKIPPED;
2197

2198
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2199

2200
	/* Compact each zone in the list */
2201 2202
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
2203
		enum compact_result status;
2204

2205 2206
		if (prio > MIN_COMPACT_PRIORITY
					&& compaction_deferred(zone, order)) {
2207
			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2208
			continue;
2209
		}
2210

2211
		status = compact_zone_order(zone, order, gfp_mask, prio,
2212
					alloc_flags, ac_classzone_idx(ac));
2213 2214
		rc = max(status, rc);

2215 2216
		/* The allocation should succeed, stop compacting */
		if (status == COMPACT_SUCCESS) {
2217 2218 2219 2220 2221 2222 2223
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
2224

2225
			break;
2226 2227
		}

2228
		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2229
					status == COMPACT_PARTIAL_SKIPPED))
2230 2231 2232 2233 2234 2235
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
2236 2237 2238 2239

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
2240
		 * case do not try further zones
2241
		 */
2242 2243 2244
		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
					|| fatal_signal_pending(current))
			break;
2245 2246 2247 2248 2249 2250
	}

	return rc;
}


2251
/* Compact all zones within a node */
2252
static void compact_node(int nid)
2253
{
2254
	pg_data_t *pgdat = NODE_DATA(nid);
2255 2256
	int zoneid;
	struct zone *zone;
2257 2258
	struct compact_control cc = {
		.order = -1,
2259 2260
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
2261 2262 2263
		.mode = MIGRATE_SYNC,
		.ignore_skip_hint = true,
		.whole_zone = true,
2264
		.gfp_mask = GFP_KERNEL,
2265 2266
	};

2267 2268 2269 2270 2271 2272 2273

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

2274 2275
		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
2276
		cc.zone = zone;
2277 2278
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);
2279

2280
		compact_zone(&cc);
2281

2282 2283
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
2284 2285 2286 2287
	}
}

/* Compact all nodes in the system */
2288
static void compact_nodes(void)
2289 2290 2291
{
	int nid;

2292 2293 2294
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

2295 2296 2297 2298 2299 2300 2301
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

2302 2303 2304 2305
/*
 * This is the entry point for compacting all nodes via
 * /proc/sys/vm/compact_memory
 */
2306 2307 2308 2309
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
2310
		compact_nodes();
2311 2312 2313

	return 0;
}
2314

2315 2316 2317 2318 2319 2320 2321 2322
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

2323
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2324
static ssize_t sysfs_compact_node(struct device *dev,
2325
			struct device_attribute *attr,
2326 2327
			const char *buf, size_t count)
{
2328 2329 2330 2331 2332 2333 2334 2335
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
2336 2337 2338

	return count;
}
2339
static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2340 2341 2342

int compaction_register_node(struct node *node)
{
2343
	return device_create_file(&node->dev, &dev_attr_compact);
2344 2345 2346 2347
}

void compaction_unregister_node(struct node *node)
{
2348
	return device_remove_file(&node->dev, &dev_attr_compact);
2349 2350
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2351

2352 2353
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
{
2354
	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2355 2356 2357 2358 2359 2360 2361 2362
}

static bool kcompactd_node_suitable(pg_data_t *pgdat)
{
	int zoneid;
	struct zone *zone;
	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;

2363
	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
		zone = &pgdat->node_zones[zoneid];

		if (!populated_zone(zone))
			continue;

		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
					classzone_idx) == COMPACT_CONTINUE)
			return true;
	}

	return false;
}

static void kcompactd_do_work(pg_data_t *pgdat)
{
	/*
	 * With no special task, compact all zones so that a page of requested
	 * order is allocatable.
	 */
	int zoneid;
	struct zone *zone;
	struct compact_control cc = {
		.order = pgdat->kcompactd_max_order,
2387 2388
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
2389 2390
		.classzone_idx = pgdat->kcompactd_classzone_idx,
		.mode = MIGRATE_SYNC_LIGHT,
2391
		.ignore_skip_hint = false,
2392
		.gfp_mask = GFP_KERNEL,
2393 2394 2395
	};
	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
							cc.classzone_idx);
2396
	count_compact_event(KCOMPACTD_WAKE);
2397

2398
	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
		int status;

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		if (compaction_deferred(zone, cc.order))
			continue;

		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
							COMPACT_CONTINUE)
			continue;

2412 2413 2414 2415 2416 2417 2418 2419
		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
		cc.total_migrate_scanned = 0;
		cc.total_free_scanned = 0;
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);

2420 2421
		if (kthread_should_stop())
			return;
2422
		status = compact_zone(&cc);
2423

2424
		if (status == COMPACT_SUCCESS) {
2425
			compaction_defer_reset(zone, cc.order, false);
2426
		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2427 2428 2429 2430 2431 2432 2433 2434
			/*
			 * Buddy pages may become stranded on pcps that could
			 * otherwise coalesce on the zone's free area for
			 * order >= cc.order.  This is ratelimited by the
			 * upcoming deferral.
			 */
			drain_all_pages(zone);

2435 2436 2437 2438 2439 2440 2441
			/*
			 * We use sync migration mode here, so we defer like
			 * sync direct compaction does.
			 */
			defer_compaction(zone, cc.order);
		}

2442 2443 2444 2445 2446
		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
				     cc.total_migrate_scanned);
		count_compact_events(KCOMPACTD_FREE_SCANNED,
				     cc.total_free_scanned);

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
	}

	/*
	 * Regardless of success, we are done until woken up next. But remember
	 * the requested order/classzone_idx in case it was higher/tighter than
	 * our current ones
	 */
	if (pgdat->kcompactd_max_order <= cc.order)
		pgdat->kcompactd_max_order = 0;
	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
}

void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
{
	if (!order)
		return;

	if (pgdat->kcompactd_max_order < order)
		pgdat->kcompactd_max_order = order;

	if (pgdat->kcompactd_classzone_idx > classzone_idx)
		pgdat->kcompactd_classzone_idx = classzone_idx;

2473 2474 2475 2476 2477
	/*
	 * Pairs with implicit barrier in wait_event_freezable()
	 * such that wakeups are not missed.
	 */
	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
		return;

	if (!kcompactd_node_suitable(pgdat))
		return;

	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
							classzone_idx);
	wake_up_interruptible(&pgdat->kcompactd_wait);
}

/*
 * The background compaction daemon, started as a kernel thread
 * from the init process.
 */
static int kcompactd(void *p)
{
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;

	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);

	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(tsk, cpumask);

	set_freezable();

	pgdat->kcompactd_max_order = 0;
	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;

	while (!kthread_should_stop()) {
2508 2509
		unsigned long pflags;

2510 2511 2512 2513
		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
		wait_event_freezable(pgdat->kcompactd_wait,
				kcompactd_work_requested(pgdat));

2514
		psi_memstall_enter(&pflags);
2515
		kcompactd_do_work(pgdat);
2516
		psi_memstall_leave(&pflags);
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	}

	return 0;
}

/*
 * This kcompactd start function will be called by init and node-hot-add.
 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
 */
int kcompactd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kcompactd)
		return 0;

	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
	if (IS_ERR(pgdat->kcompactd)) {
		pr_err("Failed to start kcompactd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kcompactd);
		pgdat->kcompactd = NULL;
	}
	return ret;
}

/*
 * Called by memory hotplug when all memory in a node is offlined. Caller must
 * hold mem_hotplug_begin/end().
 */
void kcompactd_stop(int nid)
{
	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;

	if (kcompactd) {
		kthread_stop(kcompactd);
		NODE_DATA(nid)->kcompactd = NULL;
	}
}

/*
 * It's optimal to keep kcompactd on the same CPUs as their memory, but
 * not required for correctness. So if the last cpu in a node goes
 * away, we get changed to run anywhere: as the first one comes back,
 * restore their cpu bindings.
 */
2563
static int kcompactd_cpu_online(unsigned int cpu)
2564 2565 2566
{
	int nid;

2567 2568 2569
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
2570

2571
		mask = cpumask_of_node(pgdat->node_id);
2572

2573 2574 2575
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2576
	}
2577
	return 0;
2578 2579 2580 2581 2582
}

static int __init kcompactd_init(void)
{
	int nid;
2583 2584 2585 2586 2587 2588 2589 2590 2591
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/compaction:online",
					kcompactd_cpu_online, NULL);
	if (ret < 0) {
		pr_err("kcompactd: failed to register hotplug callbacks.\n");
		return ret;
	}
2592 2593 2594 2595 2596 2597 2598

	for_each_node_state(nid, N_MEMORY)
		kcompactd_run(nid);
	return 0;
}
subsys_initcall(kcompactd_init)

2599
#endif /* CONFIG_COMPACTION */