compaction.c 22.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17 18
#include "internal.h"

19 20 21
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * compact_control is used to track pages being migrated and the free pages
 * they are being migrated to during memory compaction. The free_pfn starts
 * at the end of a zone and migrate_pfn begins at the start. Movable pages
 * are moved to the end of a zone during a compaction run and the run
 * completes when free_pfn <= migrate_pfn
 */
struct compact_control {
	struct list_head freepages;	/* List of free pages to migrate to */
	struct list_head migratepages;	/* List of pages being migrated */
	unsigned long nr_freepages;	/* Number of isolated free pages */
	unsigned long nr_migratepages;	/* Number of pages to migrate */
	unsigned long free_pfn;		/* isolate_freepages search base */
	unsigned long migrate_pfn;	/* isolate_migratepages search base */
36
	bool sync;			/* Synchronous migration */
37

38
	int order;			/* order a direct compactor needs */
39
	int migratetype;		/* MOVABLE, RECLAIMABLE etc */
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
	struct zone *zone;
};

static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

/* Isolate free pages onto a private freelist. Must hold zone->lock */
static unsigned long isolate_freepages_block(struct zone *zone,
				unsigned long blockpfn,
				struct list_head *freelist)
{
	unsigned long zone_end_pfn, end_pfn;
63
	int nr_scanned = 0, total_isolated = 0;
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
	struct page *cursor;

	/* Get the last PFN we should scan for free pages at */
	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
	end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);

	/* Find the first usable PFN in the block to initialse page cursor */
	for (; blockpfn < end_pfn; blockpfn++) {
		if (pfn_valid_within(blockpfn))
			break;
	}
	cursor = pfn_to_page(blockpfn);

	/* Isolate free pages. This assumes the block is valid */
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

		if (!pfn_valid_within(blockpfn))
			continue;
84
		nr_scanned++;
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

		if (!PageBuddy(page))
			continue;

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
		}
	}

104
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
	return total_isolated;
}

/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{

	int migratetype = get_pageblock_migratetype(page);

	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
		return false;

	/* If the page is a large free page, then allow migration */
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
		return true;

	/* If the block is MIGRATE_MOVABLE, allow migration */
	if (migratetype == MIGRATE_MOVABLE)
		return true;

	/* Otherwise skip the block */
	return false;
}

130 131 132 133 134 135 136 137 138 139
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
 */
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
{
	struct page *page;
	unsigned long high_pfn, low_pfn, pfn;
	unsigned long flags;
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;

153 154 155 156 157
	/*
	 * Initialise the free scanner. The starting point is where we last
	 * scanned from (or the end of the zone if starting). The low point
	 * is the end of the pageblock the migration scanner is using.
	 */
158 159
	pfn = cc->free_pfn;
	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
160 161 162 163 164 165 166

	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;

		if (!pfn_valid(pfn))
			continue;

		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
		if (!suitable_migration_target(page))
			continue;

195 196 197 198 199 200 201 202 203 204 205 206 207
		/*
		 * Found a block suitable for isolating free pages from. Now
		 * we disabled interrupts, double check things are ok and
		 * isolate the pages. This is to minimise the time IRQs
		 * are disabled
		 */
		isolated = 0;
		spin_lock_irqsave(&zone->lock, flags);
		if (suitable_migration_target(page)) {
			isolated = isolate_freepages_block(zone, pfn, freelist);
			nr_freepages += isolated;
		}
		spin_unlock_irqrestore(&zone->lock, flags);
208 209 210 211 212 213 214 215 216 217 218

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
		if (isolated)
			high_pfn = max(high_pfn, pfn);
	}

	/* split_free_page does not map the pages */
219
	map_pages(freelist);
220 221 222 223 224 225 226 227 228

	cc->free_pfn = high_pfn;
	cc->nr_freepages = nr_freepages;
}

/* Update the number of anon and file isolated pages in the zone */
static void acct_isolated(struct zone *zone, struct compact_control *cc)
{
	struct page *page;
229
	unsigned int count[2] = { 0, };
230

231 232
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
233

234 235
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
236 237 238 239 240
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
241
	unsigned long active, inactive, isolated;
242 243 244

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
245 246
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
247 248 249
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

250
	return isolated > (inactive + active) / 2;
251 252
}

253 254 255 256 257 258 259
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
278
 */
279 280 281
static unsigned long
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
			   unsigned long low_pfn, unsigned long end_pfn)
282
{
283
	unsigned long last_pageblock_nr = 0, pageblock_nr;
284
	unsigned long nr_scanned = 0, nr_isolated = 0;
285
	struct list_head *migratelist = &cc->migratepages;
286
	isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE;
287 288 289 290 291 292 293

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
294 295
		/* async migration should just abort */
		if (!cc->sync)
296
			return 0;
297

298 299 300
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
301
			return 0;
302 303 304
	}

	/* Time to isolate some pages for migration */
305
	cond_resched();
306 307 308
	spin_lock_irq(&zone->lru_lock);
	for (; low_pfn < end_pfn; low_pfn++) {
		struct page *page;
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
		bool locked = true;

		/* give a chance to irqs before checking need_resched() */
		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
			spin_unlock_irq(&zone->lru_lock);
			locked = false;
		}
		if (need_resched() || spin_is_contended(&zone->lru_lock)) {
			if (locked)
				spin_unlock_irq(&zone->lru_lock);
			cond_resched();
			spin_lock_irq(&zone->lru_lock);
			if (fatal_signal_pending(current))
				break;
		} else if (!locked)
			spin_lock_irq(&zone->lru_lock);

326 327 328 329 330 331 332 333 334 335 336 337 338
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

339 340
		if (!pfn_valid_within(low_pfn))
			continue;
341
		nr_scanned++;
342

343 344 345 346 347 348
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
349
		page = pfn_to_page(low_pfn);
350 351 352 353
		if (page_zone(page) != zone)
			continue;

		/* Skip if free */
354 355 356
		if (PageBuddy(page))
			continue;

357 358 359 360 361 362 363 364 365 366 367 368 369 370
		/*
		 * For async migration, also only scan in MOVABLE blocks. Async
		 * migration is optimistic to see if the minimum amount of work
		 * satisfies the allocation
		 */
		pageblock_nr = low_pfn >> pageblock_order;
		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
				get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
			low_pfn += pageblock_nr_pages;
			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
			last_pageblock_nr = pageblock_nr;
			continue;
		}

371 372 373 374 375 376 377 378 379 380 381 382 383
		if (!PageLRU(page))
			continue;

		/*
		 * PageLRU is set, and lru_lock excludes isolation,
		 * splitting and collapsing (collapsing has already
		 * happened if PageLRU is set).
		 */
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

384 385 386
		if (!cc->sync)
			mode |= ISOLATE_ASYNC_MIGRATE;

387
		/* Try isolate the page */
388
		if (__isolate_lru_page(page, mode, 0) != 0)
389 390
			continue;

391 392
		VM_BUG_ON(PageTransCompound(page));

393 394 395 396
		/* Successfully isolated */
		del_page_from_lru_list(zone, page, page_lru(page));
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
397
		nr_isolated++;
398 399

		/* Avoid isolating too much */
400 401
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
402
			break;
403
		}
404 405 406 407 408 409
	}

	acct_isolated(zone, cc);

	spin_unlock_irq(&zone->lru_lock);

410 411
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	return low_pfn;
}

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn);
	if (!low_pfn)
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

443
	return ISOLATE_SUCCESS;
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

static int compact_finished(struct zone *zone,
493
			    struct compact_control *cc)
494
{
495
	unsigned int order;
496
	unsigned long watermark;
497

498 499 500 501 502 503 504
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

	/* Compaction run completes if the migrate and free scanner meet */
	if (cc->free_pfn <= cc->migrate_pfn)
		return COMPACT_COMPLETE;

505 506 507 508
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
509 510 511
	if (cc->order == -1)
		return COMPACT_CONTINUE;

512 513 514 515 516 517 518
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

519 520 521 522 523 524 525 526 527 528 529
	/* Direct compactor: Is a suitable page free? */
	for (order = cc->order; order < MAX_ORDER; order++) {
		/* Job done if page is free of the right migratetype */
		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (order >= pageblock_order && zone->free_area[order].nr_free)
			return COMPACT_PARTIAL;
	}

530 531 532
	return COMPACT_CONTINUE;
}

533 534 535 536 537 538 539 540 541 542 543 544
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

545 546 547 548 549 550 551
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

552 553 554 555 556 557 558 559 560 561 562 563 564
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
565 566
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
567 568 569 570 571 572 573 574 575
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

576 577
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
578 579 580 581 582
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

583 584 585 586
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;

587 588 589 590 591 592 593 594 595 596 597
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

598 599 600 601 602 603 604 605 606
	/* Setup to move all movable pages to the end of the zone */
	cc->migrate_pfn = zone->zone_start_pfn;
	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
	cc->free_pfn &= ~(pageblock_nr_pages-1);

	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
607
		int err;
608

609 610 611 612 613
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
			goto out;
		case ISOLATE_NONE:
614
			continue;
615 616 617
		case ISOLATE_SUCCESS:
			;
		}
618 619

		nr_migrate = cc->nr_migratepages;
620
		err = migrate_pages(&cc->migratepages, compaction_alloc,
621
				(unsigned long)cc, false,
622
				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
623 624 625 626 627 628 629
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

		count_vm_event(COMPACTBLOCKS);
		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
		if (nr_remaining)
			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
630 631
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
632 633

		/* Release LRU pages not migrated */
634
		if (err) {
635 636 637 638 639 640
			putback_lru_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
		}

	}

641
out:
642 643 644 645 646 647
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

	return ret;
}
648

649
static unsigned long compact_zone_order(struct zone *zone,
650
				 int order, gfp_t gfp_mask,
651
				 bool sync)
652 653 654 655 656 657 658
{
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
659
		.sync = sync,
660 661 662 663 664 665 666
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

	return compact_zone(zone, &cc);
}

667 668
int sysctl_extfrag_threshold = 500;

669 670 671 672 673 674
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
675
 * @sync: Whether migration is synchronous or not
676 677 678 679
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
680 681
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
			bool sync)
682 683 684 685 686 687 688 689 690 691 692 693 694
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;

	/*
	 * Check whether it is worth even starting compaction. The order check is
	 * made because an assumption is made that the page allocator can satisfy
	 * the "cheaper" orders without taking special steps
	 */
695
	if (!order || !may_enter_fs || !may_perform_io)
696 697 698 699 700 701 702 703 704
		return rc;

	count_vm_event(COMPACTSTALL);

	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

705
		status = compact_zone_order(zone, order, gfp_mask, sync);
706 707
		rc = max(status, rc);

708 709
		/* If a normal allocation would succeed, stop compacting */
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
710 711 712 713 714 715 716
			break;
	}

	return rc;
}


717
/* Compact all zones within a node */
718
static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
719 720 721 722 723 724 725 726 727 728
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

729 730 731 732 733
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
734

735
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
736
			compact_zone(zone, cc);
737

738 739 740 741 742 743 744 745 746 747
		if (cc->order > 0) {
			int ok = zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0);
			if (ok && cc->order > zone->compact_order_failed)
				zone->compact_order_failed = cc->order + 1;
			/* Currently async compaction is never deferred. */
			else if (!ok && cc->sync)
				defer_compaction(zone, cc->order);
		}

748 749
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
750 751 752 753 754
	}

	return 0;
}

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
int compact_pgdat(pg_data_t *pgdat, int order)
{
	struct compact_control cc = {
		.order = order,
		.sync = false,
	};

	return __compact_pgdat(pgdat, &cc);
}

static int compact_node(int nid)
{
	struct compact_control cc = {
		.order = -1,
		.sync = true,
	};

772
	return __compact_pgdat(NODE_DATA(nid), &cc);
773 774
}

775 776 777 778 779
/* Compact all nodes in the system */
static int compact_nodes(void)
{
	int nid;

780 781 782
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	for_each_online_node(nid)
		compact_node(nid);

	return COMPACT_COMPLETE;
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
		return compact_nodes();

	return 0;
}
801

802 803 804 805 806 807 808 809
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

810
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
811 812
ssize_t sysfs_compact_node(struct device *dev,
			struct device_attribute *attr,
813 814
			const char *buf, size_t count)
{
815 816 817 818 819 820 821 822
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
823 824 825

	return count;
}
826
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
827 828 829

int compaction_register_node(struct node *node)
{
830
	return device_create_file(&node->dev, &dev_attr_compact);
831 832 833 834
}

void compaction_unregister_node(struct node *node)
{
835
	return device_remove_file(&node->dev, &dev_attr_compact);
836 837
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */