core.c 172.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3
 *
I
Ingo Molnar 已提交
4
 *  Core kernel scheduler code and related syscalls
L
Linus Torvalds 已提交
5 6 7
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 */
8
#include "sched.h"
L
Linus Torvalds 已提交
9

10
#include <linux/nospec.h>
11

12 13
#include <linux/kcov.h>

14
#include <asm/switch_to.h>
15
#include <asm/tlb.h>
L
Linus Torvalds 已提交
16

17
#include "../workqueue_internal.h"
18
#include "../smpboot.h"
19

20 21
#include "pelt.h"

22
#define CREATE_TRACE_POINTS
23
#include <trace/events/sched.h>
24

25
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
26

27
#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
I
Ingo Molnar 已提交
28 29
/*
 * Debugging: various feature bits
30 31 32 33
 *
 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
 * sysctl_sched_features, defined in sched.h, to allow constants propagation
 * at compile time and compiler optimization based on features default.
I
Ingo Molnar 已提交
34
 */
P
Peter Zijlstra 已提交
35 36
#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |
I
Ingo Molnar 已提交
37
const_debug unsigned int sysctl_sched_features =
38
#include "features.h"
P
Peter Zijlstra 已提交
39 40
	0;
#undef SCHED_FEAT
41
#endif
P
Peter Zijlstra 已提交
42

43 44 45 46 47 48
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
49
/*
I
Ingo Molnar 已提交
50
 * period over which we measure -rt task CPU usage in us.
P
Peter Zijlstra 已提交
51 52
 * default: 1s
 */
P
Peter Zijlstra 已提交
53
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
54

55
__read_mostly int scheduler_running;
56

P
Peter Zijlstra 已提交
57 58 59 60 61
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
62

63 64 65
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
66
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
67 68 69 70 71 72 73 74 75 76
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
77
			rq_pin_lock(rq, rf);
78 79 80 81 82 83 84 85 86 87 88 89
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
90
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
91 92 93 94 95 96
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
97
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
98 99 100 101 102 103 104 105 106 107 108 109
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
110
		 * If we observe the old CPU in task_rq_lock, the acquire of
111 112
		 * the old rq->lock will fully serialize against the stores.
		 *
I
Ingo Molnar 已提交
113
		 * If we observe the new CPU in task_rq_lock, the acquire will
114 115 116
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
117
			rq_pin_lock(rq, rf);
118 119 120
			return rq;
		}
		raw_spin_unlock(&rq->lock);
121
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
122 123 124 125 126 127

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/*
 * RQ-clock updating methods:
 */

static void update_rq_clock_task(struct rq *rq, s64 delta)
{
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_key_false((&paravirt_steal_rq_enabled))) {
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

	rq->clock_task += delta;

180
#ifdef HAVE_SCHED_AVG_IRQ
181
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
182
		update_irq_load_avg(rq, irq_delta + steal);
183 184 185 186 187 188 189 190 191 192 193 194 195
#endif
}

void update_rq_clock(struct rq *rq)
{
	s64 delta;

	lockdep_assert_held(&rq->lock);

	if (rq->clock_update_flags & RQCF_ACT_SKIP)
		return;

#ifdef CONFIG_SCHED_DEBUG
196 197
	if (sched_feat(WARN_DOUBLE_CLOCK))
		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
198 199
	rq->clock_update_flags |= RQCF_UPDATED;
#endif
200

201 202 203 204 205 206 207 208
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	if (delta < 0)
		return;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
}


P
Peter Zijlstra 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
227
	struct rq_flags rf;
P
Peter Zijlstra 已提交
228 229 230

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

231
	rq_lock(rq, &rf);
232
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
233
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
234
	rq_unlock(rq, &rf);
P
Peter Zijlstra 已提交
235 236 237 238

	return HRTIMER_NORESTART;
}

239
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
240

241
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
242 243 244
{
	struct hrtimer *timer = &rq->hrtick_timer;

245
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
246 247
}

248 249 250 251
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
252
{
253
	struct rq *rq = arg;
254
	struct rq_flags rf;
255

256
	rq_lock(rq, &rf);
P
Peter Zijlstra 已提交
257
	__hrtick_restart(rq);
258
	rq->hrtick_csd_pending = 0;
259
	rq_unlock(rq, &rf);
260 261
}

262 263 264 265 266
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
267
void hrtick_start(struct rq *rq, u64 delay)
268
{
269
	struct hrtimer *timer = &rq->hrtick_timer;
270 271 272 273 274 275 276 277 278
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
279

280
	hrtimer_set_expires(timer, time);
281 282

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
283
		__hrtick_restart(rq);
284
	} else if (!rq->hrtick_csd_pending) {
285
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
286 287
		rq->hrtick_csd_pending = 1;
	}
288 289
}

290 291 292 293 294 295
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
296
void hrtick_start(struct rq *rq, u64 delay)
297
{
W
Wanpeng Li 已提交
298 299 300 301 302
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
303 304
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
305 306
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
307

308
static void hrtick_rq_init(struct rq *rq)
P
Peter Zijlstra 已提交
309
{
310 311
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
312

313 314 315 316
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
317

318 319
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
320
}
A
Andrew Morton 已提交
321
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
322 323 324 325
static inline void hrtick_clear(struct rq *rq)
{
}

326
static inline void hrtick_rq_init(struct rq *rq)
P
Peter Zijlstra 已提交
327 328
{
}
A
Andrew Morton 已提交
329
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
330

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

349
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
350 351 352 353 354 355 356 357 358 359
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
360 361 362 363 364 365 366 367 368 369

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
370
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
371 372 373 374 375 376 377 378 379 380 381 382 383 384

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

385 386 387 388 389 390
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
391 392 393 394 395 396 397

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
398 399
#endif

400 401 402 403 404 405 406 407 408
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
409 410
	 * This cmpxchg() executes a full barrier, which pairs with the full
	 * barrier executed by the wakeup in wake_up_q().
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
I
Ingo Molnar 已提交
433
		/* Task can safely be re-inserted now: */
434 435 436 437
		node = node->next;
		task->wake_q.next = NULL;

		/*
438 439
		 * wake_up_process() executes a full barrier, which pairs with
		 * the queueing in wake_q_add() so as not to miss wakeups.
440 441 442 443 444 445
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
446
/*
447
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
448 449 450 451 452
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
453
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
454
{
455
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
456 457
	int cpu;

458
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
459

460
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
461 462
		return;

463
	cpu = cpu_of(rq);
464

465
	if (cpu == smp_processor_id()) {
466
		set_tsk_need_resched(curr);
467
		set_preempt_need_resched();
I
Ingo Molnar 已提交
468
		return;
469
	}
I
Ingo Molnar 已提交
470

471
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
472
		smp_send_reschedule(cpu);
473 474
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
475 476
}

477
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
478 479 480 481
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

482
	raw_spin_lock_irqsave(&rq->lock, flags);
483 484
	if (cpu_online(cpu) || cpu == smp_processor_id())
		resched_curr(rq);
485
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
486
}
487

488
#ifdef CONFIG_SMP
489
#ifdef CONFIG_NO_HZ_COMMON
490
/*
I
Ingo Molnar 已提交
491 492
 * In the semi idle case, use the nearest busy CPU for migrating timers
 * from an idle CPU.  This is good for power-savings.
493 494
 *
 * We don't do similar optimization for completely idle system, as
I
Ingo Molnar 已提交
495 496
 * selecting an idle CPU will add more delays to the timers than intended
 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
497
 */
498
int get_nohz_timer_target(void)
499
{
500
	int i, cpu = smp_processor_id();
501 502
	struct sched_domain *sd;

503
	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
504 505
		return cpu;

506
	rcu_read_lock();
507
	for_each_domain(cpu, sd) {
508
		for_each_cpu(i, sched_domain_span(sd)) {
509 510 511
			if (cpu == i)
				continue;

512
			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
513 514 515 516
				cpu = i;
				goto unlock;
			}
		}
517
	}
518

519 520
	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
521 522
unlock:
	rcu_read_unlock();
523 524
	return cpu;
}
I
Ingo Molnar 已提交
525

526 527 528 529 530 531 532 533 534 535
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
536
static void wake_up_idle_cpu(int cpu)
537 538 539 540 541 542
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

543
	if (set_nr_and_not_polling(rq->idle))
544
		smp_send_reschedule(cpu);
545 546
	else
		trace_sched_wake_idle_without_ipi(cpu);
547 548
}

549
static bool wake_up_full_nohz_cpu(int cpu)
550
{
551 552 553 554 555 556
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
557 558
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
559
	if (tick_nohz_full_cpu(cpu)) {
560 561
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
562
			tick_nohz_full_kick_cpu(cpu);
563 564 565 566 567 568
		return true;
	}

	return false;
}

569 570 571 572 573
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
574 575
void wake_up_nohz_cpu(int cpu)
{
576
	if (!wake_up_full_nohz_cpu(cpu))
577 578 579
		wake_up_idle_cpu(cpu);
}

580
static inline bool got_nohz_idle_kick(void)
581
{
582
	int cpu = smp_processor_id();
583

P
Peter Zijlstra 已提交
584
	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
585 586 587 588 589 590 591 592 593
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
P
Peter Zijlstra 已提交
594
	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
595
	return false;
596 597
}

598
#else /* CONFIG_NO_HZ_COMMON */
599

600
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
601
{
602
	return false;
P
Peter Zijlstra 已提交
603 604
}

605
#endif /* CONFIG_NO_HZ_COMMON */
606

607
#ifdef CONFIG_NO_HZ_FULL
608
bool sched_can_stop_tick(struct rq *rq)
609
{
610 611 612 613 614 615
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

616
	/*
617 618
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
619
	 */
620 621 622 623 624
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
625 626
	}

627 628 629 630 631 632 633 634 635 636 637 638 639 640
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
641
		return false;
642

643
	return true;
644 645
}
#endif /* CONFIG_NO_HZ_FULL */
646
#endif /* CONFIG_SMP */
647

648 649
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
650
/*
651 652 653 654
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
655
 */
656
int walk_tg_tree_from(struct task_group *from,
657
			     tg_visitor down, tg_visitor up, void *data)
658 659
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
660
	int ret;
661

662 663
	parent = from;

664
down:
P
Peter Zijlstra 已提交
665 666
	ret = (*down)(parent, data);
	if (ret)
667
		goto out;
668 669 670 671 672 673 674
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
675
	ret = (*up)(parent, data);
676 677
	if (ret || parent == from)
		goto out;
678 679 680 681 682

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
683
out:
P
Peter Zijlstra 已提交
684
	return ret;
685 686
}

687
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
688
{
689
	return 0;
P
Peter Zijlstra 已提交
690
}
691 692
#endif

693
static void set_load_weight(struct task_struct *p, bool update_load)
694
{
N
Nikhil Rao 已提交
695 696 697
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
698 699 700
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
701
	if (idle_policy(p->policy)) {
702
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
703
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
704 705
		return;
	}
706

707 708 709 710 711 712 713 714 715 716
	/*
	 * SCHED_OTHER tasks have to update their load when changing their
	 * weight
	 */
	if (update_load && p->sched_class == &fair_sched_class) {
		reweight_task(p, prio);
	} else {
		load->weight = scale_load(sched_prio_to_weight[prio]);
		load->inv_weight = sched_prio_to_wmult[prio];
	}
717 718
}

719
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
720
{
721 722 723
	if (!(flags & ENQUEUE_NOCLOCK))
		update_rq_clock(rq);

724 725
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
726

727
	p->sched_class->enqueue_task(rq, p, flags);
728 729
}

730
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
731
{
732 733 734
	if (!(flags & DEQUEUE_NOCLOCK))
		update_rq_clock(rq);

735 736
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
737

738
	p->sched_class->dequeue_task(rq, p, flags);
739 740
}

741
void activate_task(struct rq *rq, struct task_struct *p, int flags)
742 743 744 745
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

746
	enqueue_task(rq, p, flags);
747 748
}

749
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
750 751 752 753
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

754
	dequeue_task(rq, p, flags);
755 756
}

757
/*
I
Ingo Molnar 已提交
758
 * __normal_prio - return the priority that is based on the static prio
759 760 761
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
762
	return p->static_prio;
763 764
}

765 766 767 768 769 770 771
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
772
static inline int normal_prio(struct task_struct *p)
773 774 775
{
	int prio;

776 777 778
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
779 780 781 782 783 784 785 786 787 788 789 790 791
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
792
static int effective_prio(struct task_struct *p)
793 794 795 796 797 798 799 800 801 802 803 804
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
805 806 807
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
808 809
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
810
 */
811
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
812 813 814 815
{
	return cpu_curr(task_cpu(p)) == p;
}

816
/*
817 818 819 820 821
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
822
 */
823 824
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
825
				       int oldprio)
826 827 828
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
829
			prev_class->switched_from(rq, p);
830

P
Peter Zijlstra 已提交
831
		p->sched_class->switched_to(rq, p);
832
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
833
		p->sched_class->prio_changed(rq, p, oldprio);
834 835
}

836
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
837 838 839 840 841 842 843 844 845 846
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
847
				resched_curr(rq);
848 849 850 851 852 853 854 855 856
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
857
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
858
		rq_clock_skip_update(rq);
859 860
}

L
Linus Torvalds 已提交
861
#ifdef CONFIG_SMP
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888

static inline bool is_per_cpu_kthread(struct task_struct *p)
{
	if (!(p->flags & PF_KTHREAD))
		return false;

	if (p->nr_cpus_allowed != 1)
		return false;

	return true;
}

/*
 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
 * __set_cpus_allowed_ptr() and select_fallback_rq().
 */
static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
{
	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
		return false;

	if (is_per_cpu_kthread(p))
		return cpu_online(cpu);

	return cpu_active(cpu);
}

P
Peter Zijlstra 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
908 909
static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
				   struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
910 911 912 913
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
914
	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
915
	set_task_cpu(p, new_cpu);
916
	rq_unlock(rq, rf);
P
Peter Zijlstra 已提交
917 918 919

	rq = cpu_rq(new_cpu);

920
	rq_lock(rq, rf);
P
Peter Zijlstra 已提交
921 922
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
923
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
924 925 926 927 928 929 930 931 932 933 934
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
I
Ingo Molnar 已提交
935
 * Move (not current) task off this CPU, onto the destination CPU. We're doing
P
Peter Zijlstra 已提交
936 937 938 939 940 941 942
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
943 944
static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
				 struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
945 946
{
	/* Affinity changed (again). */
947
	if (!is_cpu_allowed(p, dest_cpu))
948
		return rq;
P
Peter Zijlstra 已提交
949

950
	update_rq_clock(rq);
951
	rq = move_queued_task(rq, rf, p, dest_cpu);
952 953

	return rq;
P
Peter Zijlstra 已提交
954 955 956 957 958 959 960 961 962 963
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
964 965
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
966
	struct rq_flags rf;
P
Peter Zijlstra 已提交
967 968

	/*
I
Ingo Molnar 已提交
969 970
	 * The original target CPU might have gone down and we might
	 * be on another CPU but it doesn't matter.
P
Peter Zijlstra 已提交
971 972 973 974 975 976 977 978
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
979 980

	raw_spin_lock(&p->pi_lock);
981
	rq_lock(rq, &rf);
982 983 984 985 986
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
987 988
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
989
			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
990 991 992
		else
			p->wake_cpu = arg->dest_cpu;
	}
993
	rq_unlock(rq, &rf);
994 995
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
996 997 998 999
	local_irq_enable();
	return 0;
}

1000 1001 1002 1003 1004
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1005 1006 1007 1008 1009
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1010 1011
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1012 1013 1014
	struct rq *rq = task_rq(p);
	bool queued, running;

1015
	lockdep_assert_held(&p->pi_lock);
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1026
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1027 1028 1029 1030
	}
	if (running)
		put_prev_task(rq, p);

1031
	p->sched_class->set_cpus_allowed(p, new_mask);
1032 1033

	if (queued)
1034
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1035
	if (running)
1036
		set_curr_task(rq, p);
1037 1038
}

P
Peter Zijlstra 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1048 1049
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1050
{
1051
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1052
	unsigned int dest_cpu;
1053 1054
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1055 1056
	int ret = 0;

1057
	rq = task_rq_lock(p, &rf);
1058
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1059

1060 1061 1062 1063 1064 1065 1066
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1067 1068 1069 1070 1071 1072 1073 1074 1075
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1076 1077 1078
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1079
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1080 1081 1082 1083 1084 1085
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1086 1087 1088
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
I
Ingo Molnar 已提交
1089
		 * !active we want to ensure they are strict per-CPU threads.
1090 1091 1092 1093 1094 1095
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1096 1097 1098 1099
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1100
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1101 1102 1103
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1104
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1105 1106 1107
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1108 1109 1110 1111 1112
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1113
		rq = move_queued_task(rq, &rf, p, dest_cpu);
1114
	}
P
Peter Zijlstra 已提交
1115
out:
1116
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1117 1118 1119

	return ret;
}
1120 1121 1122 1123 1124

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1125 1126
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1127
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1128
{
1129 1130 1131 1132 1133
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1134
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1135
			!p->on_rq);
1136

1137 1138 1139 1140 1141 1142 1143 1144 1145
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1146
#ifdef CONFIG_LOCKDEP
1147 1148 1149 1150 1151
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1152
	 * see task_group().
1153 1154 1155 1156
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1157 1158 1159
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1160 1161 1162 1163
	/*
	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
	 */
	WARN_ON_ONCE(!cpu_online(new_cpu));
1164 1165
#endif

1166
	trace_sched_migrate_task(p, new_cpu);
1167

1168
	if (task_cpu(p) != new_cpu) {
1169
		if (p->sched_class->migrate_task_rq)
1170
			p->sched_class->migrate_task_rq(p);
1171
		p->se.nr_migrations++;
1172
		rseq_migrate(p);
1173
		perf_event_task_migrate(p);
1174
	}
I
Ingo Molnar 已提交
1175 1176

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1177 1178
}

1179
#ifdef CONFIG_NUMA_BALANCING
1180 1181
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1182
	if (task_on_rq_queued(p)) {
1183
		struct rq *src_rq, *dst_rq;
1184
		struct rq_flags srf, drf;
1185 1186 1187 1188

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1189 1190 1191
		rq_pin_lock(src_rq, &srf);
		rq_pin_lock(dst_rq, &drf);

1192
		p->on_rq = TASK_ON_RQ_MIGRATING;
1193 1194 1195
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1196
		p->on_rq = TASK_ON_RQ_QUEUED;
1197
		check_preempt_curr(dst_rq, p, 0);
1198 1199 1200 1201

		rq_unpin_lock(dst_rq, &drf);
		rq_unpin_lock(src_rq, &srf);

1202 1203 1204 1205
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
I
Ingo Molnar 已提交
1206
		 * previous CPU our target instead of where it really is.
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1223 1224 1225
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1226 1227 1228
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1229 1230
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1231
	double_rq_lock(src_rq, dst_rq);
1232

1233 1234 1235 1236 1237 1238
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

1239
	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1240 1241
		goto unlock;

1242
	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1243 1244 1245 1246 1247 1248 1249 1250 1251
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1252 1253
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1254 1255 1256 1257 1258 1259 1260

	return ret;
}

/*
 * Cross migrate two tasks
 */
1261 1262
int migrate_swap(struct task_struct *cur, struct task_struct *p,
		int target_cpu, int curr_cpu)
1263 1264 1265 1266 1267 1268
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
1269
		.src_cpu = curr_cpu,
1270
		.dst_task = p,
1271
		.dst_cpu = target_cpu,
1272 1273 1274 1275 1276
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1277 1278 1279 1280
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1281 1282 1283
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

1284
	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1285 1286
		goto out;

1287
	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1288 1289
		goto out;

1290
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1291 1292 1293 1294 1295
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}
1296
#endif /* CONFIG_NUMA_BALANCING */
1297

L
Linus Torvalds 已提交
1298 1299 1300
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1301 1302 1303 1304 1305 1306 1307
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1308 1309 1310 1311 1312 1313
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1314
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1315
{
1316
	int running, queued;
1317
	struct rq_flags rf;
R
Roland McGrath 已提交
1318
	unsigned long ncsw;
1319
	struct rq *rq;
L
Linus Torvalds 已提交
1320

1321 1322 1323 1324 1325 1326 1327 1328
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1329

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1341 1342 1343
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1344
			cpu_relax();
R
Roland McGrath 已提交
1345
		}
1346

1347 1348 1349 1350 1351
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1352
		rq = task_rq_lock(p, &rf);
1353
		trace_sched_wait_task(p);
1354
		running = task_running(rq, p);
1355
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1356
		ncsw = 0;
1357
		if (!match_state || p->state == match_state)
1358
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1359
		task_rq_unlock(rq, p, &rf);
1360

R
Roland McGrath 已提交
1361 1362 1363 1364 1365 1366
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1377

1378 1379 1380 1381 1382
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1383
		 * So if it was still runnable (but just not actively
1384 1385 1386
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1387
		if (unlikely(queued)) {
T
Thomas Gleixner 已提交
1388
			ktime_t to = NSEC_PER_SEC / HZ;
1389 1390 1391

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1392 1393
			continue;
		}
1394

1395 1396 1397 1398 1399 1400 1401
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1402 1403

	return ncsw;
L
Linus Torvalds 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1413
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1414 1415 1416 1417 1418
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1419
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1429
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1430

1431
/*
1432
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1433 1434 1435 1436 1437
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
1438
 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1439
 *    see __set_cpus_allowed_ptr(). At this point the newly online
I
Ingo Molnar 已提交
1440
 *    CPU isn't yet part of the sched domains, and balancing will not
1441 1442
 *    see it.
 *
I
Ingo Molnar 已提交
1443
 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1444
 *    avoid the load balancer to place new tasks on the to be removed
I
Ingo Molnar 已提交
1445
 *    CPU. Existing tasks will remain running there and will be taken
1446 1447 1448 1449 1450 1451
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1452
 */
1453 1454
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1455 1456
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1457 1458
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1459

1460
	/*
I
Ingo Molnar 已提交
1461 1462 1463
	 * If the node that the CPU is on has been offlined, cpu_to_node()
	 * will return -1. There is no CPU on the node, and we should
	 * select the CPU on the other node.
1464 1465 1466 1467 1468 1469 1470 1471
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
1472
			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1473 1474
				return dest_cpu;
		}
1475
	}
1476

1477 1478
	for (;;) {
		/* Any allowed, online CPU? */
1479
		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1480
			if (!is_cpu_allowed(p, dest_cpu))
1481
				continue;
1482

1483 1484
			goto out;
		}
1485

1486
		/* No more Mr. Nice Guy. */
1487 1488
		switch (state) {
		case cpuset:
1489 1490 1491 1492 1493
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
I
Ingo Molnar 已提交
1494
			/* Fall-through */
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1514
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1515 1516
					task_pid_nr(p), p->comm, cpu);
		}
1517 1518 1519 1520 1521
	}

	return dest_cpu;
}

1522
/*
1523
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1524
 */
1525
static inline
1526
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1527
{
1528 1529
	lockdep_assert_held(&p->pi_lock);

1530
	if (p->nr_cpus_allowed > 1)
1531
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1532
	else
1533
		cpu = cpumask_any(&p->cpus_allowed);
1534 1535 1536 1537

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
I
Ingo Molnar 已提交
1538
	 * CPU.
1539 1540 1541 1542 1543 1544
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1545
	if (unlikely(!is_cpu_allowed(p, cpu)))
1546
		cpu = select_fallback_rq(task_cpu(p), p);
1547 1548

	return cpu;
1549
}
1550 1551 1552 1553 1554 1555

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1587 1588 1589 1590 1591 1592 1593 1594
#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1595
#endif /* CONFIG_SMP */
1596

P
Peter Zijlstra 已提交
1597
static void
1598
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1599
{
1600
	struct rq *rq;
1601

1602 1603 1604 1605
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1606

1607 1608
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1609 1610
		__schedstat_inc(rq->ttwu_local);
		__schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1611 1612 1613
	} else {
		struct sched_domain *sd;

1614
		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1615
		rcu_read_lock();
1616
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1617
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1618
				__schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1619 1620 1621
				break;
			}
		}
1622
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1623
	}
1624 1625

	if (wake_flags & WF_MIGRATED)
1626
		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1627 1628
#endif /* CONFIG_SMP */

1629 1630
	__schedstat_inc(rq->ttwu_count);
	__schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1631 1632

	if (wake_flags & WF_SYNC)
1633
		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1634 1635
}

1636
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1637
{
T
Tejun Heo 已提交
1638
	activate_task(rq, p, en_flags);
1639
	p->on_rq = TASK_ON_RQ_QUEUED;
1640

I
Ingo Molnar 已提交
1641
	/* If a worker is waking up, notify the workqueue: */
1642 1643
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1644 1645
}

1646 1647 1648
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1649
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1650
			   struct rq_flags *rf)
T
Tejun Heo 已提交
1651 1652 1653
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1654 1655
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1656
#ifdef CONFIG_SMP
1657 1658
	if (p->sched_class->task_woken) {
		/*
1659 1660
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1661
		 */
1662
		rq_unpin_lock(rq, rf);
T
Tejun Heo 已提交
1663
		p->sched_class->task_woken(rq, p);
1664
		rq_repin_lock(rq, rf);
1665
	}
T
Tejun Heo 已提交
1666

1667
	if (rq->idle_stamp) {
1668
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1669
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1670

1671 1672 1673
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1674
			rq->avg_idle = max;
1675

T
Tejun Heo 已提交
1676 1677 1678 1679 1680
		rq->idle_stamp = 0;
	}
#endif
}

1681
static void
1682
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1683
		 struct rq_flags *rf)
1684
{
1685
	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1686

1687 1688
	lockdep_assert_held(&rq->lock);

1689 1690 1691
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1692 1693

	if (wake_flags & WF_MIGRATED)
1694
		en_flags |= ENQUEUE_MIGRATED;
1695 1696
#endif

1697
	ttwu_activate(rq, p, en_flags);
1698
	ttwu_do_wakeup(rq, p, wake_flags, rf);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1709
	struct rq_flags rf;
1710 1711 1712
	struct rq *rq;
	int ret = 0;

1713
	rq = __task_rq_lock(p, &rf);
1714
	if (task_on_rq_queued(p)) {
1715 1716
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1717
		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1718 1719
		ret = 1;
	}
1720
	__task_rq_unlock(rq, &rf);
1721 1722 1723 1724

	return ret;
}

1725
#ifdef CONFIG_SMP
1726
void sched_ttwu_pending(void)
1727 1728
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1729
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1730
	struct task_struct *p, *t;
1731
	struct rq_flags rf;
1732

1733 1734 1735
	if (!llist)
		return;

1736
	rq_lock_irqsave(rq, &rf);
1737
	update_rq_clock(rq);
1738

1739 1740
	llist_for_each_entry_safe(p, t, llist, wake_entry)
		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1741

1742
	rq_unlock_irqrestore(rq, &rf);
1743 1744 1745 1746
}

void scheduler_ipi(void)
{
1747 1748 1749 1750 1751
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1752
	preempt_fold_need_resched();
1753

1754
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1771
	sched_ttwu_pending();
1772 1773 1774 1775

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1776
	if (unlikely(got_nohz_idle_kick())) {
1777
		this_rq()->idle_balance = 1;
1778
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1779
	}
1780
	irq_exit();
1781 1782
}

P
Peter Zijlstra 已提交
1783
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1784
{
1785 1786
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1787 1788
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1789 1790 1791 1792 1793 1794
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1795
}
1796

1797 1798 1799
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1800
	struct rq_flags rf;
1801

1802 1803 1804 1805
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1806 1807 1808 1809

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
1810
		rq_lock_irqsave(rq, &rf);
1811 1812
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
I
Ingo Molnar 已提交
1813
		/* Else CPU is not idle, do nothing here: */
1814
		rq_unlock_irqrestore(rq, &rf);
1815
	}
1816 1817 1818

out:
	rcu_read_unlock();
1819 1820
}

1821
bool cpus_share_cache(int this_cpu, int that_cpu)
1822 1823 1824
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1825
#endif /* CONFIG_SMP */
1826

1827
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1828 1829
{
	struct rq *rq = cpu_rq(cpu);
1830
	struct rq_flags rf;
1831

1832
#if defined(CONFIG_SMP)
1833
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
I
Ingo Molnar 已提交
1834
		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
P
Peter Zijlstra 已提交
1835
		ttwu_queue_remote(p, cpu, wake_flags);
1836 1837 1838 1839
		return;
	}
#endif

1840
	rq_lock(rq, &rf);
1841
	update_rq_clock(rq);
1842
	ttwu_do_activate(rq, p, wake_flags, &rf);
1843
	rq_unlock(rq, &rf);
T
Tejun Heo 已提交
1844 1845
}

1846 1847 1848 1849 1850 1851
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
I
Ingo Molnar 已提交
1852 1853
 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 * execution on its new CPU [c1].
1854 1855 1856 1857 1858 1859 1860 1861
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
1862
 * Release/acquire chaining guarantees that B happens after A and C after B.
I
Ingo Molnar 已提交
1863
 * Note: the CPU doing B need not be c0 or c1
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1895
 *   2) smp_cond_load_acquire(!X->on_cpu)
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1906
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
1924 1925 1926
 * However, for wakeups there is a second guarantee we must provide, namely we
 * must ensure that CONDITION=1 done by the caller can not be reordered with
 * accesses to the task state; see try_to_wake_up() and set_current_state().
1927 1928
 */

T
Tejun Heo 已提交
1929
/**
L
Linus Torvalds 已提交
1930
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1931
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1932
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1933
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1934
 *
1935
 * If (@state & @p->state) @p->state = TASK_RUNNING.
L
Linus Torvalds 已提交
1936
 *
1937 1938 1939 1940 1941
 * If the task was not queued/runnable, also place it back on a runqueue.
 *
 * Atomic against schedule() which would dequeue a task, also see
 * set_current_state().
 *
1942 1943 1944
 * This function executes a full memory barrier before accessing the task
 * state; see set_current_state().
 *
1945 1946
 * Return: %true if @p->state changes (an actual wakeup was done),
 *	   %false otherwise.
L
Linus Torvalds 已提交
1947
 */
1948 1949
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1950 1951
{
	unsigned long flags;
1952
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1953

1954 1955 1956 1957 1958 1959
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
1960
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1961
	smp_mb__after_spinlock();
P
Peter Zijlstra 已提交
1962
	if (!(p->state & state))
L
Linus Torvalds 已提交
1963 1964
		goto out;

1965 1966
	trace_sched_waking(p);

I
Ingo Molnar 已提交
1967 1968
	/* We're going to change ->state: */
	success = 1;
L
Linus Torvalds 已提交
1969 1970
	cpu = task_cpu(p);

1971 1972 1973 1974 1975
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
1976 1977 1978 1979 1980 1981 1982 1983
	 * sched_ttwu_pending()			try_to_wake_up()
	 *   STORE p->on_rq = 1			  LOAD p->state
	 *   UNLOCK rq->lock
	 *
	 * __schedule() (switch to task 'p')
	 *   LOCK rq->lock			  smp_rmb();
	 *   smp_mb__after_spinlock();
	 *   UNLOCK rq->lock
1984 1985
	 *
	 * [task p]
1986
	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
1987
	 *
1988 1989
	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
	 * __schedule().  See the comment for smp_mb__after_spinlock().
1990 1991
	 */
	smp_rmb();
1992 1993
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1994 1995

#ifdef CONFIG_SMP
1996 1997 1998 1999 2000 2001 2002
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
2003 2004 2005 2006 2007 2008 2009 2010
	 * __schedule() (switch to task 'p')	try_to_wake_up()
	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
	 *   UNLOCK rq->lock
	 *
	 * __schedule() (put 'p' to sleep)
	 *   LOCK rq->lock			  smp_rmb();
	 *   smp_mb__after_spinlock();
	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2011
	 *
2012 2013
	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
	 * __schedule().  See the comment for smp_mb__after_spinlock().
2014 2015 2016
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2017
	/*
I
Ingo Molnar 已提交
2018
	 * If the owning (remote) CPU is still in the middle of schedule() with
2019
	 * this task as prev, wait until its done referencing the task.
2020
	 *
2021
	 * Pairs with the smp_store_release() in finish_task().
2022 2023 2024
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2025
	 */
2026
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2027

2028
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2029
	p->state = TASK_WAKING;
2030

2031
	if (p->in_iowait) {
2032
		delayacct_blkio_end(p);
2033 2034 2035
		atomic_dec(&task_rq(p)->nr_iowait);
	}

2036
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2037 2038
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2039
		set_task_cpu(p, cpu);
2040
	}
2041 2042 2043 2044

#else /* CONFIG_SMP */

	if (p->in_iowait) {
2045
		delayacct_blkio_end(p);
2046 2047 2048
		atomic_dec(&task_rq(p)->nr_iowait);
	}

L
Linus Torvalds 已提交
2049 2050
#endif /* CONFIG_SMP */

2051
	ttwu_queue(p, cpu, wake_flags);
2052
stat:
2053
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2054
out:
2055
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2056 2057 2058 2059

	return success;
}

T
Tejun Heo 已提交
2060 2061 2062
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2063
 * @rf: request-queue flags for pinning
T
Tejun Heo 已提交
2064
 *
2065
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2066
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2067
 * the current task.
T
Tejun Heo 已提交
2068
 */
2069
static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
T
Tejun Heo 已提交
2070 2071 2072
{
	struct rq *rq = task_rq(p);

2073 2074 2075 2076
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2077 2078
	lockdep_assert_held(&rq->lock);

2079
	if (!raw_spin_trylock(&p->pi_lock)) {
2080 2081 2082 2083 2084 2085
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2086
		rq_unlock(rq, rf);
2087
		raw_spin_lock(&p->pi_lock);
2088
		rq_relock(rq, rf);
2089 2090
	}

T
Tejun Heo 已提交
2091
	if (!(p->state & TASK_NORMAL))
2092
		goto out;
T
Tejun Heo 已提交
2093

2094 2095
	trace_sched_waking(p);

2096 2097
	if (!task_on_rq_queued(p)) {
		if (p->in_iowait) {
2098
			delayacct_blkio_end(p);
2099 2100
			atomic_dec(&rq->nr_iowait);
		}
2101
		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2102
	}
P
Peter Zijlstra 已提交
2103

2104
	ttwu_do_wakeup(rq, p, 0, rf);
2105
	ttwu_stat(p, smp_processor_id(), 0);
2106 2107
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2108 2109
}

2110 2111 2112 2113 2114
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2115 2116 2117
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2118
 *
2119
 * This function executes a full memory barrier before accessing the task state.
2120
 */
2121
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2122
{
2123
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2124 2125 2126
}
EXPORT_SYMBOL(wake_up_process);

2127
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2128 2129 2130 2131 2132 2133 2134
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2135 2136 2137
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2138
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2139
{
P
Peter Zijlstra 已提交
2140 2141 2142
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2143 2144
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2145
	p->se.prev_sum_exec_runtime	= 0;
2146
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2147
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2148
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2149

2150 2151 2152 2153
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2154
#ifdef CONFIG_SCHEDSTATS
2155
	/* Even if schedstat is disabled, there should not be garbage */
2156
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2157
#endif
N
Nick Piggin 已提交
2158

2159
	RB_CLEAR_NODE(&p->dl.rb_node);
2160
	init_dl_task_timer(&p->dl);
2161
	init_dl_inactive_task_timer(&p->dl);
2162
	__dl_clear_params(p);
2163

P
Peter Zijlstra 已提交
2164
	INIT_LIST_HEAD(&p->rt.run_list);
2165 2166 2167 2168
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2169

2170 2171 2172
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2173

2174
	init_numa_balancing(clone_flags, p);
I
Ingo Molnar 已提交
2175 2176
}

2177 2178
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2179
#ifdef CONFIG_NUMA_BALANCING
2180

2181 2182 2183
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2184
		static_branch_enable(&sched_numa_balancing);
2185
	else
2186
		static_branch_disable(&sched_numa_balancing);
2187
}
2188 2189 2190 2191 2192 2193 2194

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2195
	int state = static_branch_likely(&sched_numa_balancing);
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2211

2212 2213
#ifdef CONFIG_SCHEDSTATS

2214
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2215
static bool __initdata __sched_schedstats = false;
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2239 2240 2241 2242 2243
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2244
	if (!strcmp(str, "enable")) {
2245
		__sched_schedstats = true;
2246 2247
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2248
		__sched_schedstats = false;
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2259 2260 2261 2262 2263
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2284 2285 2286 2287
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2288 2289 2290 2291

/*
 * fork()/clone()-time setup:
 */
2292
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2293
{
2294
	unsigned long flags;
I
Ingo Molnar 已提交
2295

2296
	__sched_fork(clone_flags, p);
2297
	/*
2298
	 * We mark the process as NEW here. This guarantees that
2299 2300 2301
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2302
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2303

2304 2305 2306 2307 2308
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2309 2310 2311 2312
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2313
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2314
			p->policy = SCHED_NORMAL;
2315
			p->static_prio = NICE_TO_PRIO(0);
2316 2317 2318 2319 2320
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
2321
		set_load_weight(p, false);
2322

2323 2324 2325 2326 2327 2328
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2329

2330
	if (dl_prio(p->prio))
2331
		return -EAGAIN;
2332
	else if (rt_prio(p->prio))
2333
		p->sched_class = &rt_sched_class;
2334
	else
H
Hiroshi Shimamoto 已提交
2335
		p->sched_class = &fair_sched_class;
2336

2337
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2338

2339 2340 2341 2342 2343 2344 2345
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2346
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2347
	/*
I
Ingo Molnar 已提交
2348
	 * We're setting the CPU for the first time, we don't migrate,
2349 2350
	 * so use __set_task_cpu().
	 */
2351
	__set_task_cpu(p, smp_processor_id());
2352 2353
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2354
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2355

2356
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2357
	if (likely(sched_info_on()))
2358
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2359
#endif
P
Peter Zijlstra 已提交
2360 2361
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2362
#endif
2363
	init_task_preempt_count(p);
2364
#ifdef CONFIG_SMP
2365
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2366
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2367
#endif
2368
	return 0;
L
Linus Torvalds 已提交
2369 2370
}

2371 2372 2373
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
2374
		return BW_UNIT;
2375 2376 2377 2378 2379 2380 2381 2382 2383

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

2384
	return div64_u64(runtime << BW_SHIFT, period);
2385 2386
}

L
Linus Torvalds 已提交
2387 2388 2389 2390 2391 2392 2393
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2394
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2395
{
2396
	struct rq_flags rf;
I
Ingo Molnar 已提交
2397
	struct rq *rq;
2398

2399
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2400
	p->state = TASK_RUNNING;
2401 2402 2403 2404
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
I
Ingo Molnar 已提交
2405
	 *  - any previously selected CPU might disappear through hotplug
2406 2407 2408
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2409
	 */
2410
	p->recent_used_cpu = task_cpu(p);
2411
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2412
#endif
2413
	rq = __task_rq_lock(p, &rf);
2414
	update_rq_clock(rq);
2415
	post_init_entity_util_avg(&p->se);
2416

2417
	activate_task(rq, p, ENQUEUE_NOCLOCK);
2418
	p->on_rq = TASK_ON_RQ_QUEUED;
2419
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2420
	check_preempt_curr(rq, p, WF_FORK);
2421
#ifdef CONFIG_SMP
2422 2423 2424 2425 2426
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2427
		rq_unpin_lock(rq, &rf);
2428
		p->sched_class->task_woken(rq, p);
2429
		rq_repin_lock(rq, &rf);
2430
	}
2431
#endif
2432
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2433 2434
}

2435 2436
#ifdef CONFIG_PREEMPT_NOTIFIERS

2437
static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2438

2439 2440
void preempt_notifier_inc(void)
{
2441
	static_branch_inc(&preempt_notifier_key);
2442 2443 2444 2445 2446
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
2447
	static_branch_dec(&preempt_notifier_key);
2448 2449 2450
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2451
/**
2452
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2453
 * @notifier: notifier struct to register
2454 2455 2456
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2457
	if (!static_branch_unlikely(&preempt_notifier_key))
2458 2459
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2460 2461 2462 2463 2464 2465
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2466
 * @notifier: notifier struct to unregister
2467
 *
2468
 * This is *not* safe to call from within a preemption notifier.
2469 2470 2471 2472 2473 2474 2475
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2476
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2477 2478 2479
{
	struct preempt_notifier *notifier;

2480
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2481 2482 2483
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2484 2485
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
2486
	if (static_branch_unlikely(&preempt_notifier_key))
2487 2488 2489
		__fire_sched_in_preempt_notifiers(curr);
}

2490
static void
2491 2492
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2493 2494 2495
{
	struct preempt_notifier *notifier;

2496
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2497 2498 2499
		notifier->ops->sched_out(notifier, next);
}

2500 2501 2502 2503
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
2504
	if (static_branch_unlikely(&preempt_notifier_key))
2505 2506 2507
		__fire_sched_out_preempt_notifiers(curr, next);
}

2508
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2509

2510
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2511 2512 2513
{
}

2514
static inline void
2515 2516 2517 2518 2519
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2520
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2521

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
static inline void prepare_task(struct task_struct *next)
{
#ifdef CONFIG_SMP
	/*
	 * Claim the task as running, we do this before switching to it
	 * such that any running task will have this set.
	 */
	next->on_cpu = 1;
#endif
}

static inline void finish_task(struct task_struct *prev)
{
#ifdef CONFIG_SMP
	/*
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 *
	 * In particular, the load of prev->state in finish_task_switch() must
	 * happen before this.
	 *
	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
	 */
	smp_store_release(&prev->on_cpu, 0);
#endif
}

2550 2551
static inline void
prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2552
{
2553 2554 2555 2556 2557 2558 2559 2560
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
	rq_unpin_lock(rq, rf);
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2561 2562
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
2563
	rq->lock.owner = next;
2564
#endif
2565 2566 2567 2568
}

static inline void finish_lock_switch(struct rq *rq)
{
2569 2570 2571 2572 2573 2574 2575 2576 2577
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
	raw_spin_unlock_irq(&rq->lock);
}

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
/*
 * NOP if the arch has not defined these:
 */

#ifndef prepare_arch_switch
# define prepare_arch_switch(next)	do { } while (0)
#endif

#ifndef finish_arch_post_lock_switch
# define finish_arch_post_lock_switch()	do { } while (0)
#endif

2590 2591 2592
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2593
 * @prev: the current task that is being switched out
2594 2595 2596 2597 2598 2599 2600 2601 2602
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2603 2604 2605
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2606
{
2607
	kcov_prepare_switch(prev);
2608
	sched_info_switch(rq, prev, next);
2609
	perf_event_task_sched_out(prev, next);
2610
	rseq_preempt(prev);
2611
	fire_sched_out_preempt_notifiers(prev, next);
2612
	prepare_task(next);
2613 2614 2615
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2616 2617 2618 2619
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2620 2621 2622 2623
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2624 2625
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2626
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2627 2628
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2629 2630 2631 2632 2633
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2634
 */
2635
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2636 2637
	__releases(rq->lock)
{
2638
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2639
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2640
	long prev_state;
L
Linus Torvalds 已提交
2641

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2653 2654 2655 2656
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2657

L
Linus Torvalds 已提交
2658 2659 2660 2661
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2662
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2663 2664
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2665 2666
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
2667
	 * finish_task), otherwise a concurrent wakeup can get prev
2668 2669
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2670
	 */
O
Oleg Nesterov 已提交
2671
	prev_state = prev->state;
2672
	vtime_task_switch(prev);
2673
	perf_event_task_sched_in(prev, current);
2674 2675
	finish_task(prev);
	finish_lock_switch(rq);
2676
	finish_arch_post_lock_switch();
2677
	kcov_finish_switch(current);
S
Steven Rostedt 已提交
2678

2679
	fire_sched_in_preempt_notifiers(current);
2680
	/*
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
	 * When switching through a kernel thread, the loop in
	 * membarrier_{private,global}_expedited() may have observed that
	 * kernel thread and not issued an IPI. It is therefore possible to
	 * schedule between user->kernel->user threads without passing though
	 * switch_mm(). Membarrier requires a barrier after storing to
	 * rq->curr, before returning to userspace, so provide them here:
	 *
	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
	 *   provided by mmdrop(),
	 * - a sync_core for SYNC_CORE.
2691
	 */
2692 2693
	if (mm) {
		membarrier_mm_sync_core_before_usermode(mm);
L
Linus Torvalds 已提交
2694
		mmdrop(mm);
2695
	}
2696 2697 2698
	if (unlikely(prev_state == TASK_DEAD)) {
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);
2699

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
		 */
		kprobe_flush_task(prev);

		/* Task is done with its stack. */
		put_task_stack(prev);

		put_task_struct(prev);
2710
	}
2711

2712
	tick_nohz_task_switch();
2713
	return rq;
L
Linus Torvalds 已提交
2714 2715
}

2716 2717 2718
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2719
static void __balance_callback(struct rq *rq)
2720
{
2721 2722 2723
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2724

2725 2726 2727 2728 2729 2730 2731 2732
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2733

2734
		func(rq);
2735
	}
2736 2737 2738 2739 2740 2741 2742
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2743 2744 2745
}

#else
2746

2747
static inline void balance_callback(struct rq *rq)
2748
{
L
Linus Torvalds 已提交
2749 2750
}

2751 2752
#endif

L
Linus Torvalds 已提交
2753 2754 2755 2756
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2757
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2758 2759
	__releases(rq->lock)
{
2760
	struct rq *rq;
2761

2762 2763 2764 2765 2766 2767 2768 2769 2770
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2771
	rq = finish_task_switch(prev);
2772
	balance_callback(rq);
2773
	preempt_enable();
2774

L
Linus Torvalds 已提交
2775
	if (current->set_child_tid)
2776
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2777 2778 2779
}

/*
2780
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2781
 */
2782
static __always_inline struct rq *
2783
context_switch(struct rq *rq, struct task_struct *prev,
2784
	       struct task_struct *next, struct rq_flags *rf)
L
Linus Torvalds 已提交
2785
{
I
Ingo Molnar 已提交
2786
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2787

2788
	prepare_task_switch(rq, prev, next);
2789

I
Ingo Molnar 已提交
2790 2791
	mm = next->mm;
	oldmm = prev->active_mm;
2792 2793 2794 2795 2796
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2797
	arch_start_context_switch(prev);
2798

2799 2800 2801 2802 2803 2804 2805
	/*
	 * If mm is non-NULL, we pass through switch_mm(). If mm is
	 * NULL, we will pass through mmdrop() in finish_task_switch().
	 * Both of these contain the full memory barrier required by
	 * membarrier after storing to rq->curr, before returning to
	 * user-space.
	 */
2806
	if (!mm) {
L
Linus Torvalds 已提交
2807
		next->active_mm = oldmm;
V
Vegard Nossum 已提交
2808
		mmgrab(oldmm);
L
Linus Torvalds 已提交
2809 2810
		enter_lazy_tlb(oldmm, next);
	} else
2811
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2812

2813
	if (!prev->mm) {
L
Linus Torvalds 已提交
2814 2815 2816
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2817

2818
	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2819

2820
	prepare_lock_switch(rq, next, rf);
L
Linus Torvalds 已提交
2821 2822 2823

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2824
	barrier();
2825 2826

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2827 2828 2829
}

/*
2830
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2831 2832
 *
 * externally visible scheduler statistics: current number of runnable
2833
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2834 2835 2836 2837 2838 2839 2840 2841 2842
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2843
}
L
Linus Torvalds 已提交
2844

2845
/*
I
Ingo Molnar 已提交
2846
 * Check if only the current task is running on the CPU.
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2857 2858 2859
 */
bool single_task_running(void)
{
2860
	return raw_rq()->nr_running == 1;
2861 2862 2863
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2864
unsigned long long nr_context_switches(void)
2865
{
2866 2867
	int i;
	unsigned long long sum = 0;
2868

2869
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2870
		sum += cpu_rq(i)->nr_switches;
2871

L
Linus Torvalds 已提交
2872 2873
	return sum;
}
2874

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
/*
 * IO-wait accounting, and how its mostly bollocks (on SMP).
 *
 * The idea behind IO-wait account is to account the idle time that we could
 * have spend running if it were not for IO. That is, if we were to improve the
 * storage performance, we'd have a proportional reduction in IO-wait time.
 *
 * This all works nicely on UP, where, when a task blocks on IO, we account
 * idle time as IO-wait, because if the storage were faster, it could've been
 * running and we'd not be idle.
 *
 * This has been extended to SMP, by doing the same for each CPU. This however
 * is broken.
 *
 * Imagine for instance the case where two tasks block on one CPU, only the one
 * CPU will have IO-wait accounted, while the other has regular idle. Even
 * though, if the storage were faster, both could've ran at the same time,
 * utilising both CPUs.
 *
 * This means, that when looking globally, the current IO-wait accounting on
 * SMP is a lower bound, by reason of under accounting.
 *
 * Worse, since the numbers are provided per CPU, they are sometimes
 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 * associated with any one particular CPU, it can wake to another CPU than it
 * blocked on. This means the per CPU IO-wait number is meaningless.
 *
 * Task CPU affinities can make all that even more 'interesting'.
 */

L
Linus Torvalds 已提交
2905 2906 2907
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2908

2909
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2910
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2911

L
Linus Torvalds 已提交
2912 2913
	return sum;
}
2914

2915 2916 2917 2918 2919 2920 2921
/*
 * Consumers of these two interfaces, like for example the cpufreq menu
 * governor are using nonsensical data. Boosting frequency for a CPU that has
 * IO-wait which might not even end up running the task when it does become
 * runnable.
 */

2922
unsigned long nr_iowait_cpu(int cpu)
2923
{
2924
	struct rq *this = cpu_rq(cpu);
2925 2926
	return atomic_read(&this->nr_iowait);
}
2927

2928 2929
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2930 2931 2932
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2933 2934
}

I
Ingo Molnar 已提交
2935
#ifdef CONFIG_SMP
2936

2937
/*
P
Peter Zijlstra 已提交
2938 2939
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2940
 */
P
Peter Zijlstra 已提交
2941
void sched_exec(void)
2942
{
P
Peter Zijlstra 已提交
2943
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2944
	unsigned long flags;
2945
	int dest_cpu;
2946

2947
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2948
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2949 2950
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2951

2952
	if (likely(cpu_active(dest_cpu))) {
2953
		struct migration_arg arg = { p, dest_cpu };
2954

2955 2956
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2957 2958
		return;
	}
2959
unlock:
2960
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2961
}
I
Ingo Molnar 已提交
2962

L
Linus Torvalds 已提交
2963 2964 2965
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2966
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2967 2968

EXPORT_PER_CPU_SYMBOL(kstat);
2969
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2970

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

2988 2989 2990 2991 2992 2993 2994
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
2995
	struct rq_flags rf;
2996
	struct rq *rq;
2997
	u64 ns;
2998

2999 3000
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
3001
	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3002 3003 3004
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
I
Ingo Molnar 已提交
3005 3006
	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
	 * If we race with it entering CPU, unaccounted time is 0. This is
3007
	 * indistinguishable from the read occurring a few cycles earlier.
3008 3009
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
3010
	 */
3011
	if (!p->on_cpu || !task_on_rq_queued(p))
3012 3013 3014
		return p->se.sum_exec_runtime;
#endif

3015
	rq = task_rq_lock(p, &rf);
3016 3017 3018 3019 3020 3021
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
3022
		prefetch_curr_exec_start(p);
3023 3024 3025 3026
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3027
	task_rq_unlock(rq, p, &rf);
3028 3029 3030

	return ns;
}
3031

3032 3033 3034 3035 3036 3037 3038 3039
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3040
	struct task_struct *curr = rq->curr;
3041
	struct rq_flags rf;
3042 3043

	sched_clock_tick();
I
Ingo Molnar 已提交
3044

3045 3046
	rq_lock(rq, &rf);

3047
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3048
	curr->sched_class->task_tick(rq, curr, 0);
3049
	cpu_load_update_active(rq);
3050
	calc_global_load_tick(rq);
3051 3052

	rq_unlock(rq, &rf);
3053

3054
	perf_event_task_tick();
3055

3056
#ifdef CONFIG_SMP
3057
	rq->idle_balance = idle_cpu(cpu);
3058
	trigger_load_balance(rq);
3059
#endif
L
Linus Torvalds 已提交
3060 3061
}

3062
#ifdef CONFIG_NO_HZ_FULL
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076

struct tick_work {
	int			cpu;
	struct delayed_work	work;
};

static struct tick_work __percpu *tick_work_cpu;

static void sched_tick_remote(struct work_struct *work)
{
	struct delayed_work *dwork = to_delayed_work(work);
	struct tick_work *twork = container_of(dwork, struct tick_work, work);
	int cpu = twork->cpu;
	struct rq *rq = cpu_rq(cpu);
3077
	struct task_struct *curr;
3078
	struct rq_flags rf;
3079
	u64 delta;
3080 3081 3082 3083 3084 3085 3086 3087

	/*
	 * Handle the tick only if it appears the remote CPU is running in full
	 * dynticks mode. The check is racy by nature, but missing a tick or
	 * having one too much is no big deal because the scheduler tick updates
	 * statistics and checks timeslices in a time-independent way, regardless
	 * of when exactly it is running.
	 */
3088 3089
	if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
		goto out_requeue;
3090

3091 3092 3093 3094
	rq_lock_irq(rq, &rf);
	curr = rq->curr;
	if (is_idle_task(curr))
		goto out_unlock;
3095

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
	update_rq_clock(rq);
	delta = rq_clock_task(rq) - curr->se.exec_start;

	/*
	 * Make sure the next tick runs within a reasonable
	 * amount of time.
	 */
	WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
	curr->sched_class->task_tick(rq, curr, 0);

out_unlock:
	rq_unlock_irq(rq, &rf);
3108

3109
out_requeue:
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
	/*
	 * Run the remote tick once per second (1Hz). This arbitrary
	 * frequency is large enough to avoid overload but short enough
	 * to keep scheduler internal stats reasonably up to date.
	 */
	queue_delayed_work(system_unbound_wq, dwork, HZ);
}

static void sched_tick_start(int cpu)
{
	struct tick_work *twork;

	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
		return;

	WARN_ON_ONCE(!tick_work_cpu);

	twork = per_cpu_ptr(tick_work_cpu, cpu);
	twork->cpu = cpu;
	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
}

#ifdef CONFIG_HOTPLUG_CPU
static void sched_tick_stop(int cpu)
{
	struct tick_work *twork;

	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
		return;

	WARN_ON_ONCE(!tick_work_cpu);

	twork = per_cpu_ptr(tick_work_cpu, cpu);
	cancel_delayed_work_sync(&twork->work);
}
#endif /* CONFIG_HOTPLUG_CPU */

int __init sched_tick_offload_init(void)
{
	tick_work_cpu = alloc_percpu(struct tick_work);
	BUG_ON(!tick_work_cpu);

	return 0;
}

#else /* !CONFIG_NO_HZ_FULL */
static inline void sched_tick_start(int cpu) { }
static inline void sched_tick_stop(int cpu) { }
3159
#endif
L
Linus Torvalds 已提交
3160

3161 3162
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3177

3178
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3179
{
3180
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3181 3182 3183
	/*
	 * Underflow?
	 */
3184 3185
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3186
#endif
3187
	__preempt_count_add(val);
3188
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3189 3190 3191
	/*
	 * Spinlock count overflowing soon?
	 */
3192 3193
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3194
#endif
3195
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3196
}
3197
EXPORT_SYMBOL(preempt_count_add);
3198
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3199

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3210
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3211
{
3212
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3213 3214 3215
	/*
	 * Underflow?
	 */
3216
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3217
		return;
L
Linus Torvalds 已提交
3218 3219 3220
	/*
	 * Is the spinlock portion underflowing?
	 */
3221 3222 3223
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3224
#endif
3225

3226
	preempt_latency_stop(val);
3227
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3228
}
3229
EXPORT_SYMBOL(preempt_count_sub);
3230
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3231

3232 3233 3234
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3235 3236
#endif

3237 3238 3239 3240 3241 3242 3243 3244 3245
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
	return p->preempt_disable_ip;
#else
	return 0;
#endif
}

L
Linus Torvalds 已提交
3246
/*
I
Ingo Molnar 已提交
3247
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3248
 */
I
Ingo Molnar 已提交
3249
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3250
{
3251 3252 3253
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3254 3255 3256
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3257 3258
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3259

I
Ingo Molnar 已提交
3260
	debug_show_held_locks(prev);
3261
	print_modules();
I
Ingo Molnar 已提交
3262 3263
	if (irqs_disabled())
		print_irqtrace_events(prev);
3264 3265
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3266
		pr_err("Preemption disabled at:");
3267
		print_ip_sym(preempt_disable_ip);
3268 3269
		pr_cont("\n");
	}
3270 3271 3272
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3273
	dump_stack();
3274
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3275
}
L
Linus Torvalds 已提交
3276

I
Ingo Molnar 已提交
3277 3278 3279 3280 3281
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3282
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3283 3284
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3285
#endif
3286

3287
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3288
		__schedule_bug(prev);
3289 3290
		preempt_count_set(PREEMPT_DISABLED);
	}
3291
	rcu_sleep_check();
I
Ingo Molnar 已提交
3292

L
Linus Torvalds 已提交
3293 3294
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3295
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3296 3297 3298 3299 3300 3301
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3302
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
I
Ingo Molnar 已提交
3303
{
3304
	const struct sched_class *class;
I
Ingo Molnar 已提交
3305
	struct task_struct *p;
L
Linus Torvalds 已提交
3306 3307

	/*
3308 3309 3310 3311
	 * Optimization: we know that if all tasks are in the fair class we can
	 * call that function directly, but only if the @prev task wasn't of a
	 * higher scheduling class, because otherwise those loose the
	 * opportunity to pull in more work from other CPUs.
L
Linus Torvalds 已提交
3312
	 */
3313 3314 3315 3316
	if (likely((prev->sched_class == &idle_sched_class ||
		    prev->sched_class == &fair_sched_class) &&
		   rq->nr_running == rq->cfs.h_nr_running)) {

3317
		p = fair_sched_class.pick_next_task(rq, prev, rf);
3318 3319 3320
		if (unlikely(p == RETRY_TASK))
			goto again;

I
Ingo Molnar 已提交
3321
		/* Assumes fair_sched_class->next == idle_sched_class */
3322
		if (unlikely(!p))
3323
			p = idle_sched_class.pick_next_task(rq, prev, rf);
3324 3325

		return p;
L
Linus Torvalds 已提交
3326 3327
	}

3328
again:
3329
	for_each_class(class) {
3330
		p = class->pick_next_task(rq, prev, rf);
3331 3332 3333
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3334
			return p;
3335
		}
I
Ingo Molnar 已提交
3336
	}
3337

I
Ingo Molnar 已提交
3338 3339
	/* The idle class should always have a runnable task: */
	BUG();
I
Ingo Molnar 已提交
3340
}
L
Linus Torvalds 已提交
3341

I
Ingo Molnar 已提交
3342
/*
3343
 * __schedule() is the main scheduler function.
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3378
 *
3379
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3380
 */
3381
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3382 3383
{
	struct task_struct *prev, *next;
3384
	unsigned long *switch_count;
3385
	struct rq_flags rf;
I
Ingo Molnar 已提交
3386
	struct rq *rq;
3387
	int cpu;
I
Ingo Molnar 已提交
3388 3389 3390 3391 3392 3393

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3394

3395
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3396
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3397

3398
	local_irq_disable();
3399
	rcu_note_context_switch(preempt);
3400

3401 3402 3403 3404
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
3405 3406 3407
	 *
	 * The membarrier system call requires a full memory barrier
	 * after coming from user-space, before storing to rq->curr.
3408
	 */
3409
	rq_lock(rq, &rf);
3410
	smp_mb__after_spinlock();
L
Linus Torvalds 已提交
3411

I
Ingo Molnar 已提交
3412 3413
	/* Promote REQ to ACT */
	rq->clock_update_flags <<= 1;
3414
	update_rq_clock(rq);
3415

3416
	switch_count = &prev->nivcsw;
3417
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3418
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3419
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3420
		} else {
3421
			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3422 3423
			prev->on_rq = 0;

3424 3425 3426 3427 3428
			if (prev->in_iowait) {
				atomic_inc(&rq->nr_iowait);
				delayacct_blkio_start();
			}

T
Tejun Heo 已提交
3429
			/*
3430 3431 3432
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3433 3434 3435 3436
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3437
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3438
				if (to_wakeup)
3439
					try_to_wake_up_local(to_wakeup, &rf);
T
Tejun Heo 已提交
3440 3441
			}
		}
I
Ingo Molnar 已提交
3442
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3443 3444
	}

3445
	next = pick_next_task(rq, prev, &rf);
3446
	clear_tsk_need_resched(prev);
3447
	clear_preempt_need_resched();
L
Linus Torvalds 已提交
3448 3449 3450 3451

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
3452 3453 3454
		/*
		 * The membarrier system call requires each architecture
		 * to have a full memory barrier after updating
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
		 * rq->curr, before returning to user-space.
		 *
		 * Here are the schemes providing that barrier on the
		 * various architectures:
		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
		 * - finish_lock_switch() for weakly-ordered
		 *   architectures where spin_unlock is a full barrier,
		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
		 *   is a RELEASE barrier),
3465
		 */
L
Linus Torvalds 已提交
3466 3467
		++*switch_count;

3468
		trace_sched_switch(preempt, prev, next);
I
Ingo Molnar 已提交
3469 3470 3471

		/* Also unlocks the rq: */
		rq = context_switch(rq, prev, next, &rf);
3472
	} else {
3473
		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3474
		rq_unlock_irq(rq, &rf);
3475
	}
L
Linus Torvalds 已提交
3476

3477
	balance_callback(rq);
L
Linus Torvalds 已提交
3478
}
3479

3480 3481
void __noreturn do_task_dead(void)
{
I
Ingo Molnar 已提交
3482
	/* Causes final put_task_struct in finish_task_switch(): */
3483
	set_special_state(TASK_DEAD);
I
Ingo Molnar 已提交
3484 3485 3486 3487

	/* Tell freezer to ignore us: */
	current->flags |= PF_NOFREEZE;

3488 3489
	__schedule(false);
	BUG();
I
Ingo Molnar 已提交
3490 3491

	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3492
	for (;;)
I
Ingo Molnar 已提交
3493
		cpu_relax();
3494 3495
}

3496 3497
static inline void sched_submit_work(struct task_struct *tsk)
{
3498
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3499 3500 3501 3502 3503 3504 3505 3506 3507
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3508
asmlinkage __visible void __sched schedule(void)
3509
{
3510 3511 3512
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3513
	do {
3514
		preempt_disable();
3515
		__schedule(false);
3516
		sched_preempt_enable_no_resched();
3517
	} while (need_resched());
3518
}
L
Linus Torvalds 已提交
3519 3520
EXPORT_SYMBOL(schedule);

3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
/*
 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 * state (have scheduled out non-voluntarily) by making sure that all
 * tasks have either left the run queue or have gone into user space.
 * As idle tasks do not do either, they must not ever be preempted
 * (schedule out non-voluntarily).
 *
 * schedule_idle() is similar to schedule_preempt_disable() except that it
 * never enables preemption because it does not call sched_submit_work().
 */
void __sched schedule_idle(void)
{
	/*
	 * As this skips calling sched_submit_work(), which the idle task does
	 * regardless because that function is a nop when the task is in a
	 * TASK_RUNNING state, make sure this isn't used someplace that the
	 * current task can be in any other state. Note, idle is always in the
	 * TASK_RUNNING state.
	 */
	WARN_ON_ONCE(current->state);
	do {
		__schedule(false);
	} while (need_resched());
}

3546
#ifdef CONFIG_CONTEXT_TRACKING
3547
asmlinkage __visible void __sched schedule_user(void)
3548 3549 3550 3551 3552 3553
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3554 3555
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3556
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3557
	 * too frequently to make sense yet.
3558
	 */
3559
	enum ctx_state prev_state = exception_enter();
3560
	schedule();
3561
	exception_exit(prev_state);
3562 3563 3564
}
#endif

3565 3566 3567 3568 3569 3570 3571
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3572
	sched_preempt_enable_no_resched();
3573 3574 3575 3576
	schedule();
	preempt_disable();
}

3577
static void __sched notrace preempt_schedule_common(void)
3578 3579
{
	do {
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3593
		preempt_disable_notrace();
3594
		preempt_latency_start(1);
3595
		__schedule(true);
3596
		preempt_latency_stop(1);
3597
		preempt_enable_no_resched_notrace();
3598 3599 3600 3601 3602 3603 3604 3605

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3606 3607
#ifdef CONFIG_PREEMPT
/*
3608
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3609
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3610 3611
 * occur there and call schedule directly.
 */
3612
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3613 3614 3615
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3616
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3617
	 */
3618
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3619 3620
		return;

3621
	preempt_schedule_common();
L
Linus Torvalds 已提交
3622
}
3623
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3624
EXPORT_SYMBOL(preempt_schedule);
3625 3626

/**
3627
 * preempt_schedule_notrace - preempt_schedule called by tracing
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3640
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3641 3642 3643 3644 3645 3646 3647
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3661
		preempt_disable_notrace();
3662
		preempt_latency_start(1);
3663 3664 3665 3666 3667 3668
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3669
		__schedule(true);
3670 3671
		exception_exit(prev_ctx);

3672
		preempt_latency_stop(1);
3673
		preempt_enable_no_resched_notrace();
3674 3675
	} while (need_resched());
}
3676
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3677

3678
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3679 3680

/*
3681
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3682 3683 3684 3685
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3686
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3687
{
3688
	enum ctx_state prev_state;
3689

3690
	/* Catch callers which need to be fixed */
3691
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3692

3693 3694
	prev_state = exception_enter();

3695
	do {
3696
		preempt_disable();
3697
		local_irq_enable();
3698
		__schedule(true);
3699
		local_irq_disable();
3700
		sched_preempt_enable_no_resched();
3701
	} while (need_resched());
3702 3703

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3704 3705
}

3706
int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3707
			  void *key)
L
Linus Torvalds 已提交
3708
{
P
Peter Zijlstra 已提交
3709
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3710 3711 3712
}
EXPORT_SYMBOL(default_wake_function);

3713 3714
#ifdef CONFIG_RT_MUTEXES

3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
{
	if (pi_task)
		prio = min(prio, pi_task->prio);

	return prio;
}

static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	struct task_struct *pi_task = rt_mutex_get_top_task(p);

	return __rt_effective_prio(pi_task, prio);
}

3730 3731
/*
 * rt_mutex_setprio - set the current priority of a task
3732 3733
 * @p: task to boost
 * @pi_task: donor task
3734 3735 3736 3737
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3738 3739
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3740
 */
3741
void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3742
{
3743
	int prio, oldprio, queued, running, queue_flag =
3744
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3745
	const struct sched_class *prev_class;
3746 3747
	struct rq_flags rf;
	struct rq *rq;
3748

3749 3750 3751 3752 3753 3754 3755 3756
	/* XXX used to be waiter->prio, not waiter->task->prio */
	prio = __rt_effective_prio(pi_task, p->normal_prio);

	/*
	 * If nothing changed; bail early.
	 */
	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
		return;
3757

3758
	rq = __task_rq_lock(p, &rf);
3759
	update_rq_clock(rq);
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	/*
	 * Set under pi_lock && rq->lock, such that the value can be used under
	 * either lock.
	 *
	 * Note that there is loads of tricky to make this pointer cache work
	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
	 * ensure a task is de-boosted (pi_task is set to NULL) before the
	 * task is allowed to run again (and can exit). This ensures the pointer
	 * points to a blocked task -- which guaratees the task is present.
	 */
	p->pi_top_task = pi_task;

	/*
	 * For FIFO/RR we only need to set prio, if that matches we're done.
	 */
	if (prio == p->prio && !dl_prio(prio))
		goto out_unlock;
3777

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3796
	trace_sched_pi_setprio(p, pi_task);
3797
	oldprio = p->prio;
3798 3799 3800 3801

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3802
	prev_class = p->sched_class;
3803
	queued = task_on_rq_queued(p);
3804
	running = task_current(rq, p);
3805
	if (queued)
3806
		dequeue_task(rq, p, queue_flag);
3807
	if (running)
3808
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3809

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3820 3821
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3822
			p->dl.dl_boosted = 1;
3823
			queue_flag |= ENQUEUE_REPLENISH;
3824 3825
		} else
			p->dl.dl_boosted = 0;
3826
		p->sched_class = &dl_sched_class;
3827 3828 3829 3830
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3831
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3832
		p->sched_class = &rt_sched_class;
3833 3834 3835
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3836 3837
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3838
		p->sched_class = &fair_sched_class;
3839
	}
I
Ingo Molnar 已提交
3840

3841 3842
	p->prio = prio;

3843
	if (queued)
3844
		enqueue_task(rq, p, queue_flag);
3845
	if (running)
3846
		set_curr_task(rq, p);
3847

P
Peter Zijlstra 已提交
3848
	check_class_changed(rq, p, prev_class, oldprio);
3849
out_unlock:
I
Ingo Molnar 已提交
3850 3851
	/* Avoid rq from going away on us: */
	preempt_disable();
3852
	__task_rq_unlock(rq, &rf);
3853 3854 3855

	balance_callback(rq);
	preempt_enable();
3856
}
3857 3858 3859 3860 3861
#else
static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	return prio;
}
3862
#endif
3863

3864
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3865
{
P
Peter Zijlstra 已提交
3866 3867
	bool queued, running;
	int old_prio, delta;
3868
	struct rq_flags rf;
3869
	struct rq *rq;
L
Linus Torvalds 已提交
3870

3871
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3872 3873 3874 3875 3876
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3877
	rq = task_rq_lock(p, &rf);
3878 3879
	update_rq_clock(rq);

L
Linus Torvalds 已提交
3880 3881 3882 3883
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3884
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3885
	 */
3886
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3887 3888 3889
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3890
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3891
	running = task_current(rq, p);
3892
	if (queued)
3893
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
3894 3895
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3896 3897

	p->static_prio = NICE_TO_PRIO(nice);
3898
	set_load_weight(p, true);
3899 3900 3901
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3902

3903
	if (queued) {
3904
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
L
Linus Torvalds 已提交
3905
		/*
3906 3907
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3908
		 */
3909
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3910
			resched_curr(rq);
L
Linus Torvalds 已提交
3911
	}
P
Peter Zijlstra 已提交
3912 3913
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3914
out_unlock:
3915
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3916 3917 3918
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3919 3920 3921 3922 3923
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3924
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3925
{
I
Ingo Molnar 已提交
3926
	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3927
	int nice_rlim = nice_to_rlimit(nice);
3928

3929
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3930 3931 3932
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3933 3934 3935 3936 3937 3938 3939 3940 3941
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3942
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3943
{
3944
	long nice, retval;
L
Linus Torvalds 已提交
3945 3946 3947 3948 3949 3950

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3951
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3952
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3953

3954
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3955 3956 3957
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3972
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3973 3974 3975
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3976
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3977 3978 3979 3980 3981
{
	return p->prio - MAX_RT_PRIO;
}

/**
I
Ingo Molnar 已提交
3982
 * idle_cpu - is a given CPU idle currently?
L
Linus Torvalds 已提交
3983
 * @cpu: the processor in question.
3984 3985
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3986 3987 3988
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
4003 4004
}

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
/**
 * available_idle_cpu - is a given CPU idle for enqueuing work.
 * @cpu: the CPU in question.
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
 */
int available_idle_cpu(int cpu)
{
	if (!idle_cpu(cpu))
		return 0;

4016 4017 4018
	if (vcpu_is_preempted(cpu))
		return 0;

T
Thomas Gleixner 已提交
4019
	return 1;
L
Linus Torvalds 已提交
4020 4021 4022
}

/**
I
Ingo Molnar 已提交
4023
 * idle_task - return the idle task for a given CPU.
L
Linus Torvalds 已提交
4024
 * @cpu: the processor in question.
4025
 *
I
Ingo Molnar 已提交
4026
 * Return: The idle task for the CPU @cpu.
L
Linus Torvalds 已提交
4027
 */
4028
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4029 4030 4031 4032 4033 4034 4035
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
4036 4037
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
4038
 */
A
Alexey Dobriyan 已提交
4039
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4040
{
4041
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4042 4043
}

4044 4045 4046 4047 4048 4049
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

4050 4051
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
4052
{
4053 4054
	int policy = attr->sched_policy;

4055
	if (policy == SETPARAM_POLICY)
4056 4057
		policy = p->policy;

L
Linus Torvalds 已提交
4058
	p->policy = policy;
4059

4060 4061
	if (dl_policy(policy))
		__setparam_dl(p, attr);
4062
	else if (fair_policy(policy))
4063 4064
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

4065 4066 4067 4068 4069 4070
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
4071
	p->normal_prio = normal_prio(p);
4072
	set_load_weight(p, true);
4073
}
4074

4075 4076
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
4077
			   const struct sched_attr *attr, bool keep_boost)
4078 4079
{
	__setscheduler_params(p, attr);
4080

4081
	/*
4082 4083
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
4084
	 */
4085
	p->prio = normal_prio(p);
4086
	if (keep_boost)
4087
		p->prio = rt_effective_prio(p, p->prio);
4088

4089 4090 4091
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
4092 4093 4094
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
4095
}
4096

4097
/*
I
Ingo Molnar 已提交
4098
 * Check the target process has a UID that matches the current process's:
4099 4100 4101 4102 4103 4104 4105 4106
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4107 4108
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4109 4110 4111 4112
	rcu_read_unlock();
	return match;
}

4113 4114
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4115
				bool user, bool pi)
L
Linus Torvalds 已提交
4116
{
4117 4118
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4119
	int retval, oldprio, oldpolicy = -1, queued, running;
4120
	int new_effective_prio, policy = attr->sched_policy;
4121
	const struct sched_class *prev_class;
4122
	struct rq_flags rf;
4123
	int reset_on_fork;
4124
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4125
	struct rq *rq;
L
Linus Torvalds 已提交
4126

4127 4128
	/* The pi code expects interrupts enabled */
	BUG_ON(pi && in_interrupt());
L
Linus Torvalds 已提交
4129
recheck:
I
Ingo Molnar 已提交
4130
	/* Double check policy once rq lock held: */
4131 4132
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4133
		policy = oldpolicy = p->policy;
4134
	} else {
4135
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4136

4137
		if (!valid_policy(policy))
4138 4139 4140
			return -EINVAL;
	}

4141
	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4142 4143
		return -EINVAL;

L
Linus Torvalds 已提交
4144 4145
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4146 4147
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4148
	 */
4149
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4150
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4151
		return -EINVAL;
4152 4153
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4154 4155
		return -EINVAL;

4156 4157 4158
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4159
	if (user && !capable(CAP_SYS_NICE)) {
4160
		if (fair_policy(policy)) {
4161
			if (attr->sched_nice < task_nice(p) &&
4162
			    !can_nice(p, attr->sched_nice))
4163 4164 4165
				return -EPERM;
		}

4166
		if (rt_policy(policy)) {
4167 4168
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4169

I
Ingo Molnar 已提交
4170
			/* Can't set/change the rt policy: */
4171 4172 4173
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

I
Ingo Molnar 已提交
4174
			/* Can't increase priority: */
4175 4176
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4177 4178
				return -EPERM;
		}
4179

4180 4181 4182 4183 4184 4185 4186 4187 4188
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4189
		/*
4190 4191
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4192
		 */
4193
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4194
			if (!can_nice(p, task_nice(p)))
4195 4196
				return -EPERM;
		}
4197

I
Ingo Molnar 已提交
4198
		/* Can't change other user's priorities: */
4199
		if (!check_same_owner(p))
4200
			return -EPERM;
4201

I
Ingo Molnar 已提交
4202
		/* Normal users shall not reset the sched_reset_on_fork flag: */
4203 4204
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4205
	}
L
Linus Torvalds 已提交
4206

4207
	if (user) {
4208 4209 4210
		if (attr->sched_flags & SCHED_FLAG_SUGOV)
			return -EINVAL;

4211
		retval = security_task_setscheduler(p);
4212 4213 4214 4215
		if (retval)
			return retval;
	}

4216
	/*
I
Ingo Molnar 已提交
4217
	 * Make sure no PI-waiters arrive (or leave) while we are
4218
	 * changing the priority of the task:
4219
	 *
L
Lucas De Marchi 已提交
4220
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4221 4222
	 * runqueue lock must be held.
	 */
4223
	rq = task_rq_lock(p, &rf);
4224
	update_rq_clock(rq);
4225

4226
	/*
I
Ingo Molnar 已提交
4227
	 * Changing the policy of the stop threads its a very bad idea:
4228 4229
	 */
	if (p == rq->stop) {
4230
		task_rq_unlock(rq, p, &rf);
4231 4232 4233
		return -EINVAL;
	}

4234
	/*
4235 4236
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4237
	 */
4238
	if (unlikely(policy == p->policy)) {
4239
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4240 4241 4242
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4243
		if (dl_policy(policy) && dl_param_changed(p, attr))
4244
			goto change;
4245

4246
		p->sched_reset_on_fork = reset_on_fork;
4247
		task_rq_unlock(rq, p, &rf);
4248 4249
		return 0;
	}
4250
change:
4251

4252
	if (user) {
4253
#ifdef CONFIG_RT_GROUP_SCHED
4254 4255 4256 4257 4258
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4259 4260
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4261
			task_rq_unlock(rq, p, &rf);
4262 4263 4264
			return -EPERM;
		}
#endif
4265
#ifdef CONFIG_SMP
4266 4267
		if (dl_bandwidth_enabled() && dl_policy(policy) &&
				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4268 4269 4270 4271 4272 4273 4274
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4275 4276
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4277
				task_rq_unlock(rq, p, &rf);
4278 4279 4280 4281 4282
				return -EPERM;
			}
		}
#endif
	}
4283

I
Ingo Molnar 已提交
4284
	/* Re-check policy now with rq lock held: */
L
Linus Torvalds 已提交
4285 4286
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4287
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4288 4289
		goto recheck;
	}
4290 4291 4292 4293 4294 4295

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4296
	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4297
		task_rq_unlock(rq, p, &rf);
4298 4299 4300
		return -EBUSY;
	}

4301 4302 4303
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4304 4305 4306 4307 4308 4309 4310 4311
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
4312
		new_effective_prio = rt_effective_prio(p, newprio);
4313 4314
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4315 4316
	}

4317
	queued = task_on_rq_queued(p);
4318
	running = task_current(rq, p);
4319
	if (queued)
4320
		dequeue_task(rq, p, queue_flags);
4321
	if (running)
4322
		put_prev_task(rq, p);
4323

4324
	prev_class = p->sched_class;
4325
	__setscheduler(rq, p, attr, pi);
4326

4327
	if (queued) {
4328 4329 4330 4331
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4332 4333
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4334

4335
		enqueue_task(rq, p, queue_flags);
4336
	}
4337
	if (running)
4338
		set_curr_task(rq, p);
4339

P
Peter Zijlstra 已提交
4340
	check_class_changed(rq, p, prev_class, oldprio);
I
Ingo Molnar 已提交
4341 4342 4343

	/* Avoid rq from going away on us: */
	preempt_disable();
4344
	task_rq_unlock(rq, p, &rf);
4345

4346 4347
	if (pi)
		rt_mutex_adjust_pi(p);
4348

I
Ingo Molnar 已提交
4349
	/* Run balance callbacks after we've adjusted the PI chain: */
4350 4351
	balance_callback(rq);
	preempt_enable();
4352

L
Linus Torvalds 已提交
4353 4354
	return 0;
}
4355

4356 4357 4358 4359 4360 4361 4362 4363 4364
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4365 4366
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4367 4368 4369 4370 4371
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4372
	return __sched_setscheduler(p, &attr, check, true);
4373
}
4374 4375 4376 4377 4378 4379
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4380 4381
 * Return: 0 on success. An error code otherwise.
 *
4382 4383 4384
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4385
		       const struct sched_param *param)
4386
{
4387
	return _sched_setscheduler(p, policy, param, true);
4388
}
L
Linus Torvalds 已提交
4389 4390
EXPORT_SYMBOL_GPL(sched_setscheduler);

4391 4392
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4393
	return __sched_setscheduler(p, attr, true, true);
4394 4395 4396
}
EXPORT_SYMBOL_GPL(sched_setattr);

4397 4398 4399 4400 4401
int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, false, true);
}

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4412 4413
 *
 * Return: 0 on success. An error code otherwise.
4414 4415
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4416
			       const struct sched_param *param)
4417
{
4418
	return _sched_setscheduler(p, policy, param, false);
4419
}
4420
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4421

I
Ingo Molnar 已提交
4422 4423
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4424 4425 4426
{
	struct sched_param lparam;
	struct task_struct *p;
4427
	int retval;
L
Linus Torvalds 已提交
4428 4429 4430 4431 4432

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4433 4434 4435

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4436
	p = find_process_by_pid(pid);
4437 4438 4439
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4440

L
Linus Torvalds 已提交
4441 4442 4443
	return retval;
}

4444 4445 4446
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
I
Ingo Molnar 已提交
4447
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4448 4449 4450 4451 4452 4453 4454
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

I
Ingo Molnar 已提交
4455
	/* Zero the full structure, so that a short copy will be nice: */
4456 4457 4458 4459 4460 4461
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

I
Ingo Molnar 已提交
4462 4463
	/* Bail out on silly large: */
	if (size > PAGE_SIZE)
4464 4465
		goto err_size;

I
Ingo Molnar 已提交
4466 4467
	/* ABI compatibility quirk: */
	if (!size)
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
I
Ingo Molnar 已提交
4502
	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4503 4504
	 * to be strict and return an error on out-of-bounds values?
	 */
4505
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4506

4507
	return 0;
4508 4509 4510

err_size:
	put_user(sizeof(*attr), &uattr->size);
4511
	return -E2BIG;
4512 4513
}

L
Linus Torvalds 已提交
4514 4515 4516 4517 4518
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4519 4520
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4521
 */
I
Ingo Molnar 已提交
4522
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4523
{
4524 4525 4526
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4527 4528 4529 4530 4531 4532 4533
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4534 4535
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4536
 */
4537
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4538
{
4539
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4540 4541
}

4542 4543 4544
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4545
 * @uattr: structure containing the extended parameters.
4546
 * @flags: for future extension.
4547
 */
4548 4549
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4550 4551 4552 4553 4554
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4555
	if (!uattr || pid < 0 || flags)
4556 4557
		return -EINVAL;

4558 4559 4560
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4561

4562
	if ((int)attr.sched_policy < 0)
4563
		return -EINVAL;
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4575 4576 4577
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4578 4579 4580
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4581
 */
4582
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4583
{
4584
	struct task_struct *p;
4585
	int retval;
L
Linus Torvalds 已提交
4586 4587

	if (pid < 0)
4588
		return -EINVAL;
L
Linus Torvalds 已提交
4589 4590

	retval = -ESRCH;
4591
	rcu_read_lock();
L
Linus Torvalds 已提交
4592 4593 4594 4595
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4596 4597
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4598
	}
4599
	rcu_read_unlock();
L
Linus Torvalds 已提交
4600 4601 4602 4603
	return retval;
}

/**
4604
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4605 4606
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4607 4608 4609
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4610
 */
4611
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4612
{
4613
	struct sched_param lp = { .sched_priority = 0 };
4614
	struct task_struct *p;
4615
	int retval;
L
Linus Torvalds 已提交
4616 4617

	if (!param || pid < 0)
4618
		return -EINVAL;
L
Linus Torvalds 已提交
4619

4620
	rcu_read_lock();
L
Linus Torvalds 已提交
4621 4622 4623 4624 4625 4626 4627 4628 4629
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4630 4631
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4632
	rcu_read_unlock();
L
Linus Torvalds 已提交
4633 4634 4635 4636 4637 4638 4639 4640 4641

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4642
	rcu_read_unlock();
L
Linus Torvalds 已提交
4643 4644 4645
	return retval;
}

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4669
				return -EFBIG;
4670 4671 4672 4673 4674
		}

		attr->size = usize;
	}

4675
	ret = copy_to_user(uattr, attr, attr->size);
4676 4677 4678
	if (ret)
		return -EFAULT;

4679
	return 0;
4680 4681 4682
}

/**
4683
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4684
 * @pid: the pid in question.
J
Juri Lelli 已提交
4685
 * @uattr: structure containing the extended parameters.
4686
 * @size: sizeof(attr) for fwd/bwd comp.
4687
 * @flags: for future extension.
4688
 */
4689 4690
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4691 4692 4693 4694 4695 4696 4697 4698
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4699
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4713 4714
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4715 4716 4717
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4718 4719
		attr.sched_priority = p->rt_priority;
	else
4720
		attr.sched_nice = task_nice(p);
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4732
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4733
{
4734
	cpumask_var_t cpus_allowed, new_mask;
4735 4736
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4737

4738
	rcu_read_lock();
L
Linus Torvalds 已提交
4739 4740 4741

	p = find_process_by_pid(pid);
	if (!p) {
4742
		rcu_read_unlock();
L
Linus Torvalds 已提交
4743 4744 4745
		return -ESRCH;
	}

4746
	/* Prevent p going away */
L
Linus Torvalds 已提交
4747
	get_task_struct(p);
4748
	rcu_read_unlock();
L
Linus Torvalds 已提交
4749

4750 4751 4752 4753
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4754 4755 4756 4757 4758 4759 4760 4761
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4762
	retval = -EPERM;
E
Eric W. Biederman 已提交
4763 4764 4765 4766
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4767
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4768 4769 4770
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4771

4772
	retval = security_task_setscheduler(p);
4773
	if (retval)
4774
		goto out_free_new_mask;
4775

4776 4777 4778 4779

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4780 4781 4782 4783 4784 4785 4786
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4787 4788 4789
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4790
			retval = -EBUSY;
4791
			rcu_read_unlock();
4792
			goto out_free_new_mask;
4793
		}
4794
		rcu_read_unlock();
4795 4796
	}
#endif
P
Peter Zijlstra 已提交
4797
again:
4798
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4799

P
Paul Menage 已提交
4800
	if (!retval) {
4801 4802
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4803 4804 4805 4806 4807
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4808
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4809 4810 4811
			goto again;
		}
	}
4812
out_free_new_mask:
4813 4814 4815 4816
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4817 4818 4819 4820 4821
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4822
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4823
{
4824 4825 4826 4827 4828
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4829 4830 4831 4832
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
I
Ingo Molnar 已提交
4833
 * sys_sched_setaffinity - set the CPU affinity of a process
L
Linus Torvalds 已提交
4834 4835
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4836
 * @user_mask_ptr: user-space pointer to the new CPU mask
4837 4838
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4839
 */
4840 4841
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4842
{
4843
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4844 4845
	int retval;

4846 4847
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4848

4849 4850 4851 4852 4853
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4854 4855
}

4856
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4857
{
4858
	struct task_struct *p;
4859
	unsigned long flags;
L
Linus Torvalds 已提交
4860 4861
	int retval;

4862
	rcu_read_lock();
L
Linus Torvalds 已提交
4863 4864 4865 4866 4867 4868

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4869 4870 4871 4872
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4873
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4874
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4875
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4876 4877

out_unlock:
4878
	rcu_read_unlock();
L
Linus Torvalds 已提交
4879

4880
	return retval;
L
Linus Torvalds 已提交
4881 4882 4883
}

/**
I
Ingo Molnar 已提交
4884
 * sys_sched_getaffinity - get the CPU affinity of a process
L
Linus Torvalds 已提交
4885 4886
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4887
 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4888
 *
4889 4890
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4891
 */
4892 4893
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4894 4895
{
	int ret;
4896
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4897

A
Anton Blanchard 已提交
4898
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4899 4900
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4901 4902
		return -EINVAL;

4903 4904
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4905

4906 4907
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4908
		unsigned int retlen = min(len, cpumask_size());
4909 4910

		if (copy_to_user(user_mask_ptr, mask, retlen))
4911 4912
			ret = -EFAULT;
		else
4913
			ret = retlen;
4914 4915
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4916

4917
	return ret;
L
Linus Torvalds 已提交
4918 4919 4920 4921 4922
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4923 4924
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4925 4926
 *
 * Return: 0.
L
Linus Torvalds 已提交
4927
 */
4928
static void do_sched_yield(void)
L
Linus Torvalds 已提交
4929
{
4930 4931 4932 4933 4934 4935
	struct rq_flags rf;
	struct rq *rq;

	local_irq_disable();
	rq = this_rq();
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
4936

4937
	schedstat_inc(rq->yld_count);
4938
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4939 4940 4941 4942 4943

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
4944 4945
	preempt_disable();
	rq_unlock(rq, &rf);
4946
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4947 4948

	schedule();
4949
}
L
Linus Torvalds 已提交
4950

4951 4952 4953
SYSCALL_DEFINE0(sched_yield)
{
	do_sched_yield();
L
Linus Torvalds 已提交
4954 4955 4956
	return 0;
}

4957
#ifndef CONFIG_PREEMPT
4958
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4959
{
4960
	if (should_resched(0)) {
4961
		preempt_schedule_common();
L
Linus Torvalds 已提交
4962 4963
		return 1;
	}
4964
	rcu_all_qs();
L
Linus Torvalds 已提交
4965 4966
	return 0;
}
4967
EXPORT_SYMBOL(_cond_resched);
4968
#endif
L
Linus Torvalds 已提交
4969 4970

/*
4971
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4972 4973
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4974
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4975 4976 4977
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4978
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4979
{
4980
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4981 4982
	int ret = 0;

4983 4984
	lockdep_assert_held(lock);

4985
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4986
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4987
		if (resched)
4988
			preempt_schedule_common();
N
Nick Piggin 已提交
4989 4990
		else
			cpu_relax();
J
Jan Kara 已提交
4991
		ret = 1;
L
Linus Torvalds 已提交
4992 4993
		spin_lock(lock);
	}
J
Jan Kara 已提交
4994
	return ret;
L
Linus Torvalds 已提交
4995
}
4996
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4997 4998 4999 5000

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
5001 5002 5003 5004 5005 5006 5007 5008 5009
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
I
Ingo Molnar 已提交
5010
 *	yield();
P
Peter Zijlstra 已提交
5011 5012 5013 5014 5015 5016 5017 5018
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
5019 5020 5021 5022
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
5023
	do_sched_yield();
L
Linus Torvalds 已提交
5024 5025 5026
}
EXPORT_SYMBOL(yield);

5027 5028 5029 5030
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5031 5032
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5033 5034 5035 5036
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
5037
 * Return:
5038 5039 5040
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
5041
 */
5042
int __sched yield_to(struct task_struct *p, bool preempt)
5043 5044 5045 5046
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
5047
	int yielded = 0;
5048 5049 5050 5051 5052 5053

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
5054 5055 5056 5057 5058 5059 5060 5061 5062
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

5063
	double_rq_lock(rq, p_rq);
5064
	if (task_rq(p) != p_rq) {
5065 5066 5067 5068 5069
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
5070
		goto out_unlock;
5071 5072

	if (curr->sched_class != p->sched_class)
5073
		goto out_unlock;
5074 5075

	if (task_running(p_rq, p) || p->state)
5076
		goto out_unlock;
5077 5078

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5079
	if (yielded) {
5080
		schedstat_inc(rq->yld_count);
5081 5082 5083 5084 5085
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
5086
			resched_curr(p_rq);
5087
	}
5088

5089
out_unlock:
5090
	double_rq_unlock(rq, p_rq);
5091
out_irq:
5092 5093
	local_irq_restore(flags);

5094
	if (yielded > 0)
5095 5096 5097 5098 5099 5100
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
int io_schedule_prepare(void)
{
	int old_iowait = current->in_iowait;

	current->in_iowait = 1;
	blk_schedule_flush_plug(current);

	return old_iowait;
}

void io_schedule_finish(int token)
{
	current->in_iowait = token;
}

L
Linus Torvalds 已提交
5116
/*
I
Ingo Molnar 已提交
5117
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5118 5119 5120 5121
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5122
	int token;
L
Linus Torvalds 已提交
5123 5124
	long ret;

5125
	token = io_schedule_prepare();
L
Linus Torvalds 已提交
5126
	ret = schedule_timeout(timeout);
5127
	io_schedule_finish(token);
5128

L
Linus Torvalds 已提交
5129 5130
	return ret;
}
5131
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5132

5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
void io_schedule(void)
{
	int token;

	token = io_schedule_prepare();
	schedule();
	io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);

L
Linus Torvalds 已提交
5143 5144 5145 5146
/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5147 5148 5149
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5150
 */
5151
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5152 5153 5154 5155 5156 5157 5158 5159
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5160
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5161
	case SCHED_NORMAL:
5162
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5163
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5174 5175 5176
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5177
 */
5178
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5179 5180 5181 5182 5183 5184 5185 5186
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5187
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5188
	case SCHED_NORMAL:
5189
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5190
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5191 5192 5193 5194 5195
		ret = 0;
	}
	return ret;
}

5196
static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
L
Linus Torvalds 已提交
5197
{
5198
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5199
	unsigned int time_slice;
5200
	struct rq_flags rf;
5201
	struct rq *rq;
5202
	int retval;
L
Linus Torvalds 已提交
5203 5204

	if (pid < 0)
5205
		return -EINVAL;
L
Linus Torvalds 已提交
5206 5207

	retval = -ESRCH;
5208
	rcu_read_lock();
L
Linus Torvalds 已提交
5209 5210 5211 5212 5213 5214 5215 5216
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5217
	rq = task_rq_lock(p, &rf);
5218 5219 5220
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5221
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5222

5223
	rcu_read_unlock();
5224 5225
	jiffies_to_timespec64(time_slice, t);
	return 0;
5226

L
Linus Torvalds 已提交
5227
out_unlock:
5228
	rcu_read_unlock();
L
Linus Torvalds 已提交
5229 5230 5231
	return retval;
}

5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
 */
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
		struct timespec __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = put_timespec64(&t, interval);

	return retval;
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
		       compat_pid_t, pid,
		       struct compat_timespec __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = compat_put_timespec64(&t, interval);
	return retval;
}
#endif

5269
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5270 5271
{
	unsigned long free = 0;
5272
	int ppid;
5273

5274 5275
	if (!try_get_task_stack(p))
		return;
5276 5277 5278 5279

	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));

	if (p->state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5280
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5281
#ifdef CONFIG_DEBUG_STACK_USAGE
5282
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5283
#endif
5284
	ppid = 0;
5285
	rcu_read_lock();
5286 5287
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5288
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5289
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5290
		task_pid_nr(p), ppid,
5291
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5292

5293
	print_worker_info(KERN_INFO, p);
5294
	show_stack(p, NULL);
5295
	put_task_stack(p);
L
Linus Torvalds 已提交
5296
}
5297
EXPORT_SYMBOL_GPL(sched_show_task);
L
Linus Torvalds 已提交
5298

5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
static inline bool
state_filter_match(unsigned long state_filter, struct task_struct *p)
{
	/* no filter, everything matches */
	if (!state_filter)
		return true;

	/* filter, but doesn't match */
	if (!(p->state & state_filter))
		return false;

	/*
	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
	 * TASK_KILLABLE).
	 */
	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
		return false;

	return true;
}


I
Ingo Molnar 已提交
5321
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5322
{
5323
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5324

5325
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5326 5327
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5328
#else
P
Peter Zijlstra 已提交
5329 5330
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5331
#endif
5332
	rcu_read_lock();
5333
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5334 5335
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5336
		 * console might take a lot of time:
5337 5338 5339
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5340 5341
		 */
		touch_nmi_watchdog();
5342
		touch_all_softlockup_watchdogs();
5343
		if (state_filter_match(state_filter, p))
5344
			sched_show_task(p);
5345
	}
L
Linus Torvalds 已提交
5346

I
Ingo Molnar 已提交
5347
#ifdef CONFIG_SCHED_DEBUG
5348 5349
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5350
#endif
5351
	rcu_read_unlock();
I
Ingo Molnar 已提交
5352 5353 5354
	/*
	 * Only show locks if all tasks are dumped:
	 */
5355
	if (!state_filter)
I
Ingo Molnar 已提交
5356
		debug_show_all_locks();
L
Linus Torvalds 已提交
5357 5358
}

5359 5360 5361
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
I
Ingo Molnar 已提交
5362
 * @cpu: CPU the idle task belongs to
5363 5364 5365 5366
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5367
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5368
{
5369
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5370 5371
	unsigned long flags;

5372 5373
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5374

5375
	__sched_fork(0, idle);
5376
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5377
	idle->se.exec_start = sched_clock();
5378
	idle->flags |= PF_IDLE;
I
Ingo Molnar 已提交
5379

5380 5381
	kasan_unpoison_task_stack(idle);

5382 5383 5384 5385 5386 5387 5388 5389 5390
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5391 5392
	/*
	 * We're having a chicken and egg problem, even though we are
I
Ingo Molnar 已提交
5393
	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5394 5395 5396 5397 5398 5399 5400 5401
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5402
	__set_task_cpu(idle, cpu);
5403
	rcu_read_unlock();
L
Linus Torvalds 已提交
5404 5405

	rq->curr = rq->idle = idle;
5406
	idle->on_rq = TASK_ON_RQ_QUEUED;
5407
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5408
	idle->on_cpu = 1;
5409
#endif
5410 5411
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5412 5413

	/* Set the preempt count _outside_ the spinlocks! */
5414
	init_idle_preempt_count(idle, cpu);
5415

I
Ingo Molnar 已提交
5416 5417 5418 5419
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5420
	ftrace_graph_init_idle_task(idle, cpu);
5421
	vtime_init_idle(idle, cpu);
5422
#ifdef CONFIG_SMP
5423 5424
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5425 5426
}

5427 5428
#ifdef CONFIG_SMP

5429 5430 5431
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
5432
	int ret = 1;
5433

5434 5435 5436
	if (!cpumask_weight(cur))
		return ret;

5437
	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5438 5439 5440 5441

	return ret;
}

5442 5443 5444 5445 5446 5447 5448
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
I
Ingo Molnar 已提交
5449
	 * to a new cpuset; we don't want to change their CPU
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5462 5463
					      cs_cpus_allowed))
		ret = dl_task_can_attach(p, cs_cpus_allowed);
5464 5465 5466 5467 5468

out:
	return ret;
}

5469
bool sched_smp_initialized __read_mostly;
5470

5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

5481
	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5482 5483 5484 5485
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5486
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5487 5488
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5489 5490 5491 5492 5493 5494 5495

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5496
	bool queued, running;
5497 5498
	struct rq_flags rf;
	struct rq *rq;
5499

5500
	rq = task_rq_lock(p, &rf);
5501
	queued = task_on_rq_queued(p);
5502 5503
	running = task_current(rq, p);

5504
	if (queued)
5505
		dequeue_task(rq, p, DEQUEUE_SAVE);
5506
	if (running)
5507
		put_prev_task(rq, p);
5508 5509 5510

	p->numa_preferred_nid = nid;

5511
	if (queued)
5512
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5513
	if (running)
5514
		set_curr_task(rq, p);
5515
	task_rq_unlock(rq, p, &rf);
5516
}
P
Peter Zijlstra 已提交
5517
#endif /* CONFIG_NUMA_BALANCING */
5518

L
Linus Torvalds 已提交
5519
#ifdef CONFIG_HOTPLUG_CPU
5520
/*
I
Ingo Molnar 已提交
5521
 * Ensure that the idle task is using init_mm right before its CPU goes
5522
 * offline.
5523
 */
5524
void idle_task_exit(void)
L
Linus Torvalds 已提交
5525
{
5526
	struct mm_struct *mm = current->active_mm;
5527

5528
	BUG_ON(cpu_online(smp_processor_id()));
5529

5530
	if (mm != &init_mm) {
5531
		switch_mm(mm, &init_mm, current);
5532
		current->active_mm = &init_mm;
5533 5534
		finish_arch_post_lock_switch();
	}
5535
	mmdrop(mm);
L
Linus Torvalds 已提交
5536 5537 5538
}

/*
5539 5540
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5541 5542 5543
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5544 5545
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5546
 */
5547
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5548
{
5549
	long delta = calc_load_fold_active(rq, 1);
5550 5551
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5552 5553
}

5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5570
/*
5571 5572 5573 5574 5575 5576
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5577
 */
5578
static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
L
Linus Torvalds 已提交
5579
{
5580
	struct rq *rq = dead_rq;
5581
	struct task_struct *next, *stop = rq->stop;
5582
	struct rq_flags orf = *rf;
5583
	int dest_cpu;
L
Linus Torvalds 已提交
5584 5585

	/*
5586 5587 5588 5589 5590 5591 5592
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5593
	 */
5594
	rq->stop = NULL;
5595

5596 5597 5598 5599 5600 5601 5602
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5603
	for (;;) {
5604 5605
		/*
		 * There's this thread running, bail when that's the only
I
Ingo Molnar 已提交
5606
		 * remaining thread:
5607 5608
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5609
			break;
5610

5611
		/*
I
Ingo Molnar 已提交
5612
		 * pick_next_task() assumes pinned rq->lock:
5613
		 */
5614
		next = pick_next_task(rq, &fake_task, rf);
5615
		BUG_ON(!next);
V
Viresh Kumar 已提交
5616
		put_prev_task(rq, next);
5617

W
Wanpeng Li 已提交
5618 5619 5620 5621 5622 5623 5624 5625 5626
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5627
		rq_unlock(rq, rf);
W
Wanpeng Li 已提交
5628
		raw_spin_lock(&next->pi_lock);
5629
		rq_relock(rq, rf);
W
Wanpeng Li 已提交
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5641
		/* Find suitable destination for @next, with force if needed. */
5642
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5643
		rq = __migrate_task(rq, rf, next, dest_cpu);
5644
		if (rq != dead_rq) {
5645
			rq_unlock(rq, rf);
5646
			rq = dead_rq;
5647 5648
			*rf = orf;
			rq_relock(rq, rf);
5649
		}
W
Wanpeng Li 已提交
5650
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5651
	}
5652

5653
	rq->stop = stop;
5654
}
L
Linus Torvalds 已提交
5655 5656
#endif /* CONFIG_HOTPLUG_CPU */

5657
void set_rq_online(struct rq *rq)
5658 5659 5660 5661
{
	if (!rq->online) {
		const struct sched_class *class;

5662
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5663 5664 5665 5666 5667 5668 5669 5670 5671
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

5672
void set_rq_offline(struct rq *rq)
5673 5674 5675 5676 5677 5678 5679 5680 5681
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5682
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5683 5684 5685 5686
		rq->online = 0;
	}
}

I
Ingo Molnar 已提交
5687 5688 5689 5690
/*
 * used to mark begin/end of suspend/resume:
 */
static int num_cpus_frozen;
5691

L
Linus Torvalds 已提交
5692
/*
5693 5694 5695
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
5696 5697 5698
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
5699
 */
5700
static void cpuset_cpu_active(void)
5701
{
5702
	if (cpuhp_tasks_frozen) {
5703 5704 5705 5706 5707 5708
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
5709 5710
		partition_sched_domains(1, NULL, NULL);
		if (--num_cpus_frozen)
5711
			return;
5712 5713 5714 5715 5716
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
5717
		cpuset_force_rebuild();
5718
	}
5719
	cpuset_update_active_cpus();
5720
}
5721

5722
static int cpuset_cpu_inactive(unsigned int cpu)
5723
{
5724
	if (!cpuhp_tasks_frozen) {
5725
		if (dl_cpu_busy(cpu))
5726
			return -EBUSY;
5727
		cpuset_update_active_cpus();
5728
	} else {
5729 5730
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
5731
	}
5732
	return 0;
5733 5734
}

5735
int sched_cpu_activate(unsigned int cpu)
5736
{
5737
	struct rq *rq = cpu_rq(cpu);
5738
	struct rq_flags rf;
5739

5740
	set_cpu_active(cpu, true);
5741

5742
	if (sched_smp_initialized) {
5743
		sched_domains_numa_masks_set(cpu);
5744
		cpuset_cpu_active();
5745
	}
5746 5747 5748 5749 5750

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
I
Ingo Molnar 已提交
5751
	 *    after all CPUs have been brought up.
5752 5753 5754 5755
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
5756
	rq_lock_irqsave(rq, &rf);
5757 5758 5759 5760
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
5761
	rq_unlock_irqrestore(rq, &rf);
5762 5763 5764

	update_max_interval();

5765
	return 0;
5766 5767
}

5768
int sched_cpu_deactivate(unsigned int cpu)
5769 5770 5771
{
	int ret;

5772
	set_cpu_active(cpu, false);
5773 5774 5775 5776 5777 5778 5779
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
5780
	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5781 5782 5783 5784 5785 5786 5787 5788

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
5789
	}
5790 5791
	sched_domains_numa_masks_clear(cpu);
	return 0;
5792 5793
}

5794 5795 5796 5797 5798 5799 5800 5801
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

5802 5803
int sched_cpu_starting(unsigned int cpu)
{
5804
	sched_rq_cpu_starting(cpu);
5805
	sched_tick_start(cpu);
5806
	return 0;
5807 5808
}

5809 5810 5811 5812
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5813
	struct rq_flags rf;
5814 5815 5816

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
5817
	sched_tick_stop(cpu);
5818 5819

	rq_lock_irqsave(rq, &rf);
5820 5821 5822 5823
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
5824
	migrate_tasks(rq, &rf);
5825
	BUG_ON(rq->nr_running != 1);
5826 5827
	rq_unlock_irqrestore(rq, &rf);

5828 5829
	calc_load_migrate(rq);
	update_max_interval();
5830
	nohz_balance_exit_idle(rq);
5831
	hrtick_clear(rq);
5832 5833 5834 5835
	return 0;
}
#endif

P
Peter Zijlstra 已提交
5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);

static void sched_init_smt(void)
{
	/*
	 * We've enumerated all CPUs and will assume that if any CPU
	 * has SMT siblings, CPU0 will too.
	 */
	if (cpumask_weight(cpu_smt_mask(0)) > 1)
		static_branch_enable(&sched_smt_present);
}
#else
static inline void sched_init_smt(void) { }
#endif

L
Linus Torvalds 已提交
5852 5853
void __init sched_init_smp(void)
{
5854 5855
	sched_init_numa();

5856 5857
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
I
Ingo Molnar 已提交
5858
	 * CPU masks are stable and all blatant races in the below code cannot
5859 5860
	 * happen.
	 */
5861
	mutex_lock(&sched_domains_mutex);
P
Peter Zijlstra 已提交
5862
	sched_init_domains(cpu_active_mask);
5863
	mutex_unlock(&sched_domains_mutex);
5864

5865
	/* Move init over to a non-isolated CPU */
5866
	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5867
		BUG();
I
Ingo Molnar 已提交
5868
	sched_init_granularity();
5869

5870
	init_sched_rt_class();
5871
	init_sched_dl_class();
P
Peter Zijlstra 已提交
5872 5873 5874

	sched_init_smt();

5875
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
5876
}
5877 5878 5879

static int __init migration_init(void)
{
5880
	sched_rq_cpu_starting(smp_processor_id());
5881
	return 0;
L
Linus Torvalds 已提交
5882
}
5883 5884
early_initcall(migration_init);

L
Linus Torvalds 已提交
5885 5886 5887
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
5888
	sched_init_granularity();
L
Linus Torvalds 已提交
5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

5899
#ifdef CONFIG_CGROUP_SCHED
5900 5901 5902 5903
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
5904
struct task_group root_task_group;
5905
LIST_HEAD(task_groups);
5906 5907 5908

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
5909
#endif
P
Peter Zijlstra 已提交
5910

5911
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5912
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
5913

L
Linus Torvalds 已提交
5914 5915
void __init sched_init(void)
{
I
Ingo Molnar 已提交
5916
	int i, j;
5917 5918
	unsigned long alloc_size = 0, ptr;

5919
	wait_bit_init();
5920

5921 5922 5923 5924 5925 5926 5927
#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
5928
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5929 5930

#ifdef CONFIG_FAIR_GROUP_SCHED
5931
		root_task_group.se = (struct sched_entity **)ptr;
5932 5933
		ptr += nr_cpu_ids * sizeof(void **);

5934
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5935
		ptr += nr_cpu_ids * sizeof(void **);
5936

5937
#endif /* CONFIG_FAIR_GROUP_SCHED */
5938
#ifdef CONFIG_RT_GROUP_SCHED
5939
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5940 5941
		ptr += nr_cpu_ids * sizeof(void **);

5942
		root_task_group.rt_rq = (struct rt_rq **)ptr;
5943 5944
		ptr += nr_cpu_ids * sizeof(void **);

5945
#endif /* CONFIG_RT_GROUP_SCHED */
5946
	}
5947
#ifdef CONFIG_CPUMASK_OFFSTACK
5948 5949 5950
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5951 5952
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5953
	}
5954
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
5955

I
Ingo Molnar 已提交
5956 5957
	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5958

G
Gregory Haskins 已提交
5959 5960 5961 5962
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

5963
#ifdef CONFIG_RT_GROUP_SCHED
5964
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5965
			global_rt_period(), global_rt_runtime());
5966
#endif /* CONFIG_RT_GROUP_SCHED */
5967

D
Dhaval Giani 已提交
5968
#ifdef CONFIG_CGROUP_SCHED
5969 5970
	task_group_cache = KMEM_CACHE(task_group, 0);

5971 5972
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
5973
	INIT_LIST_HEAD(&root_task_group.siblings);
5974
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
5975
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
5976

5977
	for_each_possible_cpu(i) {
5978
		struct rq *rq;
L
Linus Torvalds 已提交
5979 5980

		rq = cpu_rq(i);
5981
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
5982
		rq->nr_running = 0;
5983 5984
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
5985
		init_cfs_rq(&rq->cfs);
5986 5987
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
5988
#ifdef CONFIG_FAIR_GROUP_SCHED
5989
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
5990
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5991
		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
D
Dhaval Giani 已提交
5992
		/*
I
Ingo Molnar 已提交
5993
		 * How much CPU bandwidth does root_task_group get?
D
Dhaval Giani 已提交
5994 5995
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
I
Ingo Molnar 已提交
5996 5997
		 * gets 100% of the CPU resources in the system. This overall
		 * system CPU resource is divided among the tasks of
5998
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
5999 6000 6001
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6002
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6003
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
I
Ingo Molnar 已提交
6004
		 * then A0's share of the CPU resource is:
D
Dhaval Giani 已提交
6005
		 *
6006
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6007
		 *
6008 6009
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6010
		 */
6011
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6012
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6013 6014 6015
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6016
#ifdef CONFIG_RT_GROUP_SCHED
6017
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6018
#endif
L
Linus Torvalds 已提交
6019

I
Ingo Molnar 已提交
6020 6021
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6022

L
Linus Torvalds 已提交
6023
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6024
		rq->sd = NULL;
G
Gregory Haskins 已提交
6025
		rq->rd = NULL;
6026
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6027
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
6028
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6029
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6030
		rq->push_cpu = 0;
6031
		rq->cpu = i;
6032
		rq->online = 0;
6033 6034
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6035
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6036 6037 6038

		INIT_LIST_HEAD(&rq->cfs_tasks);

6039
		rq_attach_root(rq, &def_root_domain);
6040
#ifdef CONFIG_NO_HZ_COMMON
6041
		rq->last_load_update_tick = jiffies;
6042
		rq->last_blocked_load_update_tick = jiffies;
6043
		atomic_set(&rq->nohz_flags, 0);
6044
#endif
6045
#endif /* CONFIG_SMP */
6046
		hrtick_rq_init(rq);
L
Linus Torvalds 已提交
6047 6048 6049
		atomic_set(&rq->nr_iowait, 0);
	}

6050
	set_load_weight(&init_task, false);
6051

L
Linus Torvalds 已提交
6052 6053 6054
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
V
Vegard Nossum 已提交
6055
	mmgrab(&init_mm);
L
Linus Torvalds 已提交
6056 6057 6058 6059 6060 6061 6062 6063 6064
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6065 6066 6067

	calc_load_update = jiffies + LOAD_FREQ;

6068
#ifdef CONFIG_SMP
6069
	idle_thread_set_boot_cpu();
6070 6071
#endif
	init_sched_fair_class();
6072

6073 6074
	init_schedstats();

6075
	scheduler_running = 1;
L
Linus Torvalds 已提交
6076 6077
}

6078
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6079 6080
static inline int preempt_count_equals(int preempt_offset)
{
6081
	int nested = preempt_count() + rcu_preempt_depth();
6082

A
Arnd Bergmann 已提交
6083
	return (nested == preempt_offset);
6084 6085
}

6086
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6087
{
P
Peter Zijlstra 已提交
6088 6089 6090 6091 6092
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
6093
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
6094 6095 6096 6097
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
6098
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
6099

6100 6101 6102 6103 6104
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6105
{
I
Ingo Molnar 已提交
6106 6107 6108
	/* Ratelimiting timestamp: */
	static unsigned long prev_jiffy;

6109
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
6110

I
Ingo Molnar 已提交
6111 6112 6113
	/* WARN_ON_ONCE() by default, no rate limit required: */
	rcu_sleep_check();

6114 6115
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
6116 6117
	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
	    oops_in_progress)
I
Ingo Molnar 已提交
6118
		return;
6119

I
Ingo Molnar 已提交
6120 6121 6122 6123
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

I
Ingo Molnar 已提交
6124
	/* Save this before calling printk(), since that will clobber it: */
6125 6126
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
6127 6128 6129 6130 6131 6132 6133
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6134

6135 6136 6137
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
6138 6139 6140
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6141 6142
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
6143
		pr_err("Preemption disabled at:");
6144
		print_ip_sym(preempt_disable_ip);
6145 6146
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
6147
	dump_stack();
6148
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
6149
}
6150
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
6151 6152 6153
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6154
void normalize_rt_tasks(void)
6155
{
6156
	struct task_struct *g, *p;
6157 6158 6159
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
6160

6161
	read_lock(&tasklist_lock);
6162
	for_each_process_thread(g, p) {
6163 6164 6165
		/*
		 * Only normalize user tasks:
		 */
6166
		if (p->flags & PF_KTHREAD)
6167 6168
			continue;

6169 6170 6171 6172
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
6173

6174
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
6175 6176 6177 6178
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
6179
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
6180
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6181
			continue;
I
Ingo Molnar 已提交
6182
		}
L
Linus Torvalds 已提交
6183

6184
		__sched_setscheduler(p, &attr, false, false);
6185
	}
6186
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6187 6188 6189
}

#endif /* CONFIG_MAGIC_SYSRQ */
6190

6191
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6192
/*
6193
 * These functions are only useful for the IA64 MCA handling, or kdb.
6194 6195 6196 6197 6198 6199 6200 6201 6202
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
I
Ingo Molnar 已提交
6203
 * curr_task - return the current task for a given CPU.
6204 6205 6206
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6207 6208
 *
 * Return: The current task for @cpu.
6209
 */
6210
struct task_struct *curr_task(int cpu)
6211 6212 6213 6214
{
	return cpu_curr(cpu);
}

6215 6216 6217
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6218
/**
I
Ingo Molnar 已提交
6219
 * set_curr_task - set the current task for a given CPU.
6220 6221 6222 6223
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6224
 * are serviced on a separate stack. It allows the architecture to switch the
I
Ingo Molnar 已提交
6225
 * notion of the current task on a CPU in a non-blocking manner. This function
6226 6227 6228 6229 6230 6231 6232
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6233
void ia64_set_curr_task(int cpu, struct task_struct *p)
6234 6235 6236 6237 6238
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6239

D
Dhaval Giani 已提交
6240
#ifdef CONFIG_CGROUP_SCHED
6241 6242 6243
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6244
static void sched_free_group(struct task_group *tg)
6245 6246 6247
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6248
	autogroup_free(tg);
6249
	kmem_cache_free(task_group_cache, tg);
6250 6251 6252
}

/* allocate runqueue etc for a new task group */
6253
struct task_group *sched_create_group(struct task_group *parent)
6254 6255 6256
{
	struct task_group *tg;

6257
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6258 6259 6260
	if (!tg)
		return ERR_PTR(-ENOMEM);

6261
	if (!alloc_fair_sched_group(tg, parent))
6262 6263
		goto err;

6264
	if (!alloc_rt_sched_group(tg, parent))
6265 6266
		goto err;

6267 6268 6269
	return tg;

err:
6270
	sched_free_group(tg);
6271 6272 6273 6274 6275 6276 6277
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6278
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6279
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6280

I
Ingo Molnar 已提交
6281 6282
	/* Root should already exist: */
	WARN_ON(!parent);
P
Peter Zijlstra 已提交
6283 6284 6285

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6286
	list_add_rcu(&tg->siblings, &parent->children);
6287
	spin_unlock_irqrestore(&task_group_lock, flags);
6288 6289

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
6290 6291
}

6292
/* rcu callback to free various structures associated with a task group */
6293
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6294
{
I
Ingo Molnar 已提交
6295
	/* Now it should be safe to free those cfs_rqs: */
6296
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6297 6298
}

6299
void sched_destroy_group(struct task_group *tg)
6300
{
I
Ingo Molnar 已提交
6301
	/* Wait for possible concurrent references to cfs_rqs complete: */
6302
	call_rcu(&tg->rcu, sched_free_group_rcu);
6303 6304 6305
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6306
{
6307
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
6308

I
Ingo Molnar 已提交
6309
	/* End participation in shares distribution: */
6310
	unregister_fair_sched_group(tg);
6311 6312

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6313
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6314
	list_del_rcu(&tg->siblings);
6315
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6316 6317
}

6318
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
6319
{
P
Peter Zijlstra 已提交
6320
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6321

6322 6323 6324 6325 6326 6327
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
6328 6329 6330 6331
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6332
#ifdef CONFIG_FAIR_GROUP_SCHED
6333 6334
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
6335
	else
P
Peter Zijlstra 已提交
6336
#endif
6337
		set_task_rq(tsk, task_cpu(tsk));
6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
6349 6350
	int queued, running, queue_flags =
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6351 6352 6353 6354
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);
6355
	update_rq_clock(rq);
6356 6357 6358 6359 6360

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
6361
		dequeue_task(rq, tsk, queue_flags);
6362
	if (running)
6363 6364 6365
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
6366

6367
	if (queued)
6368
		enqueue_task(rq, tsk, queue_flags);
6369
	if (running)
6370
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6371

6372
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
6373
}
6374

6375
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6376
{
6377
	return css ? container_of(css, struct task_group, css) : NULL;
6378 6379
}

6380 6381
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6382
{
6383 6384
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
6385

6386
	if (!parent) {
6387
		/* This is early initialization for the top cgroup */
6388
		return &root_task_group.css;
6389 6390
	}

6391
	tg = sched_create_group(parent);
6392 6393 6394 6395 6396 6397
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408
/* Expose task group only after completing cgroup initialization */
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css->parent);

	if (parent)
		sched_online_group(tg, parent);
	return 0;
}

6409
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6410
{
6411
	struct task_group *tg = css_tg(css);
6412

6413
	sched_offline_group(tg);
6414 6415
}

6416
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6417
{
6418
	struct task_group *tg = css_tg(css);
6419

6420 6421 6422 6423
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
6424 6425
}

6426 6427 6428 6429
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
6430
static void cpu_cgroup_fork(struct task_struct *task)
6431
{
6432 6433 6434 6435 6436
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

6437
	update_rq_clock(rq);
6438 6439 6440
	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
6441 6442
}

6443
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6444
{
6445
	struct task_struct *task;
6446
	struct cgroup_subsys_state *css;
6447
	int ret = 0;
6448

6449
	cgroup_taskset_for_each(task, css, tset) {
6450
#ifdef CONFIG_RT_GROUP_SCHED
6451
		if (!sched_rt_can_attach(css_tg(css), task))
6452
			return -EINVAL;
6453
#else
6454 6455 6456
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
6457
#endif
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
6474
	}
6475
	return ret;
6476
}
6477

6478
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6479
{
6480
	struct task_struct *task;
6481
	struct cgroup_subsys_state *css;
6482

6483
	cgroup_taskset_for_each(task, css, tset)
6484
		sched_move_task(task);
6485 6486
}

6487
#ifdef CONFIG_FAIR_GROUP_SCHED
6488 6489
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
6490
{
6491
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6492 6493
}

6494 6495
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
6496
{
6497
	struct task_group *tg = css_tg(css);
6498

6499
	return (u64) scale_load_down(tg->shares);
6500
}
6501 6502

#ifdef CONFIG_CFS_BANDWIDTH
6503 6504
static DEFINE_MUTEX(cfs_constraints_mutex);

6505 6506 6507
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

6508 6509
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

6510 6511
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
6512
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6513
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

6534 6535 6536 6537 6538
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
6539 6540 6541 6542 6543
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

6544
	runtime_enabled = quota != RUNTIME_INF;
6545
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6546 6547 6548 6549 6550 6551
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
6552 6553 6554
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
6555

P
Paul Turner 已提交
6556
	__refill_cfs_bandwidth_runtime(cfs_b);
I
Ingo Molnar 已提交
6557 6558

	/* Restart the period timer (if active) to handle new period expiry: */
P
Peter Zijlstra 已提交
6559 6560
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
I
Ingo Molnar 已提交
6561

6562 6563
	raw_spin_unlock_irq(&cfs_b->lock);

6564
	for_each_online_cpu(i) {
6565
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6566
		struct rq *rq = cfs_rq->rq;
6567
		struct rq_flags rf;
6568

6569
		rq_lock_irq(rq, &rf);
6570
		cfs_rq->runtime_enabled = runtime_enabled;
6571
		cfs_rq->runtime_remaining = 0;
6572

6573
		if (cfs_rq->throttled)
6574
			unthrottle_cfs_rq(cfs_rq);
6575
		rq_unlock_irq(rq, &rf);
6576
	}
6577 6578
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
6579 6580
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
6581
	put_online_cpus();
6582

6583
	return ret;
6584 6585 6586 6587 6588 6589
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

6590
	period = ktime_to_ns(tg->cfs_bandwidth.period);
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

6603
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6604 6605
		return -1;

6606
	quota_us = tg->cfs_bandwidth.quota;
6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
6617
	quota = tg->cfs_bandwidth.quota;
6618 6619 6620 6621 6622 6623 6624 6625

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

6626
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6627 6628 6629 6630 6631
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

6632 6633
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
6634
{
6635
	return tg_get_cfs_quota(css_tg(css));
6636 6637
}

6638 6639
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
6640
{
6641
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6642 6643
}

6644 6645
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6646
{
6647
	return tg_get_cfs_period(css_tg(css));
6648 6649
}

6650 6651
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
6652
{
6653
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6654 6655
}

6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
6688
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6689 6690 6691 6692 6693
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
6694
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6695 6696

		quota = normalize_cfs_quota(tg, d);
6697
		parent_quota = parent_b->hierarchical_quota;
6698 6699

		/*
6700 6701
		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
		 * always take the min.  On cgroup1, only inherit when no
I
Ingo Molnar 已提交
6702
		 * limit is set:
6703
		 */
6704 6705 6706 6707 6708 6709 6710 6711
		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
			quota = min(quota, parent_quota);
		} else {
			if (quota == RUNTIME_INF)
				quota = parent_quota;
			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
				return -EINVAL;
		}
6712
	}
6713
	cfs_b->hierarchical_quota = quota;
6714 6715 6716 6717 6718 6719

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
6720
	int ret;
6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

6732 6733 6734 6735 6736
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6737
}
6738

6739
static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6740
{
6741
	struct task_group *tg = css_tg(seq_css(sf));
6742
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6743

6744 6745 6746
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6747

6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
	if (schedstat_enabled() && tg != &root_task_group) {
		u64 ws = 0;
		int i;

		for_each_possible_cpu(i)
			ws += schedstat_val(tg->se[i]->statistics.wait_sum);

		seq_printf(sf, "wait_sum %llu\n", ws);
	}

6758 6759
	return 0;
}
6760
#endif /* CONFIG_CFS_BANDWIDTH */
6761
#endif /* CONFIG_FAIR_GROUP_SCHED */
6762

6763
#ifdef CONFIG_RT_GROUP_SCHED
6764 6765
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
6766
{
6767
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
6768 6769
}

6770 6771
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
6772
{
6773
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
6774
}
6775

6776 6777
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
6778
{
6779
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6780 6781
}

6782 6783
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6784
{
6785
	return sched_group_rt_period(css_tg(css));
6786
}
6787
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
6788

6789
static struct cftype cpu_legacy_files[] = {
6790
#ifdef CONFIG_FAIR_GROUP_SCHED
6791 6792
	{
		.name = "shares",
6793 6794
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
6795
	},
6796
#endif
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
6808 6809
	{
		.name = "stat",
6810
		.seq_show = cpu_cfs_stat_show,
6811
	},
6812
#endif
6813
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6814
	{
P
Peter Zijlstra 已提交
6815
		.name = "rt_runtime_us",
6816 6817
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
6818
	},
6819 6820
	{
		.name = "rt_period_us",
6821 6822
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
6823
	},
6824
#endif
I
Ingo Molnar 已提交
6825
	{ }	/* Terminate */
6826 6827
};

6828 6829
static int cpu_extra_stat_show(struct seq_file *sf,
			       struct cgroup_subsys_state *css)
6830 6831 6832
{
#ifdef CONFIG_CFS_BANDWIDTH
	{
6833
		struct task_group *tg = css_tg(css);
6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		u64 throttled_usec;

		throttled_usec = cfs_b->throttled_time;
		do_div(throttled_usec, NSEC_PER_USEC);

		seq_printf(sf, "nr_periods %d\n"
			   "nr_throttled %d\n"
			   "throttled_usec %llu\n",
			   cfs_b->nr_periods, cfs_b->nr_throttled,
			   throttled_usec);
	}
#endif
	return 0;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	struct task_group *tg = css_tg(css);
	u64 weight = scale_load_down(tg->shares);

	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
}

static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cft, u64 weight)
{
	/*
	 * cgroup weight knobs should use the common MIN, DFL and MAX
	 * values which are 1, 100 and 10000 respectively.  While it loses
	 * a bit of range on both ends, it maps pretty well onto the shares
	 * value used by scheduler and the round-trip conversions preserve
	 * the original value over the entire range.
	 */
	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
		return -ERANGE;

	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);

	return sched_group_set_shares(css_tg(css), scale_load(weight));
}

static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
				    struct cftype *cft)
{
	unsigned long weight = scale_load_down(css_tg(css)->shares);
	int last_delta = INT_MAX;
	int prio, delta;

	/* find the closest nice value to the current weight */
	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
		delta = abs(sched_prio_to_weight[prio] - weight);
		if (delta >= last_delta)
			break;
		last_delta = delta;
	}

	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
}

static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
				     struct cftype *cft, s64 nice)
{
	unsigned long weight;
6900
	int idx;
6901 6902 6903 6904

	if (nice < MIN_NICE || nice > MAX_NICE)
		return -ERANGE;

6905 6906 6907 6908
	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
	idx = array_index_nospec(idx, 40);
	weight = sched_prio_to_weight[idx];

6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994
	return sched_group_set_shares(css_tg(css), scale_load(weight));
}
#endif

static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
						  long period, long quota)
{
	if (quota < 0)
		seq_puts(sf, "max");
	else
		seq_printf(sf, "%ld", quota);

	seq_printf(sf, " %ld\n", period);
}

/* caller should put the current value in *@periodp before calling */
static int __maybe_unused cpu_period_quota_parse(char *buf,
						 u64 *periodp, u64 *quotap)
{
	char tok[21];	/* U64_MAX */

	if (!sscanf(buf, "%s %llu", tok, periodp))
		return -EINVAL;

	*periodp *= NSEC_PER_USEC;

	if (sscanf(tok, "%llu", quotap))
		*quotap *= NSEC_PER_USEC;
	else if (!strcmp(tok, "max"))
		*quotap = RUNTIME_INF;
	else
		return -EINVAL;

	return 0;
}

#ifdef CONFIG_CFS_BANDWIDTH
static int cpu_max_show(struct seq_file *sf, void *v)
{
	struct task_group *tg = css_tg(seq_css(sf));

	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
	return 0;
}

static ssize_t cpu_max_write(struct kernfs_open_file *of,
			     char *buf, size_t nbytes, loff_t off)
{
	struct task_group *tg = css_tg(of_css(of));
	u64 period = tg_get_cfs_period(tg);
	u64 quota;
	int ret;

	ret = cpu_period_quota_parse(buf, &period, &quota);
	if (!ret)
		ret = tg_set_cfs_bandwidth(tg, period, quota);
	return ret ?: nbytes;
}
#endif

static struct cftype cpu_files[] = {
#ifdef CONFIG_FAIR_GROUP_SCHED
	{
		.name = "weight",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = cpu_weight_read_u64,
		.write_u64 = cpu_weight_write_u64,
	},
	{
		.name = "weight.nice",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_s64 = cpu_weight_nice_read_s64,
		.write_s64 = cpu_weight_nice_write_s64,
	},
#endif
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = cpu_max_show,
		.write = cpu_max_write,
	},
#endif
	{ }	/* terminate */
};

6995
struct cgroup_subsys cpu_cgrp_subsys = {
6996
	.css_alloc	= cpu_cgroup_css_alloc,
6997
	.css_online	= cpu_cgroup_css_online,
6998
	.css_released	= cpu_cgroup_css_released,
6999
	.css_free	= cpu_cgroup_css_free,
7000
	.css_extra_stat_show = cpu_extra_stat_show,
7001
	.fork		= cpu_cgroup_fork,
7002 7003
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7004
	.legacy_cftypes	= cpu_legacy_files,
7005
	.dfl_cftypes	= cpu_files,
7006
	.early_init	= true,
7007
	.threaded	= true,
7008 7009
};

7010
#endif	/* CONFIG_CGROUP_SCHED */
7011

7012 7013 7014 7015 7016
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};
7058 7059

#undef CREATE_TRACE_POINTS