i7core_edac.c 63.7 KB
Newer Older
1 2
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
D
David Sterba 已提交
3
 * This driver supports the memory controllers found on the Intel
4 5 6
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
N
Nils Carlson 已提交
34
#include <linux/dmi.h>
35 36
#include <linux/edac.h>
#include <linux/mmzone.h>
37
#include <linux/smp.h>
38
#include <asm/mce.h>
39
#include <asm/processor.h>
40
#include <asm/div64.h>
41 42 43

#include "edac_core.h"

44 45 46 47 48
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

49 50 51
static int use_pci_fixup;
module_param(use_pci_fixup, int, 0444);
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
52 53 54 55 56 57 58 59 60
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


61 62 63
/*
 * Alter this version for the module when modifications are made
 */
M
Michal Marek 已提交
64
#define I7CORE_REVISION    " Ver: 1.0.0"
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

80 81 82
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90
83 84
  #define MC_CFG_UNLOCK		0x02
  #define MC_CFG_LOCK		0x00
85

86 87 88 89 90 91
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

92 93 94 95 96 97 98 99 100 101 102 103
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

104
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
105 106 107 108 109 110 111
#define MC_SSRCONTROL		0x48
  #define SSR_MODE_DISABLE	0x00
  #define SSR_MODE_ENABLE	0x01
  #define SSR_MODE_MASK		0x03

#define MC_SCRUB_CONTROL	0x4c
  #define STARTSCRUB		(1 << 24)
N
Nils Carlson 已提交
112
  #define SCRUBINTERVAL_MASK    0xffffff
113

114 115 116 117 118 119 120 121 122 123 124
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


125 126
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

127 128 129 130 131 132
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

133 134 135 136
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

137 138 139
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

140
#define MC_CHANNEL_ADDR_MATCH	0xf0
141 142 143 144 145 146 147 148 149 150
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
151

152
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
153

154 155 156 157 158 159 160
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
161 162 163 164
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
165
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
166
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
167 168
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
169

170 171
#define MC_RANK_PRESENT		0x7c

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

195 196 197 198 199
/*
 * i7core structs
 */

#define NUM_CHANS 3
200 201 202
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
203 204 205 206 207

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
208
	u32	ch_map;
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

223
struct i7core_channel {
224 225 226
	bool		is_3dimms_present;
	bool		is_single_4rank;
	bool		has_4rank;
227
	u32		dimms;
228 229
};

230
struct pci_id_descr {
231 232 233
	int			dev;
	int			func;
	int 			dev_id;
234
	int			optional;
235 236
};

237
struct pci_id_table {
238 239
	const struct pci_id_descr	*descr;
	int				n_devs;
240 241
};

242 243 244 245
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
246
	int			n_devs;
247 248 249
	struct mem_ctl_info	*mci;
};

250
struct i7core_pvt {
251
	struct device *addrmatch_dev, *chancounts_dev;
252

253 254 255 256 257
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
258

259
	struct i7core_info	info;
260
	struct i7core_inject	inject;
261
	struct i7core_channel	channel[NUM_CHANS];
262

263
	int		ce_count_available;
264 265

			/* ECC corrected errors counts per udimm */
266 267
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
268
			/* ECC corrected errors counts per rdimm */
269 270
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
271

272
	bool		is_registered, enable_scrub;
273

274
	/* Fifo double buffers */
275
	struct mce		mce_entry[MCE_LOG_LEN];
276 277 278 279 280 281 282
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
283

N
Nils Carlson 已提交
284 285 286
	/* DCLK Frequency used for computing scrub rate */
	int			dclk_freq;

287 288
	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
289 290
};

291 292 293 294 295
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

296
static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
297 298 299
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
300
			/* Exists only for RDIMM */
301
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
321 322 323 324 325 326 327 328 329 330

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },

331
};
332

333
static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
334 335 336 337 338 339 340 341 342
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

343 344 345 346
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
347 348 349 350 351 352

	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
353 354
};

355
static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
380 381 382 383

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

384 385
};

386 387
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_table[] = {
388 389 390
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
391
	{0,}			/* 0 terminated list. */
392 393
};

394 395 396
/*
 *	pci_device_id	table for which devices we are looking for
 */
397
static DEFINE_PCI_DEVICE_TABLE(i7core_pci_tbl) = {
398
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
399
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
400 401 402
	{0,}			/* 0 terminated list. */
};

403 404 405 406 407
/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
408 409
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
410 411

	/* MC_STATUS bits */
412
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
413
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
414 415

	/* MC_MAX_DOD read functions */
416
static inline int numdimms(u32 dimms)
417
{
418
	return (dimms & 0x3) + 1;
419 420
}

421
static inline int numrank(u32 rank)
422 423 424
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

425
	return ranks[rank & 0x3];
426 427
}

428
static inline int numbank(u32 bank)
429 430 431
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

432
	return banks[bank & 0x3];
433 434
}

435
static inline int numrow(u32 row)
436 437 438 439 440 441
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

442
	return rows[row & 0x7];
443 444
}

445
static inline int numcol(u32 col)
446 447 448 449
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
450
	return cols[col & 0x3];
451 452
}

453
static struct i7core_dev *get_i7core_dev(u8 socket)
454 455 456 457 458 459 460 461 462 463 464
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
static struct i7core_dev *alloc_i7core_dev(u8 socket,
					   const struct pci_id_table *table)
{
	struct i7core_dev *i7core_dev;

	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
	if (!i7core_dev)
		return NULL;

	i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!i7core_dev->pdev) {
		kfree(i7core_dev);
		return NULL;
	}

	i7core_dev->socket = socket;
	i7core_dev->n_devs = table->n_devs;
	list_add_tail(&i7core_dev->list, &i7core_edac_list);

	return i7core_dev;
}

488 489 490 491 492 493 494
static void free_i7core_dev(struct i7core_dev *i7core_dev)
{
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}

495 496 497
/****************************************************************************
			Memory check routines
 ****************************************************************************/
498

499
static int get_dimm_config(struct mem_ctl_info *mci)
500 501
{
	struct i7core_pvt *pvt = mci->pvt_info;
502
	struct pci_dev *pdev;
503
	int i, j;
504
	enum edac_type mode;
505
	enum mem_type mtype;
506
	struct dimm_info *dimm;
507

508
	/* Get data from the MC register, function 0 */
509
	pdev = pvt->pci_mcr[0];
510
	if (!pdev)
511 512
		return -ENODEV;

513
	/* Device 3 function 0 reads */
514 515 516 517
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
518

519 520 521
	edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
		 pvt->i7core_dev->socket, pvt->info.mc_control,
		 pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map);
522

523
	if (ECC_ENABLED(pvt)) {
524
		edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
525 526 527 528 529
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
530
		edac_dbg(0, "ECC disabled\n");
531 532
		mode = EDAC_NONE;
	}
533 534

	/* FIXME: need to handle the error codes */
535 536 537 538 539 540
	edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n",
		 numdimms(pvt->info.max_dod),
		 numrank(pvt->info.max_dod >> 2),
		 numbank(pvt->info.max_dod >> 4),
		 numrow(pvt->info.max_dod >> 6),
		 numcol(pvt->info.max_dod >> 9));
541

542
	for (i = 0; i < NUM_CHANS; i++) {
543
		u32 data, dimm_dod[3], value[8];
544

545 546 547
		if (!pvt->pci_ch[i][0])
			continue;

548
		if (!CH_ACTIVE(pvt, i)) {
549
			edac_dbg(0, "Channel %i is not active\n", i);
550 551 552
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
553
			edac_dbg(0, "Channel %i is disabled\n", i);
554 555 556
			continue;
		}

557
		/* Devices 4-6 function 0 */
558
		pci_read_config_dword(pvt->pci_ch[i][0],
559 560
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

561 562 563 564 565 566 567 568 569

		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].is_3dimms_present = true;

		if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].is_single_4rank = true;

		if (data & QUAD_RANK_PRESENT)
			pvt->channel[i].has_4rank = true;
570

571 572
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
573
		else
574 575 576
			mtype = MEM_DDR3;

		/* Devices 4-6 function 1 */
577
		pci_read_config_dword(pvt->pci_ch[i][1],
578
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
579
		pci_read_config_dword(pvt->pci_ch[i][1],
580
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
581
		pci_read_config_dword(pvt->pci_ch[i][1],
582
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
583

584 585 586 587 588 589 590 591
		edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n",
			 i,
			 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			 data,
			 pvt->channel[i].is_3dimms_present ? "3DIMMS " : "",
			 pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "",
			 pvt->channel[i].has_4rank ? "HAS_4R " : "",
			 (data & REGISTERED_DIMM) ? 'R' : 'U');
592 593 594

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
595
			u32 size, npages;
596 597 598 599

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

600 601
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
				       i, j, 0);
602 603 604 605 606
			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

607 608 609
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

610 611 612 613
			edac_dbg(0, "\tdimm %d %d Mb offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n",
				 j, size,
				 RANKOFFSET(dimm_dod[j]),
				 banks, ranks, rows, cols);
614

615
			npages = MiB_TO_PAGES(size);
616

617 618
			dimm->nr_pages = npages;

619 620
			switch (banks) {
			case 4:
621
				dimm->dtype = DEV_X4;
622 623
				break;
			case 8:
624
				dimm->dtype = DEV_X8;
625 626
				break;
			case 16:
627
				dimm->dtype = DEV_X16;
628 629
				break;
			default:
630
				dimm->dtype = DEV_UNKNOWN;
631 632
			}

633 634 635 636 637 638
			snprintf(dimm->label, sizeof(dimm->label),
				 "CPU#%uChannel#%u_DIMM#%u",
				 pvt->i7core_dev->socket, i, j);
			dimm->grain = 8;
			dimm->edac_mode = mode;
			dimm->mtype = mtype;
639
		}
640

641 642 643 644 645 646 647 648
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
649
		edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
650
		for (j = 0; j < 8; j++)
651 652 653 654
			edac_dbg(1, "\t\t%#x\t%#x\t%#x\n",
				 (value[j] >> 27) & 0x1,
				 (value[j] >> 24) & 0x7,
				 (value[j] & ((1 << 24) - 1)));
655 656
	}

657 658 659
	return 0;
}

660 661 662 663
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

664 665
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)

666 667 668 669 670 671 672
/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
673
static int disable_inject(const struct mem_ctl_info *mci)
674 675 676 677 678
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

679
	if (!pvt->pci_ch[pvt->inject.channel][0])
680 681
		return -ENODEV;

682
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
683
				MC_CHANNEL_ERROR_INJECT, 0);
684 685

	return 0;
686 687 688 689 690 691 692 693 694
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
695 696
static ssize_t i7core_inject_section_store(struct device *dev,
					   struct device_attribute *mattr,
697 698
					   const char *data, size_t count)
{
699
	struct mem_ctl_info *mci = to_mci(dev);
700 701 702 703 704
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
705
		disable_inject(mci);
706 707 708

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
709
		return -EIO;
710 711 712 713 714

	pvt->inject.section = (u32) value;
	return count;
}

715 716 717
static ssize_t i7core_inject_section_show(struct device *dev,
					  struct device_attribute *mattr,
					  char *data)
718
{
719
	struct mem_ctl_info *mci = to_mci(dev);
720 721 722 723 724 725 726 727 728 729 730 731
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
732 733
static ssize_t i7core_inject_type_store(struct device *dev,
					struct device_attribute *mattr,
734 735
					const char *data, size_t count)
{
736 737
	struct mem_ctl_info *mci = to_mci(dev);
struct i7core_pvt *pvt = mci->pvt_info;
738 739 740 741
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
742
		disable_inject(mci);
743 744 745

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
746
		return -EIO;
747 748 749 750 751

	pvt->inject.type = (u32) value;
	return count;
}

752 753 754
static ssize_t i7core_inject_type_show(struct device *dev,
				       struct device_attribute *mattr,
				       char *data)
755
{
756
	struct mem_ctl_info *mci = to_mci(dev);
757
	struct i7core_pvt *pvt = mci->pvt_info;
758

759 760 761 762 763 764 765 766 767 768 769 770 771
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
772 773 774
static ssize_t i7core_inject_eccmask_store(struct device *dev,
					   struct device_attribute *mattr,
					   const char *data, size_t count)
775
{
776
	struct mem_ctl_info *mci = to_mci(dev);
777 778 779 780 781
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
782
		disable_inject(mci);
783 784 785

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
786
		return -EIO;
787 788 789 790 791

	pvt->inject.eccmask = (u32) value;
	return count;
}

792 793 794
static ssize_t i7core_inject_eccmask_show(struct device *dev,
					  struct device_attribute *mattr,
					  char *data)
795
{
796
	struct mem_ctl_info *mci = to_mci(dev);
797
	struct i7core_pvt *pvt = mci->pvt_info;
798

799 800 801 802 803 804 805 806 807 808 809 810 811 812
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

813 814
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
815 816 817
	struct device *dev,					\
	struct device_attribute *mattr,				\
	const char *data, size_t count)				\
818
{								\
819
	struct mem_ctl_info *mci = to_mci(dev);			\
820
	struct i7core_pvt *pvt;					\
821 822 823
	long value;						\
	int rc;							\
								\
824
	edac_dbg(1, "\n");					\
825 826
	pvt = mci->pvt_info;					\
								\
827 828 829
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
830
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
831 832 833 834 835 836 837 838 839 840 841 842 843
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
844 845 846
	struct device *dev,					\
	struct device_attribute *mattr,				\
	char *data)						\
847
{								\
848
	struct mem_ctl_info *mci = to_mci(dev);			\
849 850 851
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
852
	edac_dbg(1, "pvt=%p\n", pvt);				\
853 854 855 856
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
857 858
}

859
#define ATTR_ADDR_MATCH(param)					\
860 861 862
	static DEVICE_ATTR(param, S_IRUGO | S_IWUSR,		\
		    i7core_inject_show_##param,			\
		    i7core_inject_store_##param)
863

864 865 866 867 868 869
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
870

871 872 873 874 875 876 877
ATTR_ADDR_MATCH(channel);
ATTR_ADDR_MATCH(dimm);
ATTR_ADDR_MATCH(rank);
ATTR_ADDR_MATCH(bank);
ATTR_ADDR_MATCH(page);
ATTR_ADDR_MATCH(col);

878
static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
879 880 881 882
{
	u32 read;
	int count;

883 884 885
	edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		 where, val);
886

887 888
	for (count = 0; count < 10; count++) {
		if (count)
889
			msleep(100);
890 891 892 893 894 895 896
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

897 898 899 900
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
901 902 903 904

	return -EINVAL;
}

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
923 924 925
static ssize_t i7core_inject_enable_store(struct device *dev,
					  struct device_attribute *mattr,
					  const char *data, size_t count)
926
{
927
	struct mem_ctl_info *mci = to_mci(dev);
928 929 930 931 932 933
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

934
	if (!pvt->pci_ch[pvt->inject.channel][0])
935 936
		return 0;

937 938 939 940 941 942 943 944 945 946 947 948 949
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
950
		mask |= 1LL << 41;
951
	else {
952
		if (pvt->channel[pvt->inject.channel].dimms > 2)
953
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
954
		else
955
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
956 957 958 959
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
960
		mask |= 1LL << 40;
961
	else {
962
		if (pvt->channel[pvt->inject.channel].dimms > 2)
963
			mask |= (pvt->inject.rank & 0x1LL) << 34;
964
		else
965
			mask |= (pvt->inject.rank & 0x3LL) << 34;
966 967 968 969
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
970
		mask |= 1LL << 39;
971
	else
972
		mask |= (pvt->inject.bank & 0x15LL) << 30;
973 974 975

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
976
		mask |= 1LL << 38;
977
	else
978
		mask |= (pvt->inject.page & 0xffff) << 14;
979 980 981

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
982
		mask |= 1LL << 37;
983
	else
984
		mask |= (pvt->inject.col & 0x3fff);
985

986 987 988 989 990 991 992 993 994 995 996 997
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
998
	pci_write_config_dword(pvt->pci_noncore,
999
			       MC_CFG_CONTROL, 0x2);
1000

1001
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1002
			       MC_CHANNEL_ADDR_MATCH, mask);
1003
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1004 1005
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1006
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1007 1008
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1009
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1010
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1011

1012
	/*
1013 1014 1015
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1016
	 */
1017
	pci_write_config_dword(pvt->pci_noncore,
1018
			       MC_CFG_CONTROL, 8);
1019

1020 1021
	edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n",
		 mask, pvt->inject.eccmask, injectmask);
1022

1023

1024 1025 1026
	return count;
}

1027 1028 1029
static ssize_t i7core_inject_enable_show(struct device *dev,
					 struct device_attribute *mattr,
					 char *data)
1030
{
1031
	struct mem_ctl_info *mci = to_mci(dev);
1032
	struct i7core_pvt *pvt = mci->pvt_info;
1033 1034
	u32 injectmask;

1035 1036 1037
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1038
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1039
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1040

1041
	edac_dbg(0, "Inject error read: 0x%018x\n", injectmask);
1042 1043 1044 1045

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1046 1047 1048
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1049 1050
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
1051 1052 1053
	struct device *dev,					\
	struct device_attribute *mattr,				\
	char *data)						\
1054
{								\
1055
	struct mem_ctl_info *mci = to_mci(dev);			\
1056 1057
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
1058
	edac_dbg(1, "\n");					\
1059 1060 1061 1062 1063
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1064

1065
#define ATTR_COUNTER(param)					\
1066 1067 1068
	static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR,	\
		    i7core_show_counter_##param,		\
		    NULL)
1069

1070 1071 1072
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1073

1074 1075 1076 1077
ATTR_COUNTER(0);
ATTR_COUNTER(1);
ATTR_COUNTER(2);

1078
/*
1079
 * inject_addrmatch device sysfs struct
1080
 */
1081

1082 1083 1084 1085 1086 1087 1088 1089
static struct attribute *i7core_addrmatch_attrs[] = {
	&dev_attr_channel.attr,
	&dev_attr_dimm.attr,
	&dev_attr_rank.attr,
	&dev_attr_bank.attr,
	&dev_attr_page.attr,
	&dev_attr_col.attr,
	NULL
1090 1091
};

1092 1093
static struct attribute_group addrmatch_grp = {
	.attrs	= i7core_addrmatch_attrs,
1094 1095
};

1096 1097 1098
static const struct attribute_group *addrmatch_groups[] = {
	&addrmatch_grp,
	NULL
1099 1100
};

1101 1102
static void addrmatch_release(struct device *device)
{
1103
	edac_dbg(1, "Releasing device %s\n", dev_name(device));
1104
	kfree(device);
1105 1106 1107 1108 1109
}

static struct device_type addrmatch_type = {
	.groups		= addrmatch_groups,
	.release	= addrmatch_release,
1110 1111
};

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
/*
 * all_channel_counts sysfs struct
 */

static struct attribute *i7core_udimm_counters_attrs[] = {
	&dev_attr_udimm0.attr,
	&dev_attr_udimm1.attr,
	&dev_attr_udimm2.attr,
	NULL
};

static struct attribute_group all_channel_counts_grp = {
	.attrs	= i7core_udimm_counters_attrs,
1125 1126
};

1127 1128 1129
static const struct attribute_group *all_channel_counts_groups[] = {
	&all_channel_counts_grp,
	NULL
1130 1131
};

1132 1133
static void all_channel_counts_release(struct device *device)
{
1134
	edac_dbg(1, "Releasing device %s\n", dev_name(device));
1135
	kfree(device);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
}

static struct device_type all_channel_counts_type = {
	.groups		= all_channel_counts_groups,
	.release	= all_channel_counts_release,
};

/*
 * inject sysfs attributes
 */

static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR,
		   i7core_inject_section_show, i7core_inject_section_store);

static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR,
		   i7core_inject_type_show, i7core_inject_type_store);


static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR,
		   i7core_inject_eccmask_show, i7core_inject_eccmask_store);

static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR,
		   i7core_inject_enable_show, i7core_inject_enable_store);

static int i7core_create_sysfs_devices(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int rc;

	rc = device_create_file(&mci->dev, &dev_attr_inject_section);
	if (rc < 0)
		return rc;
	rc = device_create_file(&mci->dev, &dev_attr_inject_type);
	if (rc < 0)
		return rc;
	rc = device_create_file(&mci->dev, &dev_attr_inject_eccmask);
	if (rc < 0)
		return rc;
	rc = device_create_file(&mci->dev, &dev_attr_inject_enable);
	if (rc < 0)
		return rc;

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL);
	if (!pvt->addrmatch_dev)
		return rc;

	pvt->addrmatch_dev->type = &addrmatch_type;
	pvt->addrmatch_dev->bus = mci->dev.bus;
	device_initialize(pvt->addrmatch_dev);
	pvt->addrmatch_dev->parent = &mci->dev;
	dev_set_name(pvt->addrmatch_dev, "inject_addrmatch");
	dev_set_drvdata(pvt->addrmatch_dev, mci);
1188

1189
	edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev));
1190

1191
	rc = device_add(pvt->addrmatch_dev);
1192 1193 1194 1195
	if (rc < 0)
		return rc;

	if (!pvt->is_registered) {
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev),
					      GFP_KERNEL);
		if (!pvt->chancounts_dev) {
			put_device(pvt->addrmatch_dev);
			device_del(pvt->addrmatch_dev);
			return rc;
		}

		pvt->chancounts_dev->type = &all_channel_counts_type;
		pvt->chancounts_dev->bus = mci->dev.bus;
		device_initialize(pvt->chancounts_dev);
		pvt->chancounts_dev->parent = &mci->dev;
		dev_set_name(pvt->chancounts_dev, "all_channel_counts");
		dev_set_drvdata(pvt->chancounts_dev, mci);
1210

1211
		edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev));
1212

1213
		rc = device_add(pvt->chancounts_dev);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		if (rc < 0)
			return rc;
	}
	return 0;
}

static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;

1224
	edac_dbg(1, "\n");
1225 1226 1227 1228 1229 1230 1231

	device_remove_file(&mci->dev, &dev_attr_inject_section);
	device_remove_file(&mci->dev, &dev_attr_inject_type);
	device_remove_file(&mci->dev, &dev_attr_inject_eccmask);
	device_remove_file(&mci->dev, &dev_attr_inject_enable);

	if (!pvt->is_registered) {
1232 1233
		put_device(pvt->chancounts_dev);
		device_del(pvt->chancounts_dev);
1234
	}
1235 1236
	put_device(pvt->addrmatch_dev);
	device_del(pvt->addrmatch_dev);
1237 1238
}

1239 1240 1241 1242 1243
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
1244
 *	i7core_put_all_devices	'put' all the devices that we have
1245 1246
 *				reserved via 'get'
 */
1247
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1248
{
1249
	int i;
1250

1251
	edac_dbg(0, "\n");
1252
	for (i = 0; i < i7core_dev->n_devs; i++) {
1253 1254 1255
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
1256 1257 1258
		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
			 pdev->bus->number,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1259 1260
		pci_dev_put(pdev);
	}
1261
}
1262

1263 1264
static void i7core_put_all_devices(void)
{
1265
	struct i7core_dev *i7core_dev, *tmp;
1266

1267
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1268
		i7core_put_devices(i7core_dev);
1269
		free_i7core_dev(i7core_dev);
1270
	}
1271 1272
}

1273
static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1274 1275 1276
{
	struct pci_dev *pdev = NULL;
	int i;
1277

1278
	/*
D
David Sterba 已提交
1279
	 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1280 1281 1282
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1283 1284 1285 1286 1287 1288
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1289
		pci_dev_put(pdev);
1290
		table++;
1291 1292 1293
	}
}

1294 1295 1296 1297 1298 1299 1300
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
1301
		edac_dbg(0, "Found bus %d\n", bus);
1302 1303 1304 1305
		if (bus > last_bus)
			last_bus = bus;
	}

1306
	edac_dbg(0, "Last bus %d\n", last_bus);
1307 1308 1309 1310

	return last_bus;
}

1311
/*
1312
 *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1313 1314 1315 1316
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1317 1318 1319 1320
static int i7core_get_onedevice(struct pci_dev **prev,
				const struct pci_id_table *table,
				const unsigned devno,
				const unsigned last_bus)
1321
{
1322
	struct i7core_dev *i7core_dev;
1323
	const struct pci_id_descr *dev_descr = &table->descr[devno];
1324

1325
	struct pci_dev *pdev = NULL;
1326 1327
	u8 bus = 0;
	u8 socket = 0;
1328

1329
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1330
			      dev_descr->dev_id, *prev);
1331

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);

	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);

1346 1347 1348 1349
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1350 1351
		}

1352
		if (dev_descr->optional)
1353
			return 0;
1354

1355 1356 1357
		if (devno == 0)
			return -ENODEV;

1358
		i7core_printk(KERN_INFO,
1359
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1360 1361
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1362

1363 1364 1365 1366
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1367

1368
	socket = last_bus - bus;
1369

1370 1371
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
1372
		i7core_dev = alloc_i7core_dev(socket, table);
1373 1374
		if (!i7core_dev) {
			pci_dev_put(pdev);
1375
			return -ENOMEM;
1376
		}
1377
	}
1378

1379
	if (i7core_dev->pdev[devno]) {
1380 1381 1382
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1383 1384
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1385 1386 1387
		pci_dev_put(pdev);
		return -ENODEV;
	}
1388

1389
	i7core_dev->pdev[devno] = pdev;
1390 1391

	/* Sanity check */
1392 1393
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1394 1395 1396
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1397
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1398
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1399
			bus, dev_descr->dev, dev_descr->func);
1400 1401
		return -ENODEV;
	}
1402

1403 1404 1405 1406 1407
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1408 1409
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1410 1411
		return -ENODEV;
	}
1412

1413 1414 1415 1416
	edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
		 socket, bus, dev_descr->dev,
		 dev_descr->func,
		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1417

1418 1419 1420 1421 1422 1423 1424
	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

1425
	*prev = pdev;
1426

1427 1428
	return 0;
}
1429

1430
static int i7core_get_all_devices(void)
1431
{
1432
	int i, rc, last_bus;
1433
	struct pci_dev *pdev = NULL;
1434
	const struct pci_id_table *table = pci_dev_table;
1435

1436 1437
	last_bus = i7core_pci_lastbus();

1438
	while (table && table->descr) {
1439 1440 1441
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1442
				rc = i7core_get_onedevice(&pdev, table, i,
1443
							  last_bus);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
1454
		table++;
1455
	}
1456

1457 1458 1459
	return 0;
}

1460 1461
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1462 1463 1464
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1465
	int i, func, slot;
1466
	char *family;
1467

1468 1469
	pvt->is_registered = false;
	pvt->enable_scrub  = false;
1470
	for (i = 0; i < i7core_dev->n_devs; i++) {
1471 1472
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1473 1474
			continue;

1475 1476 1477 1478 1479 1480 1481 1482
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1483
				goto error;
1484
			pvt->pci_ch[slot - 4][func] = pdev;
1485
		} else if (!slot && !func) {
1486
			pvt->pci_noncore = pdev;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

			/* Detect the processor family */
			switch (pdev->device) {
			case PCI_DEVICE_ID_INTEL_I7_NONCORE:
				family = "Xeon 35xx/ i7core";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
				family = "i7-800/i5-700";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
				family = "Xeon 34xx";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
				family = "Xeon 55xx";
				pvt->enable_scrub = true;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
				family = "Xeon 56xx / i7-900";
				pvt->enable_scrub = true;
				break;
			default:
				family = "unknown";
				pvt->enable_scrub = false;
			}
1514
			edac_dbg(0, "Detected a processor type %s\n", family);
1515
		} else
1516
			goto error;
1517

1518 1519 1520
		edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n",
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev, i7core_dev->socket);
1521

1522 1523
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
1524
			pvt->is_registered = true;
1525
	}
1526

1527
	return 0;
1528 1529 1530 1531 1532 1533

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1534 1535
}

1536 1537 1538
/****************************************************************************
			Error check routines
 ****************************************************************************/
1539
static void i7core_rdimm_update_errcount(struct mem_ctl_info *mci,
1540 1541 1542
				      const int chan,
				      const int dimm,
				      const int add)
1543
{
1544
	int i;
1545 1546

	for (i = 0; i < add; i++) {
1547 1548
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 0, 0, 0,
				     chan, dimm, -1, "error", "", NULL);
1549 1550 1551 1552
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1553 1554 1555 1556
					 const int chan,
					 const int new0,
					 const int new1,
					 const int new2)
1557 1558 1559 1560
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1561
	if (pvt->ce_count_available) {
1562 1563
		/* Updates CE counters */

1564 1565 1566
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1567 1568 1569

		if (add2 < 0)
			add2 += 0x7fff;
1570
		pvt->rdimm_ce_count[chan][2] += add2;
1571 1572 1573

		if (add1 < 0)
			add1 += 0x7fff;
1574
		pvt->rdimm_ce_count[chan][1] += add1;
1575 1576 1577

		if (add0 < 0)
			add0 += 0x7fff;
1578
		pvt->rdimm_ce_count[chan][0] += add0;
1579
	} else
1580
		pvt->ce_count_available = 1;
1581 1582

	/* Store the new values */
1583 1584 1585
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1586 1587 1588

	/*updated the edac core */
	if (add0 != 0)
1589
		i7core_rdimm_update_errcount(mci, chan, 0, add0);
1590
	if (add1 != 0)
1591
		i7core_rdimm_update_errcount(mci, chan, 1, add1);
1592
	if (add2 != 0)
1593
		i7core_rdimm_update_errcount(mci, chan, 2, add2);
1594 1595 1596

}

1597
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1598 1599 1600 1601 1602 1603
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1604
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1605
								&rcv[0][0]);
1606
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1607
								&rcv[0][1]);
1608
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1609
								&rcv[1][0]);
1610
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1611
								&rcv[1][1]);
1612
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1613
								&rcv[2][0]);
1614
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1615 1616
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
1617 1618
		edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
1619
		/*if the channel has 3 dimms*/
1620
		if (pvt->channel[i].dimms > 2) {
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1632
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1633 1634
	}
}
1635 1636 1637 1638 1639 1640 1641

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1642
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1643 1644 1645 1646 1647
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1648
	if (!pvt->pci_mcr[4]) {
1649
		edac_dbg(0, "MCR registers not found\n");
1650 1651 1652
		return;
	}

1653
	/* Corrected test errors */
1654 1655
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1656 1657 1658 1659 1660 1661 1662

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1663
	if (pvt->ce_count_available) {
1664 1665 1666
		/* Updates CE counters */
		int add0, add1, add2;

1667 1668 1669
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1670 1671 1672

		if (add2 < 0)
			add2 += 0x7fff;
1673
		pvt->udimm_ce_count[2] += add2;
1674 1675 1676

		if (add1 < 0)
			add1 += 0x7fff;
1677
		pvt->udimm_ce_count[1] += add1;
1678 1679 1680

		if (add0 < 0)
			add0 += 0x7fff;
1681
		pvt->udimm_ce_count[0] += add0;
1682 1683 1684 1685 1686

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1687
	} else
1688
		pvt->ce_count_available = 1;
1689 1690

	/* Store the new values */
1691 1692 1693
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1694 1695
}

1696 1697 1698
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1699 1700 1701
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1702
 *     struct mce field	MCA Register
1703 1704 1705
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1706 1707 1708
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1709
static void i7core_mce_output_error(struct mem_ctl_info *mci,
1710
				    const struct mce *m)
1711
{
1712
	struct i7core_pvt *pvt = mci->pvt_info;
1713
	char *type, *optype, *err, msg[80];
1714
	enum hw_event_mc_err_type tp_event;
1715
	unsigned long error = m->status & 0x1ff0000l;
1716 1717
	bool uncorrected_error = m->mcgstatus & 1ll << 61;
	bool ripv = m->mcgstatus & 1;
1718
	u32 optypenum = (m->status >> 4) & 0x07;
1719
	u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1720 1721 1722 1723 1724
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	if (uncorrected_error) {
		if (ripv) {
			type = "FATAL";
			tp_event = HW_EVENT_ERR_FATAL;
		} else {
			type = "NON_FATAL";
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		}
	} else {
		type = "CORRECTED";
		tp_event = HW_EVENT_ERR_CORRECTED;
	}
1737

1738
	switch (optypenum) {
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1757 1758
	}

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1789 1790
	}

1791
	snprintf(msg, sizeof(msg), "count=%d %s", core_err_cnt, optype);
1792

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	/*
	 * Call the helper to output message
	 * FIXME: what to do if core_err_cnt > 1? Currently, it generates
	 * only one event
	 */
	if (uncorrected_error || !pvt->is_registered)
		edac_mc_handle_error(tp_event, mci,
				     m->addr >> PAGE_SHIFT,
				     m->addr & ~PAGE_MASK,
				     syndrome,
				     channel, dimm, -1,
				     err, msg, m);
1805 1806
}

1807 1808 1809 1810 1811 1812
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1813 1814 1815
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1816
	struct mce *m;
1817

1818 1819 1820
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
L
Lucas De Marchi 已提交
1821
	 * losing an error.
1822 1823
	 */
	smp_rmb();
1824 1825
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1826
	if (!count)
1827
		goto check_ce_error;
1828

1829
	m = pvt->mce_outentry;
1830 1831
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1832

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1850

1851 1852 1853
	/*
	 * MCE second step: parse errors and display
	 */
1854
	for (i = 0; i < count; i++)
1855
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1856

1857 1858 1859
	/*
	 * Now, let's increment CE error counts
	 */
1860
check_ce_error:
1861 1862 1863 1864
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1865 1866
}

1867 1868 1869 1870 1871
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1872 1873
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1874
 */
1875 1876
static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
				  void *data)
1877
{
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	struct mce *mce = (struct mce *)data;
	struct i7core_dev *i7_dev;
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;

	i7_dev = get_i7core_dev(mce->socketid);
	if (!i7_dev)
		return NOTIFY_BAD;

	mci = i7_dev->mci;
	pvt = mci->pvt_info;
1889

1890 1891 1892 1893 1894
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
1895
		return NOTIFY_DONE;
1896

1897 1898
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
1899
		return NOTIFY_DONE;
1900

R
Randy Dunlap 已提交
1901
#ifdef CONFIG_SMP
1902
	/* Only handle if it is the right mc controller */
1903
	if (mce->socketid != pvt->i7core_dev->socket)
1904
		return NOTIFY_DONE;
R
Randy Dunlap 已提交
1905
#endif
1906

1907
	smp_rmb();
1908
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1909 1910
		smp_wmb();
		pvt->mce_overrun++;
1911
		return NOTIFY_DONE;
1912
	}
1913 1914 1915

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1916
	smp_wmb();
1917
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1918

1919 1920 1921 1922
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

D
David Sterba 已提交
1923
	/* Advise mcelog that the errors were handled */
1924
	return NOTIFY_STOP;
1925 1926
}

1927 1928 1929 1930
static struct notifier_block i7_mce_dec = {
	.notifier_call	= i7core_mce_check_error,
};

N
Nils Carlson 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
struct memdev_dmi_entry {
	u8 type;
	u8 length;
	u16 handle;
	u16 phys_mem_array_handle;
	u16 mem_err_info_handle;
	u16 total_width;
	u16 data_width;
	u16 size;
	u8 form;
	u8 device_set;
	u8 device_locator;
	u8 bank_locator;
	u8 memory_type;
	u16 type_detail;
	u16 speed;
	u8 manufacturer;
	u8 serial_number;
	u8 asset_tag;
	u8 part_number;
	u8 attributes;
	u32 extended_size;
	u16 conf_mem_clk_speed;
} __attribute__((__packed__));


/*
 * Decode the DRAM Clock Frequency, be paranoid, make sure that all
 * memory devices show the same speed, and if they don't then consider
 * all speeds to be invalid.
 */
static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
{
	int *dclk_freq = _dclk_freq;
	u16 dmi_mem_clk_speed;

	if (*dclk_freq == -1)
		return;

	if (dh->type == DMI_ENTRY_MEM_DEVICE) {
		struct memdev_dmi_entry *memdev_dmi_entry =
			(struct memdev_dmi_entry *)dh;
		unsigned long conf_mem_clk_speed_offset =
			(unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
			(unsigned long)&memdev_dmi_entry->type;
		unsigned long speed_offset =
			(unsigned long)&memdev_dmi_entry->speed -
			(unsigned long)&memdev_dmi_entry->type;

		/* Check that a DIMM is present */
		if (memdev_dmi_entry->size == 0)
			return;

		/*
		 * Pick the configured speed if it's available, otherwise
		 * pick the DIMM speed, or we don't have a speed.
		 */
		if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
			dmi_mem_clk_speed =
				memdev_dmi_entry->conf_mem_clk_speed;
		} else if (memdev_dmi_entry->length > speed_offset) {
			dmi_mem_clk_speed = memdev_dmi_entry->speed;
		} else {
			*dclk_freq = -1;
			return;
		}

		if (*dclk_freq == 0) {
			/* First pass, speed was 0 */
			if (dmi_mem_clk_speed > 0) {
				/* Set speed if a valid speed is read */
				*dclk_freq = dmi_mem_clk_speed;
			} else {
				/* Otherwise we don't have a valid speed */
				*dclk_freq = -1;
			}
		} else if (*dclk_freq > 0 &&
			   *dclk_freq != dmi_mem_clk_speed) {
			/*
			 * If we have a speed, check that all DIMMS are the same
			 * speed, otherwise set the speed as invalid.
			 */
			*dclk_freq = -1;
		}
	}
}

/*
 * The default DCLK frequency is used as a fallback if we
 * fail to find anything reliable in the DMI. The value
 * is taken straight from the datasheet.
 */
#define DEFAULT_DCLK_FREQ 800

static int get_dclk_freq(void)
{
	int dclk_freq = 0;

	dmi_walk(decode_dclk, (void *)&dclk_freq);

	if (dclk_freq < 1)
		return DEFAULT_DCLK_FREQ;

	return dclk_freq;
}

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
/*
 * set_sdram_scrub_rate		This routine sets byte/sec bandwidth scrub rate
 *				to hardware according to SCRUBINTERVAL formula
 *				found in datasheet.
 */
static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	u32 dw_scrub;
	u32 dw_ssr;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);

	if (new_bw == 0) {
		/* Prepare to disable petrol scrub */
		dw_scrub &= ~STARTSCRUB;
		/* Stop the patrol scrub engine */
N
Nils Carlson 已提交
2060 2061
		write_and_test(pdev, MC_SCRUB_CONTROL,
			       dw_scrub & ~SCRUBINTERVAL_MASK);
2062 2063 2064 2065 2066 2067

		/* Get current status of scrub rate and set bit to disable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_DISABLE;
	} else {
N
Nils Carlson 已提交
2068 2069 2070
		const int cache_line_size = 64;
		const u32 freq_dclk_mhz = pvt->dclk_freq;
		unsigned long long scrub_interval;
2071 2072
		/*
		 * Translate the desired scrub rate to a register value and
N
Nils Carlson 已提交
2073
		 * program the corresponding register value.
2074
		 */
N
Nils Carlson 已提交
2075
		scrub_interval = (unsigned long long)freq_dclk_mhz *
2076 2077
			cache_line_size * 1000000;
		do_div(scrub_interval, new_bw);
N
Nils Carlson 已提交
2078 2079 2080 2081 2082

		if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
			return -EINVAL;

		dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

		/* Start the patrol scrub engine */
		pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
				       STARTSCRUB | dw_scrub);

		/* Get current status of scrub rate and set bit to enable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_ENABLE;
	}
	/* Disable or enable scrubbing */
	pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);

	return new_bw;
}

/*
 * get_sdram_scrub_rate		This routine convert current scrub rate value
 *				into byte/sec bandwidth accourding to
 *				SCRUBINTERVAL formula found in datasheet.
 */
static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	const u32 cache_line_size = 64;
N
Nils Carlson 已提交
2109 2110
	const u32 freq_dclk_mhz = pvt->dclk_freq;
	unsigned long long scrub_rate;
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	u32 scrubval;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	/* Get current scrub control data */
	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);

	/* Mask highest 8-bits to 0 */
N
Nils Carlson 已提交
2122
	scrubval &=  SCRUBINTERVAL_MASK;
2123 2124 2125 2126
	if (!scrubval)
		return 0;

	/* Calculate scrub rate value into byte/sec bandwidth */
N
Nils Carlson 已提交
2127
	scrub_rate =  (unsigned long long)freq_dclk_mhz *
2128 2129
		1000000 * cache_line_size;
	do_div(scrub_rate, scrubval);
N
Nils Carlson 已提交
2130
	return (int)scrub_rate;
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
}

static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Unlock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_UNLOCK);

	mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
	mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
}

static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Lock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_LOCK);
}

2160 2161 2162 2163 2164 2165
static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
{
	pvt->i7core_pci = edac_pci_create_generic_ctl(
						&pvt->i7core_dev->pdev[0]->dev,
						EDAC_MOD_STR);
	if (unlikely(!pvt->i7core_pci))
2166 2167
		i7core_printk(KERN_WARNING,
			      "Unable to setup PCI error report via EDAC\n");
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
}

static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
{
	if (likely(pvt->i7core_pci))
		edac_pci_release_generic_ctl(pvt->i7core_pci);
	else
		i7core_printk(KERN_ERR,
				"Couldn't find mem_ctl_info for socket %d\n",
				pvt->i7core_dev->socket);
	pvt->i7core_pci = NULL;
}

2181 2182 2183 2184 2185 2186
static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
{
	struct mem_ctl_info *mci = i7core_dev->mci;
	struct i7core_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
2187
		edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev);
2188 2189 2190 2191 2192 2193 2194

		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

2195
	edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2196

2197
	/* Disable scrubrate setting */
2198 2199
	if (pvt->enable_scrub)
		disable_sdram_scrub_setting(mci);
2200

2201
	mce_unregister_decode_chain(&i7_mce_dec);
2202 2203 2204 2205 2206

	/* Disable EDAC polling */
	i7core_pci_ctl_release(pvt);

	/* Remove MC sysfs nodes */
2207
	i7core_delete_sysfs_devices(mci);
2208
	edac_mc_del_mc(mci->pdev);
2209

2210
	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2211 2212 2213 2214 2215
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	i7core_dev->mci = NULL;
}

2216
static int i7core_register_mci(struct i7core_dev *i7core_dev)
2217 2218 2219
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
2220 2221
	int rc;
	struct edac_mc_layer layers[2];
2222 2223

	/* allocate a new MC control structure */
2224 2225 2226 2227 2228 2229 2230

	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = NUM_CHANS;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = MAX_DIMMS;
	layers[1].is_virt_csrow = true;
2231
	mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers,
2232
			    sizeof(*pvt));
2233 2234
	if (unlikely(!mci))
		return -ENOMEM;
2235

2236
	edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2237 2238

	pvt = mci->pvt_info;
2239
	memset(pvt, 0, sizeof(*pvt));
2240

2241 2242 2243 2244
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;

2245 2246 2247 2248 2249 2250
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
2251 2252 2253 2254
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
2255 2256 2257
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
2258
	mci->ctl_page_to_phys = NULL;
2259

2260
	/* Store pci devices at mci for faster access */
2261
	rc = mci_bind_devs(mci, i7core_dev);
2262
	if (unlikely(rc < 0))
2263
		goto fail0;
2264

2265

2266
	/* Get dimm basic config */
2267
	get_dimm_config(mci);
2268
	/* record ptr to the generic device */
2269
	mci->pdev = &i7core_dev->pdev[0]->dev;
2270 2271
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
2272

2273
	/* Enable scrubrate setting */
2274 2275
	if (pvt->enable_scrub)
		enable_sdram_scrub_setting(mci);
2276

2277
	/* add this new MC control structure to EDAC's list of MCs */
2278
	if (unlikely(edac_mc_add_mc(mci))) {
2279
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2280 2281 2282
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
2283 2284

		rc = -EINVAL;
2285
		goto fail0;
2286
	}
2287
	if (i7core_create_sysfs_devices(mci)) {
2288
		edac_dbg(0, "MC: failed to create sysfs nodes\n");
2289 2290 2291 2292
		edac_mc_del_mc(mci->pdev);
		rc = -EINVAL;
		goto fail0;
	}
2293

2294
	/* Default error mask is any memory */
2295
	pvt->inject.channel = 0;
2296 2297 2298 2299 2300 2301
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

2302 2303 2304
	/* allocating generic PCI control info */
	i7core_pci_ctl_create(pvt);

N
Nils Carlson 已提交
2305 2306 2307
	/* DCLK for scrub rate setting */
	pvt->dclk_freq = get_dclk_freq();

2308
	mce_register_decode_chain(&i7_mce_dec);
2309

2310 2311 2312 2313 2314
	return 0;

fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
2315
	i7core_dev->mci = NULL;
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
2326

2327 2328 2329
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
2330
	int rc, count = 0;
2331 2332
	struct i7core_dev *i7core_dev;

2333 2334 2335
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

2336
	/*
2337
	 * All memory controllers are allocated at the first pass.
2338
	 */
2339 2340
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
2341
		return -ENODEV;
2342 2343
	}
	probed++;
2344

2345
	rc = i7core_get_all_devices();
2346 2347 2348 2349
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2350
		count++;
2351
		rc = i7core_register_mci(i7core_dev);
2352 2353
		if (unlikely(rc < 0))
			goto fail1;
2354 2355
	}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	/*
	 * Nehalem-EX uses a different memory controller. However, as the
	 * memory controller is not visible on some Nehalem/Nehalem-EP, we
	 * need to indirectly probe via a X58 PCI device. The same devices
	 * are found on (some) Nehalem-EX. So, on those machines, the
	 * probe routine needs to return -ENODEV, as the actual Memory
	 * Controller registers won't be detected.
	 */
	if (!count) {
		rc = -ENODEV;
		goto fail1;
	}

	i7core_printk(KERN_INFO,
		      "Driver loaded, %d memory controller(s) found.\n",
		      count);
2372

2373
	mutex_unlock(&i7core_edac_lock);
2374 2375
	return 0;

2376
fail1:
2377 2378 2379
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);

2380
	i7core_put_all_devices();
2381 2382
fail0:
	mutex_unlock(&i7core_edac_lock);
2383
	return rc;
2384 2385 2386 2387 2388 2389 2390 2391
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
2392
	struct i7core_dev *i7core_dev;
2393

2394
	edac_dbg(0, "\n");
2395

2396 2397 2398 2399 2400 2401 2402
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2403

2404
	mutex_lock(&i7core_edac_lock);
2405 2406 2407 2408 2409 2410

	if (unlikely(!probed)) {
		mutex_unlock(&i7core_edac_lock);
		return;
	}

2411 2412
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);
2413 2414 2415 2416

	/* Release PCI resources */
	i7core_put_all_devices();

2417 2418
	probed--;

2419
	mutex_unlock(&i7core_edac_lock);
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

2443
	edac_dbg(2, "\n");
2444 2445 2446 2447

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2448 2449
	if (use_pci_fixup)
		i7core_xeon_pci_fixup(pci_dev_table);
2450

2451 2452
	pci_rc = pci_register_driver(&i7core_driver);

2453 2454 2455 2456 2457 2458 2459
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2460 2461 2462 2463 2464 2465 2466 2467
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
2468
	edac_dbg(2, "\n");
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");