mod.rs 105.7 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
18
use hir::def::{Def, CtorKind, ExportMap};
19
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
20
use hir::map::DefPathData;
21
use hir::svh::Svh;
W
Wesley Wiser 已提交
22
use ich::Fingerprint;
23
use ich::StableHashingContext;
24
use infer::canonical::{Canonical, Canonicalize};
25
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
26
use middle::privacy::AccessLevels;
27
use middle::resolve_lifetime::ObjectLifetimeDefault;
28
use mir::Mir;
29
use mir::interpret::GlobalId;
J
John Kåre Alsaker 已提交
30
use mir::GeneratorLayout;
31
use session::CrateDisambiguator;
32
use traits::{self, Reveal};
33
use ty;
34
use ty::subst::{Subst, Substs};
O
Oliver Schneider 已提交
35
use ty::util::{IntTypeExt, Discr};
36
use ty::walk::TypeWalker;
37
use util::captures::Captures;
38
use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
J
John Kåre Alsaker 已提交
39
use arena::SyncDroplessArena;
40

41
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
42
use std::cell::RefCell;
43
use std::cmp::{self, Ordering};
44
use std::fmt;
45
use std::hash::{Hash, Hasher};
46
use std::ops::Deref;
47
use rustc_data_structures::sync::Lrc;
48
use std::slice;
49
use std::vec::IntoIter;
50
use std::mem;
J
Jeffrey Seyfried 已提交
51
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
52
use syntax::attr;
53
use syntax::ext::hygiene::Mark;
54
use syntax::symbol::{Symbol, LocalInternedString, InternedString};
55
use syntax_pos::{DUMMY_SP, Span};
56

57
use rustc_data_structures::accumulate_vec::IntoIter as AccIntoIter;
58 59
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
60

61
use hir;
62

63
pub use self::sty::{Binder, CanonicalVar, DebruijnIndex};
J
John Kåre Alsaker 已提交
64
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
65
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
66
pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
67
pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef};
68
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
69
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
70
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
71
pub use self::sty::RegionKind;
72
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
73 74
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
75
pub use self::sty::RegionKind::*;
76 77
pub use self::sty::TypeVariants::*;

78 79 80
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

81
pub use self::context::{TyCtxt, GlobalArenas, AllArenas, tls, keep_local};
82
pub use self::context::{Lift, TypeckTables};
83

84 85
pub use self::instance::{Instance, InstanceDef};

86
pub use self::trait_def::TraitDef;
87

88 89
pub use self::maps::queries;

90
pub mod adjustment;
91
pub mod binding;
92
pub mod cast;
93
#[macro_use]
94
pub mod codec;
95
pub mod error;
96
mod erase_regions;
97 98
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
99
pub mod inhabitedness;
100
pub mod item_path;
101
pub mod layout;
102
pub mod _match;
103
pub mod maps;
104 105
pub mod outlives;
pub mod relate;
106
pub mod steal;
107
pub mod subst;
108
pub mod trait_def;
109 110
pub mod walk;
pub mod wf;
111
pub mod util;
112

113 114
mod context;
mod flags;
115
mod instance;
116 117 118
mod structural_impls;
mod sty;

119
// Data types
120

121
/// The complete set of all analyses described in this module. This is
I
Irina Popa 已提交
122
/// produced by the driver and fed to codegen and later passes.
123 124 125
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
126
#[derive(Clone)]
127
pub struct CrateAnalysis {
128
    pub access_levels: Lrc<AccessLevels>,
129
    pub name: String,
130
    pub glob_map: Option<hir::GlobMap>,
131 132
}

133 134 135 136 137
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
138
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
139
    pub export_map: ExportMap,
140 141
}

142
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
143
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
144 145
    TraitContainer(DefId),
    ImplContainer(DefId),
146 147
}

148
impl AssociatedItemContainer {
149 150 151 152 153 154 155 156 157
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
158
    pub fn id(&self) -> DefId {
159 160 161 162 163 164 165
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
166 167 168 169 170 171 172 173 174 175 176
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

S
scalexm 已提交
177
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
178 179 180 181 182 183 184
pub struct AssociatedItem {
    pub def_id: DefId,
    pub name: Name,
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
185

186 187 188 189
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
190

191
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
192 193 194 195 196
pub enum AssociatedKind {
    Const,
    Method,
    Type
}
197

198 199 200 201 202 203
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
204 205
        }
    }
A
Andrew Cann 已提交
206 207 208 209 210 211 212

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
            AssociatedKind::Const => true,
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
213
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
214 215 216
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
217 218 219 220 221 222 223 224

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
225
                format!("{}", tcx.fn_sig(self.def_id).skip_binder())
226 227 228 229 230 231 232
            }
            ty::AssociatedKind::Type => format!("type {};", self.name.to_string()),
            ty::AssociatedKind::Const => {
                format!("const {}: {:?};", self.name.to_string(), tcx.type_of(self.def_id))
            }
        }
    }
233 234
}

235
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
236 237 238 239
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
240
    Restricted(DefId),
241
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
242
    Invisible,
243 244
}

245 246
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
261 262
}

263 264 265
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
266 267 268
    }
}

269
impl Visibility {
270
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
271 272
        match *visibility {
            hir::Public => Visibility::Public,
273
            hir::Visibility::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
274
            hir::Visibility::Restricted { ref path, .. } => match path.def {
275 276
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
277
                Def::Err => Visibility::Public,
278
                def => Visibility::Restricted(def.def_id()),
279
            },
280
            hir::Inherited => {
J
Jeffrey Seyfried 已提交
281
                Visibility::Restricted(tcx.hir.get_module_parent(id))
282
            }
283 284
        }
    }
285 286

    /// Returns true if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
287
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
288 289 290 291
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
292
            Visibility::Invisible => return false,
293
            // Restricted items are visible in an arbitrary local module.
294
            Visibility::Restricted(other) if other.krate != module.krate => return false,
295 296 297
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
298
        tree.is_descendant_of(module, restriction)
299
    }
300 301

    /// Returns true if this visibility is at least as accessible as the given visibility
302
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
303 304
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
305
            Visibility::Invisible => return true,
306 307 308
            Visibility::Restricted(module) => module,
        };

309
        self.is_accessible_from(vis_restriction, tree)
310
    }
311 312 313 314 315 316 317 318 319

    // Returns true if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
320 321
}

322
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
323
pub enum Variance {
324 325 326 327
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
328
}
329

330 331 332 333
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
334
/// `tcx.variances_of()` to get the variance for a *particular*
335 336 337 338 339
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
340
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
341 342

    /// An empty vector, useful for cloning.
343
    pub empty_variance: Lrc<Vec<ty::Variance>>,
344 345
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

406 407 408
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
409
pub struct CReaderCacheKey {
410 411 412 413
    pub cnum: CrateNum,
    pub pos: usize,
}

414 415 416 417
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
418
bitflags! {
419 420 421 422 423 424
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
425 426 427 428 429

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
430
        const HAS_RE_EARLY_BOUND = 1 << 5;
431 432 433

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
434
        const HAS_FREE_REGIONS   = 1 << 6;
435 436

        /// Is an error type reachable?
437 438
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
439 440

        // FIXME: Rename this to the actual property since it's used for generators too
441
        const HAS_TY_CLOSURE     = 1 << 9;
442 443 444

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
445
        const HAS_FREE_LOCAL_NAMES    = 1 << 10;
446

447 448
        // Present if the type belongs in a local type context.
        // Only set for TyInfer other than Fresh.
449
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
450

451 452
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
453
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
454

455 456 457 458
        // Set if this includes a "canonical" type or region var --
        // ought to be true only for the results of canonicalization.
        const HAS_CANONICAL_VARS = 1 << 13;

459 460 461 462
        /// Does this have any `ReLateBound` regions? Used to check
        /// if a global bound is safe to evaluate.
        const HAS_RE_LATE_BOUND = 1 << 14;

463 464
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
465
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
466 467

        // Flags representing the nominal content of a type,
468 469
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
470 471 472 473
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
474
                                  TypeFlags::HAS_RE_SKOL.bits |
475 476
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
477
                                  TypeFlags::HAS_TY_ERR.bits |
478
                                  TypeFlags::HAS_PROJECTION.bits |
479
                                  TypeFlags::HAS_TY_CLOSURE.bits |
480
                                  TypeFlags::HAS_FREE_LOCAL_NAMES.bits |
481
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits |
482 483
                                  TypeFlags::HAS_CANONICAL_VARS.bits |
                                  TypeFlags::HAS_RE_LATE_BOUND.bits;
484
    }
485 486
}

487
pub struct TyS<'tcx> {
488
    pub sty: TypeVariants<'tcx>,
489
    pub flags: TypeFlags,
490

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
    /// This is a kind of confusing thing: it stores the smallest
    /// binder such that
    ///
    /// (a) the binder itself captures nothing but
    /// (b) all the late-bound things within the type are captured
    ///     by some sub-binder.
    ///
    /// So, for a type without any late-bound things, like `u32`, this
    /// will be INNERMOST, because that is the innermost binder that
    /// captures nothing. But for a type `&'D u32`, where `'D` is a
    /// late-bound region with debruijn index D, this would be D+1 --
    /// the binder itself does not capture D, but D is captured by an
    /// inner binder.
    ///
    /// We call this concept an "exclusive" binder D (because all
    /// debruijn indices within the type are contained within `0..D`
    /// (exclusive)).
    outer_exclusive_binder: ty::DebruijnIndex,
509 510
}

511 512 513 514 515 516 517 518 519 520 521 522
impl<'tcx> Ord for TyS<'tcx> {
    fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
        self.sty.cmp(&other.sty)
    }
}

impl<'tcx> PartialOrd for TyS<'tcx> {
    fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
        Some(self.sty.cmp(&other.sty))
    }
}

523
impl<'tcx> PartialEq for TyS<'tcx> {
524
    #[inline]
525 526 527 528 529
    fn eq(&self, other: &TyS<'tcx>) -> bool {
        // (self as *const _) == (other as *const _)
        (self as *const TyS<'tcx>) == (other as *const TyS<'tcx>)
    }
}
530
impl<'tcx> Eq for TyS<'tcx> {}
531

A
Alex Crichton 已提交
532 533
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
N
Nick Cameron 已提交
534
        (self as *const TyS).hash(s)
A
Alex Crichton 已提交
535 536
    }
}
537

G
Guillaume Gomez 已提交
538 539 540 541 542 543 544 545 546 547 548 549
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
            TypeVariants::TyBool |
                TypeVariants::TyChar |
                TypeVariants::TyInt(_) |
                TypeVariants::TyUint(_) |
                TypeVariants::TyFloat(_) |
                TypeVariants::TyInfer(InferTy::IntVar(_)) |
                TypeVariants::TyInfer(InferTy::FloatVar(_)) |
                TypeVariants::TyInfer(InferTy::FreshIntTy(_)) |
                TypeVariants::TyInfer(InferTy::FreshFloatTy(_)) => true,
550
            TypeVariants::TyRef(_, x, _) => x.is_primitive_ty(),
G
Guillaume Gomez 已提交
551 552 553
            _ => false,
        }
    }
554 555 556 557 558 559 560 561

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
            TypeVariants::TyAnon(..) |
            TypeVariants::TyFnDef(..) |
            TypeVariants::TyFnPtr(..) |
            TypeVariants::TyDynamic(..) |
            TypeVariants::TyClosure(..) |
562
            TypeVariants::TyInfer(..) |
563 564 565 566
            TypeVariants::TyProjection(..) => false,
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
567 568
}

569
impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
570
    fn hash_stable<W: StableHasherResult>(&self,
571
                                          hcx: &mut StableHashingContext<'a>,
572 573 574 575 576 577 578
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
579 580

            outer_exclusive_binder: _,
581 582 583 584 585 586
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

587
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
588

589 590
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
591

592 593 594 595 596 597 598 599 600 601 602
pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;

impl <'gcx: 'tcx, 'tcx> Canonicalize<'gcx, 'tcx> for Ty<'tcx> {
    type Canonicalized = CanonicalTy<'gcx>;

    fn intern(_gcx: TyCtxt<'_, 'gcx, 'gcx>,
              value: Canonical<'gcx, Self::Lifted>) -> Self::Canonicalized {
        value
    }
}

J
John Kåre Alsaker 已提交
603 604 605 606 607
extern {
    /// A dummy type used to force Slice to by unsized without requiring fat pointers
    type OpaqueSliceContents;
}

A
Adam Perry 已提交
608
/// A wrapper for slices with the additional invariant
609 610
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
J
John Kåre Alsaker 已提交
611
/// This means we can use pointer for both
612
/// equality comparisons and hashing.
J
John Kåre Alsaker 已提交
613 614 615 616 617
#[repr(C)]
pub struct Slice<T> {
    len: usize,
    data: [T; 0],
    opaque: OpaqueSliceContents,
J
John Kåre Alsaker 已提交
618 619
}

J
John Kåre Alsaker 已提交
620 621
unsafe impl<T: Sync> Sync for Slice<T> {}

J
John Kåre Alsaker 已提交
622 623 624 625 626 627 628
impl<T: Copy> Slice<T> {
    #[inline]
    fn from_arena<'tcx>(arena: &'tcx SyncDroplessArena, slice: &[T]) -> &'tcx Slice<T> {
        assert!(!mem::needs_drop::<T>());
        assert!(mem::size_of::<T>() != 0);
        assert!(slice.len() != 0);

J
John Kåre Alsaker 已提交
629 630 631 632 633 634
        // Align up the size of the len (usize) field
        let align = mem::align_of::<T>();
        let align_mask = align - 1;
        let offset = mem::size_of::<usize>();
        let offset = (offset + align_mask) & !align_mask;

J
John Kåre Alsaker 已提交
635 636
        let size = offset + slice.len() * mem::size_of::<T>();

J
John Kåre Alsaker 已提交
637
        let mem = arena.alloc_raw(
J
John Kåre Alsaker 已提交
638
            size,
J
John Kåre Alsaker 已提交
639
            cmp::max(mem::align_of::<T>(), mem::align_of::<usize>()));
J
John Kåre Alsaker 已提交
640
        unsafe {
J
John Kåre Alsaker 已提交
641
            let result = &mut *(mem.as_mut_ptr() as *mut Slice<T>);
J
John Kåre Alsaker 已提交
642
            // Write the length
J
John Kåre Alsaker 已提交
643
            result.len = slice.len();
J
John Kåre Alsaker 已提交
644 645

            // Write the elements
J
John Kåre Alsaker 已提交
646
            let arena_slice = slice::from_raw_parts_mut(result.data.as_mut_ptr(), result.len);
J
John Kåre Alsaker 已提交
647 648
            arena_slice.copy_from_slice(slice);

J
John Kåre Alsaker 已提交
649
            result
J
John Kåre Alsaker 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
        }
    }
}

impl<T: fmt::Debug> fmt::Debug for Slice<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T: Encodable> Encodable for Slice<T> {
    #[inline]
    fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
        (**self).encode(s)
    }
}
666

667 668 669
impl<T> Ord for Slice<T> where T: Ord {
    fn cmp(&self, other: &Slice<T>) -> Ordering {
        if self == other { Ordering::Equal } else {
J
John Kåre Alsaker 已提交
670
            <[T] as Ord>::cmp(&**self, &**other)
671 672 673 674 675 676 677
        }
    }
}

impl<T> PartialOrd for Slice<T> where T: PartialOrd {
    fn partial_cmp(&self, other: &Slice<T>) -> Option<Ordering> {
        if self == other { Some(Ordering::Equal) } else {
J
John Kåre Alsaker 已提交
678
            <[T] as PartialOrd>::partial_cmp(&**self, &**other)
679 680 681 682
        }
    }
}

J
John Kåre Alsaker 已提交
683
impl<T: PartialEq> PartialEq for Slice<T> {
684 685
    #[inline]
    fn eq(&self, other: &Slice<T>) -> bool {
J
John Kåre Alsaker 已提交
686
        (self as *const _) == (other as *const _)
687 688
    }
}
J
John Kåre Alsaker 已提交
689
impl<T: Eq> Eq for Slice<T> {}
690 691

impl<T> Hash for Slice<T> {
J
John Kåre Alsaker 已提交
692
    #[inline]
693
    fn hash<H: Hasher>(&self, s: &mut H) {
J
John Kåre Alsaker 已提交
694
        (self as *const Slice<T>).hash(s)
695 696 697 698 699
    }
}

impl<T> Deref for Slice<T> {
    type Target = [T];
J
John Kåre Alsaker 已提交
700
    #[inline(always)]
701
    fn deref(&self) -> &[T] {
J
John Kåre Alsaker 已提交
702
        unsafe {
J
John Kåre Alsaker 已提交
703
            slice::from_raw_parts(self.data.as_ptr(), self.len)
J
John Kåre Alsaker 已提交
704
        }
705 706 707 708 709 710
    }
}

impl<'a, T> IntoIterator for &'a Slice<T> {
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
J
John Kåre Alsaker 已提交
711
    #[inline(always)]
712 713 714 715 716 717 718
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<Ty<'tcx>> {}

719
impl<T> Slice<T> {
J
John Kåre Alsaker 已提交
720
    #[inline(always)]
721
    pub fn empty<'a>() -> &'a Slice<T> {
J
John Kåre Alsaker 已提交
722 723 724 725
        #[repr(align(64), C)]
        struct EmptySlice([u8; 64]);
        static EMPTY_SLICE: EmptySlice = EmptySlice([0; 64]);
        assert!(mem::align_of::<T>() <= 64);
726
        unsafe {
J
John Kåre Alsaker 已提交
727
            &*(&EMPTY_SLICE as *const _ as *const Slice<T>)
728 729 730 731
        }
    }
}

S
Steve Klabnik 已提交
732 733 734
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
735
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
736
pub struct UpvarId {
737
    pub var_id: hir::HirId,
738
    pub closure_expr_id: LocalDefId,
739 740
}

J
Jorge Aparicio 已提交
741
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
742 743 744 745 746 747
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
748
    /// implicit closure bindings. It is needed when the closure
749 750
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
751
    ///    let x: &mut isize = ...;
752 753 754 755 756
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
757 758
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
759 760 761 762 763 764 765
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
766 767
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

787 788
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
789
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
790
pub enum UpvarCapture<'tcx> {
791 792 793 794 795 796
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
797
    ByRef(UpvarBorrow<'tcx>),
798 799
}

800
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
801
pub struct UpvarBorrow<'tcx> {
802 803 804
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
805
    pub kind: BorrowKind,
806 807

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
808
    pub region: ty::Region<'tcx>,
809 810
}

811
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
812

813 814
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
815
    pub def: Def,
816 817 818 819
    pub span: Span,
    pub ty: Ty<'tcx>,
}

820
#[derive(Clone, Copy, PartialEq, Eq)]
821
pub enum IntVarValue {
822 823
    IntType(ast::IntTy),
    UintType(ast::UintTy),
824 825
}

826 827 828
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

829
impl ty::EarlyBoundRegion {
830
    pub fn to_bound_region(&self) -> ty::BoundRegion {
831
        ty::BoundRegion::BrNamed(self.def_id, self.name)
832
    }
833 834
}

V
varkor 已提交
835
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
836
pub enum GenericParamDefKind {
V
varkor 已提交
837
    Lifetime,
838 839 840 841 842
    Type {
        has_default: bool,
        object_lifetime_default: ObjectLifetimeDefault,
        synthetic: Option<hir::SyntheticTyParamKind>,
    }
V
varkor 已提交
843 844
}

845 846 847 848 849
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct GenericParamDef {
    pub name: InternedString,
    pub def_id: DefId,
    pub index: u32,
V
varkor 已提交
850 851 852 853 854 855

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`/`T`, asserts data behind the parameter
    /// `'a`/`T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,

856 857 858
    pub kind: GenericParamDefKind,
}

V
varkor 已提交
859
impl GenericParamDef {
860 861
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        match self.kind {
V
varkor 已提交
862
            GenericParamDefKind::Lifetime => {
863 864 865 866 867 868 869 870 871 872 873 874
                ty::EarlyBoundRegion {
                    def_id: self.def_id,
                    index: self.index,
                    name: self.name,
                }
            }
            _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
        }
    }

    pub fn to_bound_region(&self) -> ty::BoundRegion {
        match self.kind {
V
varkor 已提交
875
            GenericParamDefKind::Lifetime => {
876 877 878
                self.to_early_bound_region_data().to_bound_region()
            }
            _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
V
varkor 已提交
879 880 881 882
        }
    }
}

883 884 885 886 887
pub struct GenericParamCount {
    pub lifetimes: usize,
    pub types: usize,
}

888
/// Information about the formal type/lifetime parameters associated
889
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
890
///
891 892
/// The ordering of parameters is the same as in Subst (excluding child generics):
/// Self (optionally), Lifetime params..., Type params...
893
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
894
pub struct Generics {
895
    pub parent: Option<DefId>,
V
varkor 已提交
896
    pub parent_count: usize,
V
varkor 已提交
897
    pub params: Vec<GenericParamDef>,
898

V
varkor 已提交
899
    /// Reverse map to the `index` field of each `GenericParamDef`
900
    pub param_def_id_to_index: FxHashMap<DefId, u32>,
901

902
    pub has_self: bool,
903
    pub has_late_bound_regions: Option<Span>,
904 905
}

906
impl<'a, 'gcx, 'tcx> Generics {
907
    pub fn count(&self) -> usize {
V
varkor 已提交
908
        self.parent_count + self.params.len()
909
    }
910

V
varkor 已提交
911
    pub fn own_counts(&self) -> GenericParamCount {
912 913 914
        // We could cache this as a property of `GenericParamCount`, but
        // the aim is to refactor this away entirely eventually and the
        // presence of this method will be a constant reminder.
V
varkor 已提交
915
        let mut own_counts = GenericParamCount {
916 917 918
            lifetimes: 0,
            types: 0,
        };
919

V
varkor 已提交
920
        for param in &self.params {
921
            match param.kind {
V
varkor 已提交
922
                GenericParamDefKind::Lifetime => own_counts.lifetimes += 1,
923
                GenericParamDefKind::Type {..} => own_counts.types += 1,
924 925 926
            };
        }

V
varkor 已提交
927
        own_counts
928 929
    }

930
    pub fn requires_monomorphization(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
V
varkor 已提交
931
        for param in &self.params {
932
            match param.kind {
933
                GenericParamDefKind::Type {..} => return true,
V
varkor 已提交
934
                GenericParamDefKind::Lifetime => {}
V
varkor 已提交
935
            }
V
varkor 已提交
936 937 938
        }
        if let Some(parent_def_id) = self.parent {
            let parent = tcx.generics_of(parent_def_id);
939
            parent.requires_monomorphization(tcx)
V
varkor 已提交
940 941 942
        } else {
            false
        }
V
varkor 已提交
943 944
    }

945 946 947
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
948
                        -> &'tcx GenericParamDef
949
    {
V
varkor 已提交
950
        if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
V
varkor 已提交
951
            let param = &self.params[index as usize];
952
            match param.kind {
V
varkor 已提交
953
                ty::GenericParamDefKind::Lifetime => param,
V
varkor 已提交
954
                _ => bug!("expected lifetime parameter, but found another generic parameter")
V
varkor 已提交
955
            }
956 957 958 959
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .region_param(param, tcx)
        }
960 961
    }

962
    /// Returns the `GenericParamDef` associated with this `ParamTy`.
963 964
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
965
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
966
                      -> &'tcx GenericParamDef {
967
        if let Some(index) = param.idx.checked_sub(self.parent_count as u32) {
V
varkor 已提交
968 969
            let param = &self.params[index as usize];
            match param.kind {
970
                ty::GenericParamDefKind::Type {..} => param,
V
varkor 已提交
971 972
                _ => bug!("expected type parameter, but found another generic parameter")
            }
973 974 975 976
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .type_param(param, tcx)
        }
977
    }
978 979
}

980
/// Bounds on generics.
981
#[derive(Clone, Default)]
982
pub struct GenericPredicates<'tcx> {
983
    pub parent: Option<DefId>,
984
    pub predicates: Vec<Predicate<'tcx>>,
985 986
}

987 988 989
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

990 991
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
992
                       -> InstantiatedPredicates<'tcx> {
993 994 995 996 997 998
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
999
        InstantiatedPredicates {
1000 1001 1002 1003 1004 1005 1006 1007
            predicates: self.predicates.subst(tcx, substs)
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
1008
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
1009
        }
1010
        instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
1011
    }
1012

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
        instantiated.predicates.extend(&self.predicates)
    }

1028
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1029 1030 1031
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
1032
        assert_eq!(self.parent, None);
1033
        InstantiatedPredicates {
1034
            predicates: self.predicates.iter().map(|pred| {
1035
                pred.subst_supertrait(tcx, poly_trait_ref)
1036
            }).collect()
1037 1038
        }
    }
1039 1040
}

1041
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1042
pub enum Predicate<'tcx> {
N
Niko Matsakis 已提交
1043 1044
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
1045
    /// would be the type parameters.
1046
    Trait(PolyTraitPredicate<'tcx>),
1047 1048

    /// where 'a : 'b
1049
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
1050 1051

    /// where T : 'a
1052
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
1053

N
Niko Matsakis 已提交
1054 1055
    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
1056
    Projection(PolyProjectionPredicate<'tcx>),
1057 1058 1059 1060 1061

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
1062
    ObjectSafe(DefId),
1063

1064 1065 1066
    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
1067
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
1068 1069 1070

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
1071 1072 1073

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
1074 1075
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,

    /// An empty vector, useful for cloning.
    pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
}

1092 1093 1094 1095 1096 1097
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

1098
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
1099
    /// Performs a substitution suitable for going from a
1100 1101 1102 1103
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
1104
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

1168
        let substs = &trait_ref.skip_binder().substs;
1169
        match *self {
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
            Predicate::Trait(ref binder) =>
                Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Subtype(ref binder) =>
                Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::RegionOutlives(ref binder) =>
                Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::TypeOutlives(ref binder) =>
                Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Projection(ref binder) =>
                Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
1180 1181 1182 1183
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1184 1185
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1186 1187
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1188 1189 1190 1191
        }
    }
}

1192
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1193
pub struct TraitPredicate<'tcx> {
1194
    pub trait_ref: TraitRef<'tcx>
1195 1196 1197 1198
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1199
    pub fn def_id(&self) -> DefId {
1200 1201 1202
        self.trait_ref.def_id
    }

1203
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1204
        self.trait_ref.input_types()
1205 1206 1207 1208 1209 1210 1211 1212
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1213
    pub fn def_id(&self) -> DefId {
1214
        // ok to skip binder since trait def-id does not care about regions
1215
        self.skip_binder().def_id()
1216
    }
1217 1218
}

1219
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
1220 1221
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
S
scalexm 已提交
1222 1223 1224 1225 1226 1227
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
                                                           ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
                                                         ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
1228

1229
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1230 1231 1232 1233 1234 1235 1236
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1237 1238 1239 1240 1241 1242 1243 1244 1245
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
1246 1247
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1248
/// instances to normalize the LHS.
1249
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1250 1251 1252 1253 1254 1255 1256
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1257
impl<'tcx> PolyProjectionPredicate<'tcx> {
1258 1259 1260 1261 1262
    /// Returns the def-id of the associated item being projected.
    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().projection_ty.item_def_id
    }

1263 1264 1265 1266 1267 1268
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt) -> PolyTraitRef<'tcx> {
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
1269
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
1270
    }
1271 1272

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
        self.map_bound(|predicate| predicate.ty)
    }

    /// The DefId of the TraitItem for the associated type.
    ///
    /// Note that this is not the DefId of the TraitRef containing this
    /// associated type, which is in tcx.associated_item(projection_def_id()).container.
    pub fn projection_def_id(&self) -> DefId {
        // ok to skip binder since trait def-id does not care about regions
        self.skip_binder().projection_ty.item_def_id
1283
    }
1284 1285
}

1286 1287 1288 1289
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1290
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1291
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1292
        ty::Binder::dummy(self.clone())
1293 1294 1295 1296 1297
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1298
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1299 1300 1301
    }
}

1302 1303
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1304 1305
}

1306 1307
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1308
        ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
1309 1310 1311 1312 1313
            trait_ref: self.clone()
        }))
    }
}

1314 1315
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1316
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1317 1318 1319
    }
}

1320
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1321
    fn to_predicate(&self) -> Predicate<'tcx> {
1322 1323 1324 1325
        Predicate::RegionOutlives(self.clone())
    }
}

1326 1327
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1328 1329
        Predicate::TypeOutlives(self.clone())
    }
1330 1331
}

1332 1333
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1334 1335 1336 1337
        Predicate::Projection(self.clone())
    }
}

1338
impl<'tcx> Predicate<'tcx> {
1339 1340 1341 1342 1343 1344
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1345
                data.skip_binder().input_types().collect()
1346
            }
1347 1348
            ty::Predicate::Subtype(binder) => {
                let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
N
Niko Matsakis 已提交
1349 1350
                vec![a, b]
            }
1351 1352
            ty::Predicate::TypeOutlives(binder) => {
                vec![binder.skip_binder().0]
1353 1354 1355 1356 1357
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1358 1359
                let inner = data.skip_binder();
                inner.projection_ty.substs.types().chain(Some(inner.ty)).collect()
1360
            }
1361 1362 1363 1364 1365 1366
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1367 1368
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1369
            }
1370 1371 1372
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1383
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1384 1385
        match *self {
            Predicate::Trait(ref t) => {
1386
                Some(t.to_poly_trait_ref())
1387
            }
1388
            Predicate::Projection(..) |
N
Niko Matsakis 已提交
1389
            Predicate::Subtype(..) |
1390
            Predicate::RegionOutlives(..) |
1391 1392
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1393
            Predicate::ClosureKind(..) |
1394 1395
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1396 1397
                None
            }
1398 1399
        }
    }
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1418 1419
}

S
Steve Klabnik 已提交
1420 1421
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1422 1423 1424 1425 1426
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1427 1428 1429 1430 1431 1432 1433 1434
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1435
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1436
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1437 1438
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1439
#[derive(Clone)]
1440
pub struct InstantiatedPredicates<'tcx> {
1441
    pub predicates: Vec<Predicate<'tcx>>,
1442 1443
}

1444 1445
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1446
        InstantiatedPredicates { predicates: vec![] }
1447 1448
    }

1449 1450
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1451
    }
1452 1453
}

N
Niko Matsakis 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. But when you enter into
/// some subuniverse, then it may add names that are only visible
/// within that subtree (but it can still name the names of its
/// ancestor universes).
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in a subuniverse U1 --
/// i.e., within `bar`, we can name both `T` and `Foo`, but outside of
/// `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a subuniverse U2 of U1, because we can name it
/// inside the fn type but not outside.
///
/// Universes are related to **skolemization** -- which is a way of
/// doing type- and trait-checking around these "forall" binders (also
/// called **universal quantification**). The idea is that when, in
/// the body of `bar`, we refer to `T` as a type, we aren't referring
/// to any type in particular, but rather a kind of "fresh" type that
/// is distinct from all other types we have actually declared. This
/// is called a **skolemized** type, and we use universes to talk
/// about this. In other words, a type name in universe 0 always
/// corresponds to some "ground" type that the user declared, but a
/// type name in a non-zero universe is a skolemized type -- an
/// idealized representative of "types in general" that we use for
/// checking generic functions.
1490
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1491 1492 1493 1494 1495
pub struct UniverseIndex(u32);

impl UniverseIndex {
    /// The root universe, where things that the user defined are
    /// visible.
1496
    pub const ROOT: Self = UniverseIndex(0);
N
Niko Matsakis 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

    /// A "subuniverse" corresponds to being inside a `forall` quantifier.
    /// So, for example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// subuniverse of `U` -- in this new universe, we can name the
    /// region `'a`, but that region was not nameable from `U` because
    /// it was not in scope there.
    pub fn subuniverse(self) -> UniverseIndex {
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
        UniverseIndex(self.0.checked_add(1).unwrap())
    }

    pub fn as_u32(&self) -> u32 {
        self.0
    }

    pub fn as_usize(&self) -> usize {
        self.0 as usize
    }
}

impl From<u32> for UniverseIndex {
    fn from(index: u32) -> Self {
        UniverseIndex(index)
1525
    }
N
Niko Matsakis 已提交
1526 1527
}

1528
/// When type checking, we use the `ParamEnv` to track
1529 1530 1531
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1532
pub struct ParamEnv<'tcx> {
1533 1534
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1535
    /// into Obligations, and elaborated and normalized.
1536
    pub caller_bounds: &'tcx Slice<ty::Predicate<'tcx>>,
1537

I
Irina Popa 已提交
1538
    /// Typically, this is `Reveal::UserFacing`, but during codegen we
1539 1540 1541
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1542
}
1543

1544
impl<'tcx> ParamEnv<'tcx> {
1545 1546 1547 1548 1549
    /// Construct a trait environment suitable for contexts where
    /// there are no where clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    pub fn empty() -> Self {
S
Sean Griffin 已提交
1550
        Self::new(ty::Slice::empty(), Reveal::UserFacing)
1551 1552 1553 1554 1555
    }

    /// Construct a trait environment with no where clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
I
Irina Popa 已提交
1556
    /// environments like codegen or doing optimizations.
1557 1558 1559 1560
    ///
    /// NB. If you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    pub fn reveal_all() -> Self {
S
Sean Griffin 已提交
1561
        Self::new(ty::Slice::empty(), Reveal::All)
1562 1563 1564 1565
    }

    /// Construct a trait environment with the given set of predicates.
    pub fn new(caller_bounds: &'tcx ty::Slice<ty::Predicate<'tcx>>,
S
Sean Griffin 已提交
1566
               reveal: Reveal)
1567
               -> Self {
S
Sean Griffin 已提交
1568
        ty::ParamEnv { caller_bounds, reveal }
1569 1570 1571 1572 1573
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable).  This is
I
Irina Popa 已提交
1574
    /// the desired behavior during codegen and certain other special
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    pub fn with_reveal_all(self) -> Self {
        ty::ParamEnv { reveal: Reveal::All, ..self }
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
        ty::ParamEnv { caller_bounds: ty::Slice::empty(), ..self }
    }

1586
    /// Creates a suitable environment in which to perform trait
1587 1588 1589 1590 1591
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
1592
    ///
1593 1594
    /// NB: We preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
1595
    /// `where Box<u32>: Copy`, which are clearly never
1596 1597
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
1598
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1599 1600 1601 1602 1603 1604
        match self.reveal {
            Reveal::UserFacing => {
                ParamEnvAnd {
                    param_env: self,
                    value,
                }
1605
            }
1606 1607

            Reveal::All => {
1608 1609 1610 1611 1612
                if value.has_skol()
                    || value.needs_infer()
                    || value.has_param_types()
                    || value.has_self_ty()
                {
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
                    ParamEnvAnd {
                        param_env: self,
                        value,
                    }
                } else {
                    ParamEnvAnd {
                        param_env: self.without_caller_bounds(),
                        value,
                    }
                }
1623
            }
1624 1625 1626
        }
    }
}
1627

1628
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1629 1630
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1631
    pub value: T,
1632 1633
}

1634 1635
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1636
        (self.param_env, self.value)
1637
    }
1638 1639
}

1640 1641
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'a>>
1642 1643
{
    fn hash_stable<W: StableHasherResult>(&self,
1644
                                          hcx: &mut StableHashingContext<'a>,
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1656 1657 1658 1659 1660 1661
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1662
bitflags! {
1663 1664 1665 1666 1667 1668 1669
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1670 1671 1672 1673
        /// Indicates whether this abstract data type will be expanded on in future (new
        /// fields/variants) and as such, whether downstream crates must match exhaustively on the
        /// fields/variants of this data type.
        ///
1674
        /// See RFC 2008 (<https://github.com/rust-lang/rfcs/pull/2008>).
1675
        const IS_NON_EXHAUSTIVE   = 1 << 5;
1676 1677 1678
    }
}

1679
#[derive(Debug)]
1680
pub struct VariantDef {
1681 1682
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1683 1684
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1685
    pub discr: VariantDiscr,
1686
    pub fields: Vec<FieldDef>,
1687
    pub ctor_kind: CtorKind,
1688 1689
}

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1703
#[derive(Debug)]
1704
pub struct FieldDef {
1705
    pub did: DefId,
1706
    pub ident: Ident,
1707
    pub vis: Visibility,
1708 1709
}

A
Ariel Ben-Yehuda 已提交
1710 1711 1712 1713
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1714
pub struct AdtDef {
1715
    pub did: DefId,
1716
    pub variants: Vec<VariantDef>,
1717
    flags: AdtFlags,
1718
    pub repr: ReprOptions,
1719 1720
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
impl PartialOrd for AdtDef {
    fn partial_cmp(&self, other: &AdtDef) -> Option<Ordering> {
        Some(self.cmp(&other))
    }
}

/// There should be only one AdtDef for each `did`, therefore
/// it is fine to implement `Ord` only based on `did`.
impl Ord for AdtDef {
    fn cmp(&self, other: &AdtDef) -> Ordering {
        self.did.cmp(&other.did)
    }
}

1735 1736
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1737 1738 1739 1740
    #[inline]
    fn eq(&self, other: &Self) -> bool { self as *const _ == other as *const _ }
}

1741
impl Eq for AdtDef {}
1742

1743
impl Hash for AdtDef {
1744 1745
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1746
        (self as *const AdtDef).hash(s)
1747 1748 1749
    }
}

1750
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1751
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1752 1753 1754 1755
        self.did.encode(s)
    }
}

1756
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1757

1758

1759
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
1760
    fn hash_stable<W: StableHasherResult>(&self,
1761
                                          hcx: &mut StableHashingContext<'a>,
1762
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1763 1764 1765 1766
        thread_local! {
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> =
                RefCell::new(FxHashMap());
        }
1767

W
Wesley Wiser 已提交
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1789 1790 1791
    }
}

1792
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1793
pub enum AdtKind { Struct, Union, Enum }
1794

1795 1796
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1797 1798
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
1799 1800
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
1801
        // Internal only for now. If true, don't reorder fields.
1802
        const IS_LINEAR          = 1 << 3;
1803 1804 1805 1806

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_SIMD.bits |
1807
                                   ReprFlags::IS_LINEAR.bits;
1808 1809 1810 1811 1812 1813 1814 1815 1816
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1817 1818 1819 1820
/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1821
    pub align: u32,
1822
    pub pack: u32,
1823
    pub flags: ReprFlags,
1824 1825
}

1826
impl_stable_hash_for!(struct ReprOptions {
1827
    align,
1828
    pack,
1829
    int,
1830
    flags
1831 1832
});

1833
impl ReprOptions {
1834
    pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
1835 1836
        let mut flags = ReprFlags::empty();
        let mut size = None;
1837
        let mut max_align = 0;
1838
        let mut min_pack = 0;
1839 1840
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
1841
                flags.insert(match r {
1842
                    attr::ReprC => ReprFlags::IS_C,
1843 1844 1845 1846 1847 1848 1849 1850
                    attr::ReprPacked(pack) => {
                        min_pack = if min_pack > 0 {
                            cmp::min(pack, min_pack)
                        } else {
                            pack
                        };
                        ReprFlags::empty()
                    },
R
Robin Kruppe 已提交
1851
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1852 1853 1854 1855 1856
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1857 1858 1859 1860
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1861
                });
1862 1863
            }
        }
1864

1865
        // This is here instead of layout because the choice must make it into metadata.
1866 1867 1868
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1869
        ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
1870
    }
1871

1872 1873 1874 1875 1876
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
1877
    pub fn packed(&self) -> bool { self.pack > 0 }
1878
    #[inline]
R
Robin Kruppe 已提交
1879 1880
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1881 1882
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1883
    pub fn discr_type(&self) -> attr::IntType {
1884
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1885
    }
1886 1887 1888 1889 1890

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
1891
        self.c() || self.int.is_some()
1892
    }
1893 1894 1895 1896 1897 1898

    /// Returns true if this `#[repr()]` should inhibit struct field reordering
    /// optimizations, such as with repr(C) or repr(packed(1)).
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        !(self.flags & ReprFlags::IS_UNOPTIMISABLE).is_empty() || (self.pack == 1)
    }
1899 1900
}

1901
impl<'a, 'gcx, 'tcx> AdtDef {
1902
    fn new(tcx: TyCtxt,
1903
           did: DefId,
A
Ariel Ben-Yehuda 已提交
1904
           kind: AdtKind,
1905 1906
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
A
Ariel Ben-Yehuda 已提交
1907
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
1908
        let attrs = tcx.get_attrs(did);
1909
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
1910
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
1911
        }
1912
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
1913
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
1914
        }
1915
        if Some(did) == tcx.lang_items().owned_box() {
1916 1917
            flags = flags | AdtFlags::IS_BOX;
        }
1918 1919 1920
        if tcx.has_attr(did, "non_exhaustive") {
            flags = flags | AdtFlags::IS_NON_EXHAUSTIVE;
        }
1921 1922 1923 1924
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
1925
        }
1926
        AdtDef {
1927 1928 1929 1930
            did,
            variants,
            flags,
            repr,
1931 1932 1933
        }
    }

1934 1935 1936 1937 1938 1939 1940
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
1941
        self.flags.intersects(AdtFlags::IS_UNION)
1942 1943 1944 1945
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
1946
        self.flags.intersects(AdtFlags::IS_ENUM)
1947 1948
    }

1949 1950 1951 1952 1953
    #[inline]
    pub fn is_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_NON_EXHAUSTIVE)
    }

A
Ariel Ben-Yehuda 已提交
1954
    /// Returns the kind of the ADT - Struct or Enum.
1955
    #[inline]
A
Ariel Ben-Yehuda 已提交
1956
    pub fn adt_kind(&self) -> AdtKind {
1957
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
1958
            AdtKind::Enum
1959
        } else if self.is_union() {
1960
            AdtKind::Union
1961
        } else {
A
Ariel Ben-Yehuda 已提交
1962
            AdtKind::Struct
1963 1964 1965
        }
    }

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
1982 1983
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
1984 1985
    #[inline]
    pub fn is_fundamental(&self) -> bool {
1986
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
1987 1988
    }

A
Ariel Ben-Yehuda 已提交
1989
    /// Returns true if this is PhantomData<T>.
1990 1991
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
1992
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
1993 1994
    }

1995 1996 1997
    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
1998
        self.flags.intersects(AdtFlags::IS_BOX)
1999 2000
    }

A
Ariel Ben-Yehuda 已提交
2001
    /// Returns whether this type has a destructor.
2002 2003
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
2004 2005
    }

2006 2007 2008
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
2009
        &self.variants[0]
2010 2011 2012
    }

    #[inline]
2013
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
2014
        tcx.predicates_of(self.did)
2015
    }
2016

A
Ariel Ben-Yehuda 已提交
2017 2018
    /// Returns an iterator over all fields contained
    /// by this ADT.
2019
    #[inline]
2020 2021
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
2022 2023 2024 2025 2026 2027 2028
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

2029
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
2030 2031 2032 2033 2034 2035
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
2036 2037 2038 2039 2040 2041 2042
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

2043
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
2044
        match def {
2045 2046
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
2047
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.non_enum_variant(),
2048
            _ => bug!("unexpected def {:?} in variant_of_def", def)
2049 2050
        }
    }
2051

O
Oliver Schneider 已提交
2052
    #[inline]
2053
    pub fn eval_explicit_discr(
O
Oliver Schneider 已提交
2054 2055 2056 2057
        &self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        expr_did: DefId,
    ) -> Option<Discr<'tcx>> {
2058
        let param_env = ParamEnv::empty();
O
Oliver Schneider 已提交
2059 2060 2061 2062 2063 2064 2065 2066
        let repr_type = self.repr.discr_type();
        let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
        let instance = ty::Instance::new(expr_did, substs);
        let cid = GlobalId {
            instance,
            promoted: None
        };
        match tcx.const_eval(param_env.and(cid)) {
2067 2068
            Ok(val) => {
                // FIXME: Find the right type and use it instead of `val.ty` here
O
Oliver Schneider 已提交
2069
                if let Some(b) = val.assert_bits(tcx.global_tcx(), param_env.and(val.ty)) {
2070 2071 2072 2073 2074 2075 2076 2077
                    trace!("discriminants: {} ({:?})", b, repr_type);
                    Some(Discr {
                        val: b,
                        ty: val.ty,
                    })
                } else {
                    info!("invalid enum discriminant: {:#?}", val);
                    ::middle::const_val::struct_error(
2078
                        tcx.at(tcx.def_span(expr_did)),
2079 2080 2081 2082
                        "constant evaluation of enum discriminant resulted in non-integer",
                    ).emit();
                    None
                }
O
Oliver Schneider 已提交
2083
            }
2084
            Err(err) => {
2085 2086 2087 2088
                err.report_as_error(
                    tcx.at(tcx.def_span(expr_did)),
                    "could not evaluate enum discriminant",
                );
O
Oliver Schneider 已提交
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
                if !expr_did.is_local() {
                    span_bug!(tcx.def_span(expr_did),
                        "variant discriminant evaluation succeeded \
                            in its crate but failed locally");
                }
                None
            }
        }
    }

2099
    #[inline]
2100 2101 2102 2103
    pub fn discriminants(
        &'a self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
    ) -> impl Iterator<Item=Discr<'tcx>> + Captures<'gcx> + 'a {
2104
        let repr_type = self.repr.discr_type();
2105
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
O
Oliver Schneider 已提交
2106
        let mut prev_discr = None::<Discr<'tcx>>;
2107
        self.variants.iter().map(move |v| {
O
Oliver Schneider 已提交
2108
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
2109
            if let VariantDiscr::Explicit(expr_did) = v.discr {
O
Oliver Schneider 已提交
2110 2111
                if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
                    discr = new_discr;
2112 2113 2114 2115 2116 2117 2118 2119
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

2120 2121 2122 2123 2124 2125 2126 2127
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
O
Oliver Schneider 已提交
2128
                                    -> Discr<'tcx> {
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
        let (val, offset) = self.discriminant_def_for_variant(variant_index);
        let explicit_value = val
            .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
            .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
        explicit_value.checked_add(tcx, offset as u128).0
    }

    /// Yields a DefId for the discriminant and an offset to add to it
    /// Alternatively, if there is no explicit discriminant, returns the
    /// inferred discriminant directly
    pub fn discriminant_def_for_variant(
        &self,
        variant_index: usize,
    ) -> (Option<DefId>, usize) {
2143
        let mut explicit_index = variant_index;
2144
        let expr_did;
2145 2146
        loop {
            match self.variants[explicit_index].discr {
2147 2148 2149 2150
                ty::VariantDiscr::Relative(0) => {
                    expr_did = None;
                    break;
                },
2151 2152 2153
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
2154 2155 2156
                ty::VariantDiscr::Explicit(did) => {
                    expr_did = Some(did);
                    break;
2157 2158 2159
                }
            }
        }
2160
        (expr_did, variant_index - explicit_index)
2161 2162
    }

2163
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
2164
        tcx.adt_destructor(self.did)
2165 2166
    }

2167
    /// Returns a list of types such that `Self: Sized` if and only
2168
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
2169 2170 2171 2172 2173 2174 2175 2176
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
2177
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
2178
        match tcx.try_get_query::<queries::adt_sized_constraint>(DUMMY_SP, self.did) {
2179
            Ok(tys) => tys,
2180
            Err(mut bug) => {
2181 2182 2183 2184
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
2185 2186 2187 2188
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
2189
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
2190
            }
2191 2192
        }
    }
2193

2194 2195 2196 2197
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
2198 2199
        let result = match ty.sty {
            TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
2200
            TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
J
John Kåre Alsaker 已提交
2201
            TyArray(..) | TyClosure(..) | TyGenerator(..) | TyNever => {
A
Ariel Ben-Yehuda 已提交
2202
                vec![]
2203 2204
            }

2205 2206 2207 2208 2209 2210
            TyStr |
            TyDynamic(..) |
            TySlice(_) |
            TyForeign(..) |
            TyError |
            TyGeneratorWitness(..) => {
2211
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
2212
                vec![ty]
2213 2214
            }

A
Andrew Cann 已提交
2215
            TyTuple(ref tys) => {
2216 2217
                match tys.last() {
                    None => vec![],
2218
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
2219
                }
2220 2221
            }

2222
            TyAdt(adt, substs) => {
2223
                // recursive case
2224
                let adt_tys = adt.sized_constraint(tcx);
2225
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
2226 2227 2228 2229 2230
                       ty, adt_tys);
                adt_tys.iter()
                    .map(|ty| ty.subst(tcx, substs))
                    .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                    .collect()
2231 2232
            }

2233
            TyProjection(..) | TyAnon(..) => {
2234 2235
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2236
                vec![ty]
2237 2238 2239
            }

            TyParam(..) => {
A
Ariel Ben-Yehuda 已提交
2240 2241 2242 2243
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2244
                let sized_trait = match tcx.lang_items().sized_trait() {
2245
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2246
                    _ => return vec![ty]
2247
                };
2248
                let sized_predicate = Binder::dummy(TraitRef {
2249
                    def_id: sized_trait,
2250
                    substs: tcx.mk_substs_trait(ty, &[])
2251
                }).to_predicate();
2252
                let predicates = tcx.predicates_of(self.did).predicates;
2253
                if predicates.into_iter().any(|p| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2254
                    vec![]
2255
                } else {
A
Ariel Ben-Yehuda 已提交
2256
                    vec![ty]
2257 2258 2259
                }
            }

A
Ariel Ben-Yehuda 已提交
2260
            TyInfer(..) => {
2261 2262 2263 2264 2265 2266 2267
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2268 2269
}

2270
impl<'a, 'gcx, 'tcx> FieldDef {
2271
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2272
        tcx.type_of(self.did).subst(tcx, subst)
2273
    }
2274 2275
}

2276 2277 2278 2279 2280 2281
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2282
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2283
pub enum ClosureKind {
2284 2285 2286
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2287 2288 2289
    Fn,
    FnMut,
    FnOnce,
2290 2291
}

2292
impl<'a, 'tcx> ClosureKind {
2293 2294 2295
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2296
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2297 2298
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2299
            ClosureKind::FnMut => {
2300
                tcx.require_lang_item(FnMutTraitLangItem)
2301
            }
2302
            ClosureKind::FnOnce => {
2303
                tcx.require_lang_item(FnOnceTraitLangItem)
2304 2305 2306
            }
        }
    }
2307 2308 2309 2310 2311

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2312 2313 2314 2315 2316 2317
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2318 2319 2320
            _ => false,
        }
    }
2321 2322 2323 2324 2325 2326 2327 2328 2329

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2330
    }
2331 2332
}

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2346 2347
    }

2348 2349 2350
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2351
    pub fn walk_shallow(&'tcx self) -> AccIntoIter<walk::TypeWalkerArray<'tcx>> {
2352
        walk::walk_shallow(self)
2353 2354
    }

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2369
    }
2370
}
2371

2372
impl BorrowKind {
2373
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2374
        match m {
2375 2376
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2377 2378
        }
    }
2379

2380 2381 2382 2383
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2384
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2385
        match self {
2386 2387
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2388 2389 2390 2391

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2392
            UniqueImmBorrow => hir::MutMutable,
2393
        }
2394
    }
2395

2396 2397 2398 2399 2400 2401
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2402 2403 2404
    }
}

2405 2406
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2407
    Owned(Lrc<[ast::Attribute]>),
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2422
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2423
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2424
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2425 2426
    }

N
Niko Matsakis 已提交
2427 2428 2429
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
2430 2431 2432
    pub fn body_owners(
        self,
    ) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
N
Niko Matsakis 已提交
2433 2434 2435 2436 2437 2438
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

2439
    pub fn expr_span(self, id: NodeId) -> Span {
2440
        match self.hir.find(id) {
2441
            Some(hir_map::NodeExpr(e)) => {
2442 2443 2444
                e.span
            }
            Some(f) => {
2445
                bug!("Node id {} is not an expr: {:?}", id, f);
2446 2447
            }
            None => {
2448
                bug!("Node id {} is not present in the node map", id);
2449
            }
2450
        }
2451 2452
    }

2453 2454
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2455
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2456
            .collect()
2457 2458
    }

A
Andrew Cann 已提交
2459 2460 2461 2462 2463 2464
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2465 2466 2467 2468 2469 2470 2471
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
                hir_map::NodeTraitItem(_) | hir_map::NodeImplItem(_) => true,
                _ => false,
            }
        } else {
2472
            match self.describe_def(def_id).expect("no def for def-id") {
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2485 2486
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2487
                                           parent_vis: &hir::Visibility,
2488
                                           trait_item_ref: &hir::TraitItemRef)
2489
                                           -> AssociatedItem {
2490
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2491 2492 2493 2494
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2495
            }
2496
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
2497 2498 2499
        };

        AssociatedItem {
2500
            name: trait_item_ref.name,
2501
            kind,
2502 2503
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2504
            defaultness: trait_item_ref.defaultness,
2505
            def_id,
2506 2507 2508 2509 2510 2511 2512 2513 2514
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2515
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
        };

        ty::AssociatedItem {
            name: impl_item_ref.name,
2526
            kind,
2527 2528
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2529
            defaultness: impl_item_ref.defaultness,
2530
            def_id,
2531 2532 2533 2534 2535
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2536 2537 2538 2539 2540 2541 2542
    pub fn field_index(self, node_id: NodeId, tables: &TypeckTables) -> usize {
        let hir_id = self.hir.node_to_hir_id(node_id);
        tables.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant.fields.iter().position(|field| {
2543
            self.adjust_ident(ident, variant.did, DUMMY_NODE_ID).0 == field.ident.modern()
2544 2545 2546
        })
    }

2547 2548 2549 2550
    pub fn associated_items(
        self,
        def_id: DefId,
    ) -> impl Iterator<Item = ty::AssociatedItem> + 'a {
2551
        let def_ids = self.associated_item_def_ids(def_id);
2552 2553
        Box::new((0..def_ids.len()).map(move |i| self.associated_item(def_ids[i])))
            as Box<dyn Iterator<Item = ty::AssociatedItem> + 'a>
2554 2555
    }

2556 2557 2558
    /// Returns true if the impls are the same polarity and are implementing
    /// a trait which contains no items
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2559
        if !self.features().overlapping_marker_traits {
2560 2561
            return false;
        }
2562 2563 2564 2565 2566 2567 2568 2569
        let trait1_is_empty = self.impl_trait_ref(def_id1)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
        let trait2_is_empty = self.impl_trait_ref(def_id2)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
2570
        self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
2571 2572
            && trait1_is_empty
            && trait2_is_empty
S
Sean Griffin 已提交
2573 2574
    }

2575 2576
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2577
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2578
        match def {
2579
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2580
                let enum_did = self.parent_def_id(did).unwrap();
2581
                self.adt_def(enum_did).variant_with_id(did)
2582
            }
2583
            Def::Struct(did) | Def::Union(did) => {
2584
                self.adt_def(did).non_enum_variant()
2585 2586 2587
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2588
                self.adt_def(did).non_enum_variant()
2589 2590 2591 2592 2593
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2608
    pub fn item_name(self, id: DefId) -> InternedString {
2609
        if id.index == CRATE_DEF_INDEX {
2610
            self.original_crate_name(id.krate).as_interned_str()
2611
        } else {
2612
            let def_key = self.def_key(id);
2613
            // The name of a StructCtor is that of its struct parent.
2614
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2615 2616 2617 2618 2619 2620 2621 2622 2623
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2624 2625 2626
        }
    }

2627 2628
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2629
                        -> &'gcx Mir<'gcx>
2630 2631
    {
        match instance {
N
Niko Matsakis 已提交
2632
            ty::InstanceDef::Item(did) => {
2633
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2634 2635 2636 2637 2638
            }
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2639
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2640
            ty::InstanceDef::CloneShim(..) => {
2641
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2642
            }
2643 2644 2645
        }
    }

2646 2647
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2648 2649 2650 2651 2652
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2653 2654 2655
        }
    }

2656
    /// Get the attributes of a definition.
2657
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2658
        if let Some(id) = self.hir.as_local_node_id(did) {
2659
            Attributes::Borrowed(self.hir.attrs(id))
2660
        } else {
A
achernyak 已提交
2661
            Attributes::Owned(self.item_attrs(did))
2662
        }
2663 2664
    }

2665
    /// Determine whether an item is annotated with an attribute
2666
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2667
        attr::contains_name(&self.get_attrs(did), attr)
2668
    }
2669

2670 2671
    /// Returns true if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2672
        self.trait_def(trait_def_id).has_auto_impl
2673
    }
2674

J
John Kåre Alsaker 已提交
2675 2676 2677 2678
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2679 2680
    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
2681
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2682
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2683
    }
2684 2685 2686

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
2687
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2688
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2689
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2690 2691 2692 2693 2694
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2695
            self.opt_associated_item(def_id)
2696 2697 2698
        };

        match item {
2699
            Some(trait_item) => {
2700
                match trait_item.container {
2701 2702 2703
                    TraitContainer(_) => None,
                    ImplContainer(def_id) => Some(def_id),
                }
2704
            }
2705
            None => None
2706 2707 2708
        }
    }

2709 2710
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2711
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2712
        if impl_did.is_local() {
2713 2714
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2715
        } else {
2716
            Err(self.crate_name(impl_did.krate))
2717 2718
        }
    }
J
Jeffrey Seyfried 已提交
2719

2720 2721 2722 2723
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
    pub fn hygienic_eq(self, use_name: Name, def_name: Name, def_parent_def_id: DefId) -> bool {
2724 2725
        let (use_ident, def_ident) = (use_name.to_ident(), def_name.to_ident());
        self.adjust_ident(use_ident, def_parent_def_id, DUMMY_NODE_ID).0 == def_ident
J
Jeffrey Seyfried 已提交
2726 2727 2728 2729 2730 2731 2732
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
        let expansion = match scope.krate {
            LOCAL_CRATE => self.hir.definitions().expansion(scope.index),
            _ => Mark::root(),
        };
2733
        ident = ident.modern();
2734
        let scope = match ident.span.adjust(expansion) {
J
Jeffrey Seyfried 已提交
2735
            Some(macro_def) => self.hir.definitions().macro_def_scope(macro_def),
2736
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2737 2738 2739 2740
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2741
}
2742

2743
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2744
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2745
        F: FnOnce(&[hir::Freevar]) -> T,
2746
    {
A
Alex Crichton 已提交
2747 2748
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2749
            None => f(&[]),
2750
            Some(d) => f(&d),
2751 2752
        }
    }
2753
}
2754 2755 2756 2757 2758 2759 2760 2761 2762

fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
    -> AssociatedItem
{
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
2763
        hir::ItemImpl(.., ref impl_item_refs) => {
2764
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2765 2766
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2767 2768
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2769 2770 2771 2772
            }
        }

        hir::ItemTrait(.., ref trait_item_refs) => {
2773
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2774 2775 2776
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2777 2778
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2779 2780 2781
            }
        }

2782
        _ => { }
2783
    }
2784 2785 2786 2787

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2788 2789
}

2790 2791
/// Calculates the Sized-constraint.
///
2792
/// In fact, there are only a few options for the types in the constraint:
2793 2794 2795 2796 2797 2798 2799 2800
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
///     - a TyError, if a type contained itself. The representability
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2801
                                  -> &'tcx [Ty<'tcx>] {
2802
    let def = tcx.adt_def(def_id);
2803

2804
    let result = tcx.mk_type_list(def.variants.iter().flat_map(|v| {
2805 2806
        v.fields.last()
    }).flat_map(|f| {
2807
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2808
    }));
2809

2810
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2811

2812
    result
2813 2814
}

2815 2816
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2817
                                     -> Lrc<Vec<DefId>> {
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
        hir::ItemTrait(.., ref trait_item_refs) => {
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
        hir::ItemImpl(.., ref impl_item_refs) => {
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
A
Alex Burka 已提交
2833
        hir::ItemTraitAlias(..) => vec![],
2834 2835
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2836
    Lrc::new(vec)
2837 2838
}

A
achernyak 已提交
2839
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2840
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2841 2842
}

A
achernyak 已提交
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2856
/// See `ParamEnv` struct def'n for details.
2857
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2858 2859
                       def_id: DefId)
                       -> ParamEnv<'tcx> {
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
    // Compute the bounds on Self and the type parameters.

    let bounds = tcx.predicates_of(def_id).instantiate_identity(tcx);
    let predicates = bounds.predicates;

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

2877
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
2878
                                             traits::Reveal::UserFacing);
2879 2880 2881 2882 2883 2884 2885

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
2886

2887
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2888
                                 crate_num: CrateNum) -> CrateDisambiguator {
2889 2890 2891 2892
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

2893 2894 2895 2896 2897 2898
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

2899 2900 2901 2902 2903 2904 2905
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
2906 2907 2908 2909
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
2910 2911 2912
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
2913 2914
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
2915
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
2916 2917 2918 2919
        _ => 1
    }
}

2920
pub fn provide(providers: &mut ty::maps::Providers) {
2921
    context::provide(providers);
2922
    erase_regions::provide(providers);
2923 2924
    layout::provide(providers);
    util::provide(providers);
2925 2926
    *providers = ty::maps::Providers {
        associated_item,
2927
        associated_item_def_ids,
2928
        adt_sized_constraint,
A
achernyak 已提交
2929
        def_span,
2930
        param_env,
A
achernyak 已提交
2931
        trait_of_item,
2932
        crate_disambiguator,
2933
        original_crate_name,
2934
        crate_hash,
2935
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
2936
        instance_def_size_estimate,
2937 2938 2939 2940
        ..*providers
    };
}

2941 2942 2943
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
2944 2945
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
2946 2947
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
2948
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
2949
}
A
Ariel Ben-Yehuda 已提交
2950

2951
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
2952 2953 2954 2955 2956 2957
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

2958 2959 2960 2961
impl_stable_hash_for!(struct self::SymbolName {
    name
});

2962 2963 2964
impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
2965
            name: Symbol::intern(name).as_interned_str()
2966 2967
        }
    }
2968

2969 2970 2971
    pub fn as_str(&self) -> LocalInternedString {
        self.name.as_str()
    }
2972 2973 2974 2975 2976 2977 2978
}

impl fmt::Display for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}
2979 2980 2981 2982 2983 2984

impl fmt::Debug for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}