i915_gem_gtt.c 107.6 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_scatterlist.h"
40
#include "i915_trace.h"
41
#include "i915_vgpu.h"
42
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111
static void gen6_ggtt_invalidate(struct drm_i915_private *i915)
112
{
113 114
	struct intel_uncore *uncore = &i915->uncore;

115 116
	/*
	 * Note that as an uncached mmio write, this will flush the
117 118
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
119
	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
120 121
}

122
static void guc_ggtt_invalidate(struct drm_i915_private *i915)
123
{
124 125 126 127
	struct intel_uncore *uncore = &i915->uncore;

	gen6_ggtt_invalidate(i915);
	intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
128 129
}

130
static void gmch_ggtt_invalidate(struct drm_i915_private *i915)
131 132 133 134 135 136 137 138 139
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

140 141 142
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
143
{
144
	u32 pte_flags;
145 146 147 148 149 150 151 152
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
153

154
	/* Applicable to VLV, and gen8+ */
155
	pte_flags = 0;
156
	if (i915_gem_object_is_readonly(vma->obj))
157 158
		pte_flags |= PTE_READ_ONLY;

159
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
160 161

	return 0;
162 163 164 165
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
166
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
167
}
168

169 170 171 172 173 174
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

175 176
	vma->page_sizes = vma->obj->mm.page_sizes;

177 178 179 180 181 182 183 184 185 186 187 188
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
189 190

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
191 192
}

193 194 195
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
196
{
197 198 199 200
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
201 202 203

	switch (level) {
	case I915_CACHE_NONE:
204
		pte |= PPAT_UNCACHED;
205 206
		break;
	case I915_CACHE_WT:
207
		pte |= PPAT_DISPLAY_ELLC;
208 209
		break;
	default:
210
		pte |= PPAT_CACHED;
211 212 213
		break;
	}

B
Ben Widawsky 已提交
214 215 216
	return pte;
}

217 218
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
219
{
220
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
221 222
	pde |= addr;
	if (level != I915_CACHE_NONE)
223
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
224
	else
225
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
226 227 228
	return pde;
}

229 230 231
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

232 233 234
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
235
{
236
	gen6_pte_t pte = GEN6_PTE_VALID;
237
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
238 239

	switch (level) {
240 241 242 243 244 245 246 247
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
248
		MISSING_CASE(level);
249 250 251 252 253
	}

	return pte;
}

254 255 256
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
257
{
258
	gen6_pte_t pte = GEN6_PTE_VALID;
259 260 261 262 263
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
264 265 266 267 268
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
269
		pte |= GEN6_PTE_UNCACHED;
270 271
		break;
	default:
272
		MISSING_CASE(level);
273 274
	}

275 276 277
	return pte;
}

278 279 280
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
281
{
282
	gen6_pte_t pte = GEN6_PTE_VALID;
283 284
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

285 286
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
287 288 289 290 291 292 293

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

294 295 296
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
297
{
298
	gen6_pte_t pte = GEN6_PTE_VALID;
299
	pte |= HSW_PTE_ADDR_ENCODE(addr);
300 301

	if (level != I915_CACHE_NONE)
302
		pte |= HSW_WB_LLC_AGE3;
303 304 305 306

	return pte;
}

307 308 309
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
310
{
311
	gen6_pte_t pte = GEN6_PTE_VALID;
312 313
	pte |= HSW_PTE_ADDR_ENCODE(addr);

314 315 316 317
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
318
		pte |= HSW_WT_ELLC_LLC_AGE3;
319 320
		break;
	default:
321
		pte |= HSW_WB_ELLC_LLC_AGE3;
322 323
		break;
	}
324 325 326 327

	return pte;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
348
	unsigned int nr;
349 350 351

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

352
	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
353 354 355 356 357 358 359 360 361 362
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

363
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
364
{
365 366
	struct pagevec stack;
	struct page *page;
367

368 369
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
370

371 372 373
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
374 375 376 377 378

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
379 380 381
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
382

383
	/*
384
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
385 386 387 388 389 390
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
391
	pagevec_init(&stack);
392 393
	do {
		struct page *page;
394

395 396 397 398
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

399 400
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
401

402 403
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
404

405
		/* Merge spare WC pages to the global stash */
406 407
		if (stack.nr)
			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
408

409 410 411
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
412
	}
413

414 415 416 417 418 419 420
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
421 422
}

423 424
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
425
{
426 427
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
428

429
	lockdep_assert_held(&vm->free_pages.lock);
430
	GEM_BUG_ON(!pagevec_count(pvec));
431

432
	if (vm->pt_kmap_wc) {
433 434
		/*
		 * When we use WC, first fill up the global stash and then
435 436
		 * only if full immediately free the overflow.
		 */
437
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
438

439 440 441 442 443 444 445 446
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
447

448 449 450 451 452 453 454 455 456 457
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
458
		set_pages_array_wb(pvec->pages, pvec->nr);
459 460

		spin_lock(&vm->free_pages.lock);
461 462 463
	}

	__pagevec_release(pvec);
464 465 466 467
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
468 469 470 471 472 473 474 475
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
476
	spin_lock(&vm->free_pages.lock);
477
	while (!pagevec_space(&vm->free_pages.pvec))
478
		vm_free_pages_release(vm, false);
479 480
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
	pagevec_add(&vm->free_pages.pvec, page);
481 482 483
	spin_unlock(&vm->free_pages.lock);
}

484
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
485
{
486 487 488 489 490 491
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
492
	lockdep_set_subclass(&vm->mutex, subclass);
493
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
494

495 496 497 498 499 500 501
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->unbound_list);
502
	INIT_LIST_HEAD(&vm->bound_list);
503 504 505 506 507 508 509 510 511 512 513
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
514 515

	mutex_destroy(&vm->mutex);
516
}
517

518 519 520 521
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
522
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
523 524
	if (unlikely(!p->page))
		return -ENOMEM;
525

526 527 528
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
529
				      DMA_ATTR_SKIP_CPU_SYNC |
530
				      DMA_ATTR_NO_WARN);
531 532 533
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
534
	}
535 536

	return 0;
537 538
}

539
static int setup_page_dma(struct i915_address_space *vm,
540
			  struct i915_page_dma *p)
541
{
542
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
543 544
}

545
static void cleanup_page_dma(struct i915_address_space *vm,
546
			     struct i915_page_dma *p)
547
{
548 549
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
550 551
}

552
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
553

554 555
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
556 557
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
558

559 560 561
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
562
{
563
	u64 * const vaddr = kmap_atomic(p->page);
564

565
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
566

567
	kunmap_atomic(vaddr);
568 569
}

570 571 572
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
573
{
574
	fill_page_dma(vm, p, (u64)v << 32 | v);
575 576
}

577
static int
578
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
579
{
580
	unsigned long size;
581

582 583 584 585 586 587 588
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
589 590 591
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
592
	 */
593
	size = I915_GTT_PAGE_SIZE_4K;
594
	if (i915_vm_is_4lvl(vm) &&
595
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
596 597
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
598
	}
599 600 601 602 603 604
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
605

606
		page = alloc_pages(gfp, order);
607
		if (unlikely(!page))
608
			goto skip;
609

610 611 612
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
613
					  DMA_ATTR_SKIP_CPU_SYNC |
614
					  DMA_ATTR_NO_WARN);
615 616
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
617

618 619
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
620

621 622
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
623
		vm->scratch_order = order;
624 625 626 627 628 629 630 631 632 633 634 635 636
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
637 638
}

639
static void cleanup_scratch_page(struct i915_address_space *vm)
640
{
641
	struct i915_page_dma *p = &vm->scratch_page;
642
	int order = vm->scratch_order;
643

644
	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
645
		       PCI_DMA_BIDIRECTIONAL);
646
	__free_pages(p->page, order);
647 648
}

649
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
650
{
651
	struct i915_page_table *pt;
652

653
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
654
	if (unlikely(!pt))
655 656
		return ERR_PTR(-ENOMEM);

657 658 659 660
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
661

662
	atomic_set(&pt->used_ptes, 0);
663 664 665
	return pt;
}

666
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
667
{
668
	cleanup_px(vm, pt);
669 670 671 672 673 674
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
675
	fill_px(vm, pt, vm->scratch_pte);
676 677
}

678
static void gen6_initialize_pt(struct i915_address_space *vm,
679 680
			       struct i915_page_table *pt)
{
681
	fill32_px(vm, pt, vm->scratch_pte);
682 683
}

684
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
685
{
686
	struct i915_page_directory *pd;
687

688
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
689
	if (unlikely(!pd))
690 691
		return ERR_PTR(-ENOMEM);

692 693 694 695
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
696

697 698
	atomic_set(&pd->used_pdes, 0);
	spin_lock_init(&pd->lock);
699 700 701
	return pd;
}

702
static void free_pd(struct i915_address_space *vm,
703
		    struct i915_page_directory *pd)
704
{
705 706
	cleanup_px(vm, pd);
	kfree(pd);
707 708 709 710 711
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
712 713
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
714
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
715 716
}

717
static int __pdp_init(struct i915_address_space *vm,
718 719
		      struct i915_page_directory_pointer *pdp)
{
720
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
721

722
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
723
					    I915_GFP_ALLOW_FAIL);
724
	if (unlikely(!pdp->page_directory))
725 726
		return -ENOMEM;

727
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
728

729 730
	atomic_set(&pdp->used_pdpes, 0);
	spin_lock_init(&pdp->lock);
731 732 733 734 735 736 737 738 739
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

740 741
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
742 743 744 745
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

746
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
747 748 749 750 751

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

752
	ret = __pdp_init(vm, pdp);
753 754 755
	if (ret)
		goto fail_bitmap;

756
	ret = setup_px(vm, pdp);
757 758 759 760 761 762 763 764 765 766 767 768 769
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

770
static void free_pdp(struct i915_address_space *vm,
771 772 773
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
774

775
	if (!i915_vm_is_4lvl(vm))
776 777 778 779
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
780 781
}

782 783 784
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
785 786
	fill_px(vm, pdp,
		gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC));
787 788 789 790 791
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
792 793
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
794
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
795
	spin_lock_init(&pml4->lock);
796 797
}

798 799
/*
 * PDE TLBs are a pain to invalidate on GEN8+. When we modify
800 801 802 803 804 805
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
806
	ppgtt->pd_dirty_engines = ALL_ENGINES;
807 808
}

809 810 811
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
812
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
813
				struct i915_page_table *pt,
814
				u64 start, u64 length)
815
{
816
	unsigned int num_entries = gen8_pte_count(start, length);
817
	gen8_pte_t *vaddr;
818

819
	vaddr = kmap_atomic_px(pt);
820
	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
821
	kunmap_atomic(vaddr);
822

823 824
	GEM_BUG_ON(num_entries > atomic_read(&pt->used_ptes));
	return !atomic_sub_return(num_entries, &pt->used_ptes);
825
}
826

827 828 829 830 831 832 833 834 835 836 837 838
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

839
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
840
				struct i915_page_directory *pd,
841
				u64 start, u64 length)
842 843
{
	struct i915_page_table *pt;
844
	u32 pde;
845 846

	gen8_for_each_pde(pt, pd, start, length, pde) {
847 848
		bool free = false;

849 850
		GEM_BUG_ON(pt == vm->scratch_pt);

851 852
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
853

854 855 856 857
		spin_lock(&pd->lock);
		if (!atomic_read(&pt->used_ptes)) {
			gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
			pd->page_table[pde] = vm->scratch_pt;
858

859 860 861 862 863 864 865
			GEM_BUG_ON(!atomic_read(&pd->used_pdes));
			atomic_dec(&pd->used_pdes);
			free = true;
		}
		spin_unlock(&pd->lock);
		if (free)
			free_pt(vm, pt);
866 867
	}

868
	return !atomic_read(&pd->used_pdes);
869
}
870

871 872 873 874 875 876 877
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

878
	if (!i915_vm_is_4lvl(vm))
879 880 881 882 883
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
884
}
885

886 887 888 889
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
890
				 struct i915_page_directory_pointer *pdp,
891
				 u64 start, u64 length)
892 893
{
	struct i915_page_directory *pd;
894
	unsigned int pdpe;
895

896
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
897 898
		bool free = false;

899 900
		GEM_BUG_ON(pd == vm->scratch_pd);

901 902
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
903

904 905 906 907
		spin_lock(&pdp->lock);
		if (!atomic_read(&pd->used_pdes)) {
			gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
			pdp->page_directory[pdpe] = vm->scratch_pd;
908

909 910 911 912 913 914 915
			GEM_BUG_ON(!atomic_read(&pdp->used_pdpes));
			atomic_dec(&pdp->used_pdpes);
			free = true;
		}
		spin_unlock(&pdp->lock);
		if (free)
			free_pd(vm, pd);
916
	}
917

918
	return !atomic_read(&pdp->used_pdpes);
919
}
920

921 922 923 924 925 926
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

927 928 929 930 931 932 933 934 935 936 937
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

938 939 940 941
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
942 943
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
944
{
945 946
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
947
	struct i915_page_directory_pointer *pdp;
948
	unsigned int pml4e;
949

950
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
951

952
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
953
		bool free = false;
954 955
		GEM_BUG_ON(pdp == vm->scratch_pdp);

956 957
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
958

959 960 961 962 963 964 965 966 967
		spin_lock(&pml4->lock);
		if (!atomic_read(&pdp->used_pdpes)) {
			gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
			pml4->pdps[pml4e] = vm->scratch_pdp;
			free = true;
		}
		spin_unlock(&pml4->lock);
		if (free)
			free_pdp(vm, pdp);
968 969 970
	}
}

971
static inline struct sgt_dma {
972 973
	struct scatterlist *sg;
	dma_addr_t dma, max;
974 975 976 977 978
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
979

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

997 998
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
999
			      struct i915_page_directory_pointer *pdp,
1000
			      struct sgt_dma *iter,
1001
			      struct gen8_insert_pte *idx,
1002 1003
			      enum i915_cache_level cache_level,
			      u32 flags)
1004
{
1005
	struct i915_page_directory *pd;
1006
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1007 1008
	gen8_pte_t *vaddr;
	bool ret;
1009

1010
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1011 1012
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1013
	do {
1014 1015
		vaddr[idx->pte] = pte_encode | iter->dma;

1016
		iter->dma += I915_GTT_PAGE_SIZE;
1017 1018 1019 1020 1021 1022
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1023

1024 1025
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1026
		}
1027

1028 1029 1030 1031 1032 1033
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1034
				/* Limited by sg length for 3lvl */
1035 1036
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1037
					ret = true;
1038
					break;
1039 1040
				}

1041
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1042
				pd = pdp->page_directory[idx->pdpe];
1043
			}
1044

1045
			kunmap_atomic(vaddr);
1046
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1047
		}
1048
	} while (1);
1049
	kunmap_atomic(vaddr);
1050

1051
	return ret;
1052 1053
}

1054
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1055
				   struct i915_vma *vma,
1056
				   enum i915_cache_level cache_level,
1057
				   u32 flags)
1058
{
1059
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1060
	struct sgt_dma iter = sgt_dma(vma);
1061
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1062

1063
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1064
				      cache_level, flags);
1065 1066

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1067
}
1068

1069 1070 1071
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1072 1073
					   enum i915_cache_level cache_level,
					   u32 flags)
1074
{
1075
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1076 1077 1078 1079 1080 1081 1082 1083
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1084
		bool maybe_64K = false;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1106 1107 1108 1109
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1110
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1111 1112
				maybe_64K = true;

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1132 1133 1134
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1135
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1136 1137
					maybe_64K = false;

1138 1139 1140 1141 1142 1143
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1160
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1174
				encode = vma->vm->scratch_pte;
M
Matthew Auld 已提交
1175 1176 1177 1178 1179 1180 1181
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1182
		}
1183 1184

		vma->page_sizes.gtt |= page_size;
1185 1186 1187
	} while (iter->sg);
}

1188
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1189
				   struct i915_vma *vma,
1190
				   enum i915_cache_level cache_level,
1191
				   u32 flags)
1192 1193
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1194
	struct sgt_dma iter = sgt_dma(vma);
1195
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1196

1197
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1198 1199
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1200 1201 1202 1203
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1204 1205
						     &iter, &idx, cache_level,
						     flags))
1206
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1207 1208

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1209
	}
1210 1211
}

1212
static void gen8_free_page_tables(struct i915_address_space *vm,
1213
				  struct i915_page_directory *pd)
1214 1215 1216
{
	int i;

1217 1218 1219
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1220
	}
B
Ben Widawsky 已提交
1221 1222
}

1223 1224
static int gen8_init_scratch(struct i915_address_space *vm)
{
1225
	int ret;
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
	    vm->i915->kernel_context->ppgtt) {
		struct i915_address_space *clone =
			&vm->i915->kernel_context->ppgtt->vm;

		GEM_BUG_ON(!clone->has_read_only);

1239
		vm->scratch_order = clone->scratch_order;
1240 1241 1242 1243 1244 1245 1246
		vm->scratch_pte = clone->scratch_pte;
		vm->scratch_pt  = clone->scratch_pt;
		vm->scratch_pd  = clone->scratch_pd;
		vm->scratch_pdp = clone->scratch_pdp;
		return 0;
	}

1247
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1248 1249
	if (ret)
		return ret;
1250

1251 1252 1253
	vm->scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr,
				I915_CACHE_LLC,
1254
				vm->has_read_only);
1255

1256
	vm->scratch_pt = alloc_pt(vm);
1257
	if (IS_ERR(vm->scratch_pt)) {
1258 1259
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1260 1261
	}

1262
	vm->scratch_pd = alloc_pd(vm);
1263
	if (IS_ERR(vm->scratch_pd)) {
1264 1265
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1266 1267
	}

1268
	if (i915_vm_is_4lvl(vm)) {
1269
		vm->scratch_pdp = alloc_pdp(vm);
1270
		if (IS_ERR(vm->scratch_pdp)) {
1271 1272
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1273 1274 1275
		}
	}

1276 1277
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1278
	if (i915_vm_is_4lvl(vm))
1279
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1280 1281

	return 0;
1282 1283

free_pd:
1284
	free_pd(vm, vm->scratch_pd);
1285
free_pt:
1286
	free_pt(vm, vm->scratch_pt);
1287
free_scratch_page:
1288
	cleanup_scratch_page(vm);
1289 1290

	return ret;
1291 1292
}

1293 1294
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1295
	struct i915_address_space *vm = &ppgtt->vm;
1296
	struct drm_i915_private *dev_priv = vm->i915;
1297 1298 1299
	enum vgt_g2v_type msg;
	int i;

1300
	if (i915_vm_is_4lvl(vm)) {
1301
		const u64 daddr = px_dma(&ppgtt->pml4);
1302

1303 1304
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1305 1306 1307 1308

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1309
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1310
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1311

1312 1313
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1325 1326
static void gen8_free_scratch(struct i915_address_space *vm)
{
1327 1328 1329
	if (!vm->scratch_page.daddr)
		return;

1330
	if (i915_vm_is_4lvl(vm))
1331 1332 1333 1334
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1335 1336
}

1337
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1338
				    struct i915_page_directory_pointer *pdp)
1339
{
1340
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1341 1342
	int i;

1343
	for (i = 0; i < pdpes; i++) {
1344
		if (pdp->page_directory[i] == vm->scratch_pd)
1345 1346
			continue;

1347 1348
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1349
	}
1350

1351
	free_pdp(vm, pdp);
1352 1353 1354 1355 1356 1357
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1358
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1359
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1360 1361
			continue;

1362
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1363 1364
	}

1365
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1366 1367 1368 1369
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1370
	struct drm_i915_private *i915 = vm->i915;
1371
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1372

1373
	if (intel_vgpu_active(i915))
1374 1375
		gen8_ppgtt_notify_vgt(ppgtt, false);

1376
	if (i915_vm_is_4lvl(vm))
1377
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1378
	else
1379
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1380

1381
	gen8_free_scratch(vm);
1382 1383
}

1384 1385 1386
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1387
{
1388
	struct i915_page_table *pt;
1389
	u64 from = start;
1390
	unsigned int pde;
1391

1392
	spin_lock(&pd->lock);
1393
	gen8_for_each_pde(pt, pd, start, length, pde) {
1394
		const int count = gen8_pte_count(start, length);
1395

1396
		if (pt == vm->scratch_pt) {
1397 1398 1399
			struct i915_page_table *old;

			spin_unlock(&pd->lock);
1400

1401
			pt = alloc_pt(vm);
1402
			if (IS_ERR(pt))
1403
				goto unwind;
1404

1405
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1406
				gen8_initialize_pt(vm, pt);
1407

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
			old = cmpxchg(&pd->page_table[pde], vm->scratch_pt, pt);
			if (old == vm->scratch_pt) {
				gen8_ppgtt_set_pde(vm, pd, pt, pde);
				atomic_inc(&pd->used_pdes);
			} else {
				free_pt(vm, pt);
				pt = old;
			}

			spin_lock(&pd->lock);
1418
		}
1419

1420
		atomic_add(count, &pt->used_ptes);
1421
	}
1422 1423
	spin_unlock(&pd->lock);

1424
	return 0;
1425

1426 1427
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1428
	return -ENOMEM;
1429 1430
}

1431 1432 1433
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1434
{
1435
	struct i915_page_directory *pd;
1436 1437
	u64 from = start;
	unsigned int pdpe;
1438 1439
	int ret;

1440
	spin_lock(&pdp->lock);
1441
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1442
		if (pd == vm->scratch_pd) {
1443 1444 1445
			struct i915_page_directory *old;

			spin_unlock(&pdp->lock);
1446

1447
			pd = alloc_pd(vm);
1448
			if (IS_ERR(pd))
1449
				goto unwind;
1450

1451
			gen8_initialize_pd(vm, pd);
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

			old = cmpxchg(&pdp->page_directory[pdpe],
				      vm->scratch_pd, pd);
			if (old == vm->scratch_pd) {
				gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
				atomic_inc(&pdp->used_pdpes);
			} else {
				free_pd(vm, pd);
				pd = old;
			}

			spin_lock(&pdp->lock);
1464
		}
1465 1466
		atomic_inc(&pd->used_pdes);
		spin_unlock(&pdp->lock);
1467 1468

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1469 1470
		if (unlikely(ret))
			goto unwind_pd;
1471 1472 1473

		spin_lock(&pdp->lock);
		atomic_dec(&pd->used_pdes);
1474
	}
1475
	spin_unlock(&pdp->lock);
1476

B
Ben Widawsky 已提交
1477
	return 0;
1478

1479
unwind_pd:
1480 1481
	spin_lock(&pdp->lock);
	if (atomic_dec_and_test(&pd->used_pdes)) {
1482
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1483 1484
		GEM_BUG_ON(!atomic_read(&pdp->used_pdpes));
		atomic_dec(&pdp->used_pdpes);
1485 1486
		free_pd(vm, pd);
	}
1487
	spin_unlock(&pdp->lock);
1488 1489 1490
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1491 1492
}

1493 1494
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1495
{
1496 1497 1498
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1499

1500 1501 1502 1503 1504 1505 1506 1507 1508
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1509

1510
	spin_lock(&pml4->lock);
1511
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1512 1513 1514 1515 1516
		if (pdp == vm->scratch_pdp) {
			struct i915_page_directory_pointer *old;

			spin_unlock(&pml4->lock);

1517 1518 1519
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1520

1521
			gen8_initialize_pdp(vm, pdp);
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

			old = cmpxchg(&pml4->pdps[pml4e], vm->scratch_pdp, pdp);
			if (old == vm->scratch_pdp) {
				gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
			} else {
				free_pdp(vm, pdp);
				pdp = old;
			}

			spin_lock(&pml4->lock);
1532
		}
1533 1534
		atomic_inc(&pdp->used_pdpes);
		spin_unlock(&pml4->lock);
1535

1536
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1537 1538
		if (unlikely(ret))
			goto unwind_pdp;
1539 1540 1541

		spin_lock(&pml4->lock);
		atomic_dec(&pdp->used_pdpes);
1542
	}
1543
	spin_unlock(&pml4->lock);
1544 1545 1546

	return 0;

1547
unwind_pdp:
1548 1549
	spin_lock(&pml4->lock);
	if (atomic_dec_and_test(&pdp->used_pdpes)) {
1550 1551 1552
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1553
	spin_unlock(&pml4->lock);
1554 1555 1556
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1557 1558
}

1559
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1560
{
1561
	struct i915_address_space *vm = &ppgtt->vm;
1562 1563
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1564
	u64 start = 0, length = ppgtt->vm.total;
1565 1566
	u64 from = start;
	unsigned int pdpe;
1567

1568 1569 1570 1571
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1572

1573 1574
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1575
		atomic_inc(&pdp->used_pdpes);
1576
	}
1577

1578
	atomic_inc(&pdp->used_pdpes); /* never remove */
1579
	return 0;
1580

1581 1582 1583 1584 1585 1586
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
1587
	atomic_set(&pdp->used_pdpes, 0);
1588
	return -ENOMEM;
1589 1590
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static void ppgtt_init(struct drm_i915_private *i915,
		       struct i915_hw_ppgtt *ppgtt)
{
	kref_init(&ppgtt->ref);

	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);

	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);

	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;
}

1608
/*
1609 1610 1611 1612
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1613
 *
1614
 */
1615
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1616
{
1617 1618 1619 1620 1621 1622 1623
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1624
	ppgtt_init(i915, ppgtt);
1625

1626 1627 1628 1629 1630 1631 1632
	/*
	 * From bdw, there is hw support for read-only pages in the PPGTT.
	 *
	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
	 * for now.
	 */
	ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1633

1634 1635 1636
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1637
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1638
		ppgtt->vm.pt_kmap_wc = true;
1639

1640 1641 1642
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1643

1644
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1645 1646 1647
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1648

1649
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1650

1651 1652 1653
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1654
	} else {
1655 1656 1657
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1658

1659 1660 1661
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1662
				__pdp_fini(&ppgtt->pdp);
1663
				goto err_scratch;
1664
			}
1665
		}
1666

1667 1668 1669
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1670
	}
1671

1672
	if (intel_vgpu_active(i915))
1673 1674
		gen8_ppgtt_notify_vgt(ppgtt, true);

1675
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1676

1677
	return ppgtt;
1678

1679
err_scratch:
1680
	gen8_free_scratch(&ppgtt->vm);
1681 1682 1683
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1684 1685
}

1686
/* Write pde (index) from the page directory @pd to the page table @pt */
1687
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1688 1689
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1690
{
1691
	/* Caller needs to make sure the write completes if necessary */
1692 1693
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1694
}
B
Ben Widawsky 已提交
1695

1696
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1697
{
1698
	struct intel_engine_cs *engine;
1699
	u32 ecochk, ecobits;
1700
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1701

1702 1703
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1704

1705
	ecochk = I915_READ(GAM_ECOCHK);
1706
	if (IS_HASWELL(dev_priv)) {
1707 1708 1709 1710 1711 1712
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1713

1714
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1715
		/* GFX_MODE is per-ring on gen7+ */
1716
		I915_WRITE(RING_MODE_GEN7(engine),
1717
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1718
	}
1719
}
B
Ben Widawsky 已提交
1720

1721
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1722
{
1723
	u32 ecochk, gab_ctl, ecobits;
1724

1725 1726 1727
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1728

1729 1730 1731 1732 1733 1734
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

1735 1736
	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1737 1738
}

1739
/* PPGTT support for Sandybdrige/Gen6 and later */
1740
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1741
				   u64 start, u64 length)
1742
{
1743
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1744
	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1745 1746
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1747
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1748
	const gen6_pte_t scratch_pte = vm->scratch_pte;
1749

1750
	while (num_entries) {
1751
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1752
		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1753
		gen6_pte_t *vaddr;
1754

1755 1756 1757 1758
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

1759 1760
		GEM_BUG_ON(count > atomic_read(&pt->used_ptes));
		if (!atomic_sub_return(count, &pt->used_ptes))
1761
			ppgtt->scan_for_unused_pt = true;
1762

1763 1764
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1765 1766 1767 1768
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1769

1770
		vaddr = kmap_atomic_px(pt);
1771
		memset32(vaddr + pte, scratch_pte, count);
1772
		kunmap_atomic(vaddr);
1773

1774
		pte = 0;
1775
	}
1776 1777
}

1778
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1779
				      struct i915_vma *vma,
1780 1781
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1782
{
1783
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1784
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1785 1786
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1787
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1788
	struct sgt_dma iter = sgt_dma(vma);
1789 1790
	gen6_pte_t *vaddr;

1791 1792
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1793
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1794 1795
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1796

1797
		iter.dma += I915_GTT_PAGE_SIZE;
1798 1799 1800 1801
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1802

1803 1804 1805
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1806

1807
		if (++act_pte == GEN6_PTES) {
1808 1809
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1810
			act_pte = 0;
D
Daniel Vetter 已提交
1811
		}
1812
	} while (1);
1813
	kunmap_atomic(vaddr);
1814 1815

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1816 1817
}

1818
static int gen6_alloc_va_range(struct i915_address_space *vm,
1819
			       u64 start, u64 length)
1820
{
1821
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1822
	struct i915_page_table *pt;
1823
	intel_wakeref_t wakeref;
1824 1825 1826
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1827

1828 1829
	wakeref = intel_runtime_pm_get(vm->i915);

1830
	spin_lock(&ppgtt->base.pd.lock);
1831
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1832 1833
		const unsigned int count = gen6_pte_count(start, length);

1834
		if (pt == vm->scratch_pt) {
1835 1836 1837 1838
			struct i915_page_table *old;

			spin_unlock(&ppgtt->base.pd.lock);

1839 1840 1841
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1842

1843
			gen6_initialize_pt(vm, pt);
1844

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
			old = cmpxchg(&ppgtt->base.pd.page_table[pde],
				      vm->scratch_pt, pt);
			if (old == vm->scratch_pt) {
				ppgtt->base.pd.page_table[pde] = pt;
				if (i915_vma_is_bound(ppgtt->vma,
						      I915_VMA_GLOBAL_BIND)) {
					gen6_write_pde(ppgtt, pde, pt);
					flush = true;
				}
			} else {
				free_pt(vm, pt);
				pt = old;
1857
			}
1858

1859
			spin_lock(&ppgtt->base.pd.lock);
1860
		}
1861

1862
		atomic_add(count, &pt->used_ptes);
1863
	}
1864
	spin_unlock(&ppgtt->base.pd.lock);
1865

1866
	if (flush) {
1867
		mark_tlbs_dirty(&ppgtt->base);
1868
		gen6_ggtt_invalidate(vm->i915);
1869 1870
	}

1871 1872
	intel_runtime_pm_put(vm->i915, wakeref);

1873
	return 0;
1874 1875

unwind_out:
1876
	intel_runtime_pm_put(vm->i915, wakeref);
1877
	gen6_ppgtt_clear_range(vm, from, start - from);
1878
	return -ENOMEM;
1879 1880
}

1881
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1882
{
1883 1884 1885
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1886
	int ret;
1887

1888
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1889 1890
	if (ret)
		return ret;
1891

1892 1893 1894
	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
					 I915_CACHE_NONE,
					 PTE_READ_ONLY);
1895

1896
	vm->scratch_pt = alloc_pt(vm);
1897
	if (IS_ERR(vm->scratch_pt)) {
1898
		cleanup_scratch_page(vm);
1899 1900 1901
		return PTR_ERR(vm->scratch_pt);
	}

1902
	gen6_initialize_pt(vm, vm->scratch_pt);
1903 1904
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1905
	spin_lock_init(&ppgtt->base.pd.lock);
1906 1907 1908 1909

	return 0;
}

1910
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1911
{
1912 1913
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1914 1915
}

1916
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1917
{
1918
	struct i915_page_table *pt;
1919
	u32 pde;
1920

1921
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1922 1923 1924 1925
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
struct gen6_ppgtt_cleanup_work {
	struct work_struct base;
	struct i915_vma *vma;
};

static void gen6_ppgtt_cleanup_work(struct work_struct *wrk)
{
	struct gen6_ppgtt_cleanup_work *work =
		container_of(wrk, typeof(*work), base);
	/* Side note, vma->vm is the GGTT not the ppgtt we just destroyed! */
	struct drm_i915_private *i915 = work->vma->vm->i915;

	mutex_lock(&i915->drm.struct_mutex);
	i915_vma_destroy(work->vma);
	mutex_unlock(&i915->drm.struct_mutex);

	kfree(work);
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
static int nop_set_pages(struct i915_vma *vma)
{
	return -ENODEV;
}

static void nop_clear_pages(struct i915_vma *vma)
{
}

static int nop_bind(struct i915_vma *vma,
		    enum i915_cache_level cache_level,
		    u32 unused)
{
	return -ENODEV;
}

static void nop_unbind(struct i915_vma *vma)
{
}

static const struct i915_vma_ops nop_vma_ops = {
	.set_pages = nop_set_pages,
	.clear_pages = nop_clear_pages,
	.bind_vma = nop_bind,
	.unbind_vma = nop_unbind,
};

1972 1973 1974
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1975
	struct gen6_ppgtt_cleanup_work *work = ppgtt->work;
1976

1977 1978 1979
	/* FIXME remove the struct_mutex to bring the locking under control */
	INIT_WORK(&work->base, gen6_ppgtt_cleanup_work);
	work->vma = ppgtt->vma;
1980
	work->vma->ops = &nop_vma_ops;
1981
	schedule_work(&work->base);
1982 1983 1984

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1985 1986
}

1987
static int pd_vma_set_pages(struct i915_vma *vma)
1988
{
1989 1990 1991
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1992

1993 1994 1995
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1996

1997 1998 1999 2000 2001 2002 2003 2004 2005
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
2006
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
2007 2008
	struct i915_page_table *pt;
	unsigned int pde;
2009

2010 2011
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2012

2013 2014
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
2015

2016 2017
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2018

2019
	return 0;
2020
}
2021

2022
static void pd_vma_unbind(struct i915_vma *vma)
2023
{
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
2034
		if (atomic_read(&pt->used_ptes) || pt == scratch_pt)
2035 2036 2037 2038 2039 2040 2041
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

2060
	vma = i915_vma_alloc();
2061 2062 2063
	if (!vma)
		return ERR_PTR(-ENOMEM);

2064
	i915_active_init(i915, &vma->active, NULL);
2065
	INIT_ACTIVE_REQUEST(&vma->last_fence);
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
2077
	INIT_LIST_HEAD(&vma->closed_link);
2078 2079

	mutex_lock(&vma->vm->mutex);
2080
	list_add(&vma->vm_link, &vma->vm->unbound_list);
2081
	mutex_unlock(&vma->vm->mutex);
2082 2083 2084

	return vma;
}
2085

2086
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2087 2088
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2089
	int err;
2090

2091 2092
	GEM_BUG_ON(ppgtt->base.vm.closed);

2093 2094 2095 2096 2097 2098 2099 2100 2101
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2102 2103 2104 2105 2106
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	err = i915_vma_pin(ppgtt->vma,
			   0, GEN6_PD_ALIGN,
			   PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto unpin;

	return 0;

unpin:
	ppgtt->pin_count = 0;
	return err;
2118 2119
}

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
void gen6_ppgtt_unpin_all(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	if (!ppgtt->pin_count)
		return;

	ppgtt->pin_count = 0;
	i915_vma_unpin(ppgtt->vma);
}

2142
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2143
{
2144
	struct i915_ggtt * const ggtt = &i915->ggtt;
2145
	struct gen6_hw_ppgtt *ppgtt;
2146 2147 2148 2149 2150 2151
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2152
	ppgtt_init(i915, &ppgtt->base);
2153

2154
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2155 2156 2157
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2158

2159 2160
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2161
	ppgtt->work = kmalloc(sizeof(*ppgtt->work), GFP_KERNEL);
2162 2163
	if (!ppgtt->work) {
		err = -ENOMEM;
2164
		goto err_free;
2165
	}
2166

2167
	err = gen6_ppgtt_init_scratch(ppgtt);
2168
	if (err)
2169
		goto err_work;
2170

2171 2172 2173
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2174
		goto err_scratch;
2175
	}
2176

2177
	return &ppgtt->base;
2178

2179 2180
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2181 2182
err_work:
	kfree(ppgtt->work);
2183 2184 2185
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2186
}
2187

2188
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2189 2190 2191 2192 2193
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2194
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2195
	if (IS_BROADWELL(dev_priv))
2196
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2197
	else if (IS_CHERRYVIEW(dev_priv))
2198
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2199
	else if (IS_GEN9_LP(dev_priv))
2200
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2201 2202
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2220 2221
}

2222
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2223
{
2224
	gtt_write_workarounds(dev_priv);
2225

2226
	if (IS_GEN(dev_priv, 6))
2227
		gen6_ppgtt_enable(dev_priv);
2228
	else if (IS_GEN(dev_priv, 7))
2229
		gen7_ppgtt_enable(dev_priv);
2230

2231 2232
	return 0;
}
2233

2234 2235 2236 2237 2238 2239 2240 2241 2242
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2243
struct i915_hw_ppgtt *
2244
i915_ppgtt_create(struct drm_i915_private *i915)
2245 2246 2247
{
	struct i915_hw_ppgtt *ppgtt;

2248 2249 2250
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2251

2252
	trace_i915_ppgtt_create(&ppgtt->vm);
2253

2254 2255 2256
	return ppgtt;
}

2257
static void ppgtt_destroy_vma(struct i915_address_space *vm)
2258 2259
{
	struct list_head *phases[] = {
2260
		&vm->bound_list,
2261 2262 2263 2264 2265 2266 2267 2268 2269
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2270
			i915_vma_destroy(vma);
2271 2272 2273
	}
}

2274
void i915_ppgtt_release(struct kref *kref)
2275 2276 2277 2278
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2279
	trace_i915_ppgtt_release(&ppgtt->vm);
2280

2281
	ppgtt_destroy_vma(&ppgtt->vm);
2282

2283
	GEM_BUG_ON(!list_empty(&ppgtt->vm.bound_list));
2284
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2285

2286 2287
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2288 2289
	kfree(ppgtt);
}
2290

2291 2292 2293
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2294
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2295 2296 2297 2298
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2299
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2300 2301
}

2302
static void gen6_check_faults(struct drm_i915_private *dev_priv)
2303
{
2304
	struct intel_engine_cs *engine;
2305
	enum intel_engine_id id;
2306
	u32 fault;
2307

2308
	for_each_engine(engine, dev_priv, id) {
2309
		fault = GEN6_RING_FAULT_REG_READ(engine);
2310
		if (fault & RING_FAULT_VALID) {
2311
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2312
					 "\tAddr: 0x%08lx\n"
2313 2314 2315
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2316 2317 2318 2319
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2320 2321
		}
	}
2322 2323
}

2324
static void gen8_check_faults(struct drm_i915_private *dev_priv)
2325 2326 2327 2328
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2329 2330 2331 2332 2333 2334 2335 2336
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2337
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2338 2339
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2340 2341 2342
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2343 2344 2345
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
	}
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
2356
		gen8_check_faults(dev_priv);
2357
	else if (INTEL_GEN(dev_priv) >= 6)
2358
		gen6_check_faults(dev_priv);
2359 2360
	else
		return;
2361

2362
	i915_clear_error_registers(dev_priv, ALL_ENGINES);
2363 2364
}

2365
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2366
{
2367
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2368 2369 2370 2371

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2372
	if (INTEL_GEN(dev_priv) < 6)
2373 2374
		return;

2375
	i915_check_and_clear_faults(dev_priv);
2376

2377
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2378

2379
	i915_ggtt_invalidate(dev_priv);
2380 2381
}

2382 2383
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2384
{
2385
	do {
2386 2387 2388 2389
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2390 2391
			return 0;

2392 2393
		/*
		 * If the DMA remap fails, one cause can be that we have
2394 2395 2396 2397 2398 2399 2400
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2401
				 obj->base.size >> PAGE_SHIFT, NULL,
2402
				 I915_SHRINK_BOUND |
2403
				 I915_SHRINK_UNBOUND));
2404

2405
	return -ENOSPC;
2406 2407
}

2408
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2409 2410 2411 2412
{
	writeq(pte, addr);
}

2413 2414
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2415
				  u64 offset,
2416 2417 2418
				  enum i915_cache_level level,
				  u32 unused)
{
2419
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2420
	gen8_pte_t __iomem *pte =
2421
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2422

2423
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2424

2425
	ggtt->invalidate(vm->i915);
2426 2427
}

B
Ben Widawsky 已提交
2428
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2429
				     struct i915_vma *vma,
2430
				     enum i915_cache_level level,
2431
				     u32 flags)
B
Ben Widawsky 已提交
2432
{
2433
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2434 2435
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2436
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2437
	dma_addr_t addr;
2438

2439 2440 2441 2442
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2443

2444
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2445
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2446
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2447
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2448

2449 2450 2451
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2452
	 */
2453
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2454 2455
}

2456 2457
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2458
				  u64 offset,
2459 2460 2461
				  enum i915_cache_level level,
				  u32 flags)
{
2462
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2463
	gen6_pte_t __iomem *pte =
2464
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2465

2466
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2467

2468
	ggtt->invalidate(vm->i915);
2469 2470
}

2471 2472 2473 2474 2475 2476
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2477
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2478
				     struct i915_vma *vma,
2479 2480
				     enum i915_cache_level level,
				     u32 flags)
2481
{
2482
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2483
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2484
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2485
	struct sgt_iter iter;
2486
	dma_addr_t addr;
2487
	for_each_sgt_dma(addr, iter, vma->pages)
2488
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2489

2490 2491 2492
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2493
	 */
2494
	ggtt->invalidate(vm->i915);
2495 2496
}

2497
static void nop_clear_range(struct i915_address_space *vm,
2498
			    u64 start, u64 length)
2499 2500 2501
{
}

B
Ben Widawsky 已提交
2502
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2503
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2504
{
2505
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2506 2507
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2508
	const gen8_pte_t scratch_pte = vm->scratch_pte;
2509
	gen8_pte_t __iomem *gtt_base =
2510 2511
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2567
	struct i915_vma *vma;
2568
	enum i915_cache_level level;
2569
	u32 flags;
2570 2571 2572 2573 2574 2575
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2576
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2577 2578 2579 2580 2581 2582
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2583
					     struct i915_vma *vma,
2584
					     enum i915_cache_level level,
2585
					     u32 flags)
2586
{
2587
	struct insert_entries arg = { vm, vma, level, flags };
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2617
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2618
				  u64 start, u64 length)
2619
{
2620
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2621 2622
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2623
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2624 2625
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2626 2627 2628 2629 2630 2631 2632
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2633
	scratch_pte = vm->scratch_pte;
2634

2635 2636 2637 2638
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2639 2640
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2641
				  u64 offset,
2642 2643 2644 2645 2646 2647 2648 2649 2650
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2651
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2652
				     struct i915_vma *vma,
2653 2654
				     enum i915_cache_level cache_level,
				     u32 unused)
2655 2656 2657 2658
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2659 2660
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2661 2662
}

2663
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2664
				  u64 start, u64 length)
2665
{
2666
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2667 2668
}

2669 2670 2671
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2672
{
2673
	struct drm_i915_private *i915 = vma->vm->i915;
2674
	struct drm_i915_gem_object *obj = vma->obj;
2675
	intel_wakeref_t wakeref;
2676
	u32 pte_flags;
2677

2678
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2679
	pte_flags = 0;
2680
	if (i915_gem_object_is_readonly(obj))
2681 2682
		pte_flags |= PTE_READ_ONLY;

2683 2684
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2685

2686 2687
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2688 2689 2690 2691 2692
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2693
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2694 2695 2696 2697

	return 0;
}

2698 2699 2700
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2701
	intel_wakeref_t wakeref;
2702

2703 2704
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2705 2706
}

2707 2708 2709
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2710
{
2711
	struct drm_i915_private *i915 = vma->vm->i915;
2712
	u32 pte_flags;
2713
	int ret;
2714

2715
	/* Currently applicable only to VLV */
2716
	pte_flags = 0;
2717
	if (i915_gem_object_is_readonly(vma->obj))
2718
		pte_flags |= PTE_READ_ONLY;
2719

2720 2721 2722
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2723
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2724 2725 2726
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2727
			if (ret)
2728
				return ret;
2729 2730
		}

2731 2732
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2733 2734
	}

2735
	if (flags & I915_VMA_GLOBAL_BIND) {
2736 2737
		intel_wakeref_t wakeref;

2738 2739 2740 2741
		with_intel_runtime_pm(i915, wakeref) {
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2742
	}
2743

2744
	return 0;
2745 2746
}

2747
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2748
{
2749
	struct drm_i915_private *i915 = vma->vm->i915;
2750

2751
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2752
		struct i915_address_space *vm = vma->vm;
2753 2754
		intel_wakeref_t wakeref;

2755 2756
		with_intel_runtime_pm(i915, wakeref)
			vm->clear_range(vm, vma->node.start, vma->size);
2757
	}
2758

2759
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2760
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2761 2762 2763

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2764 2765
}

2766 2767
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2768
{
D
David Weinehall 已提交
2769 2770
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2771
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2772

2773
	if (unlikely(ggtt->do_idle_maps)) {
2774
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2775 2776 2777 2778 2779
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2780

2781
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2782
}
2783

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2794 2795
	vma->page_sizes = vma->obj->mm.page_sizes;

2796 2797 2798
	return 0;
}

C
Chris Wilson 已提交
2799
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2800
				  unsigned long color,
2801 2802
				  u64 *start,
				  u64 *end)
2803
{
2804
	if (node->allocated && node->color != color)
2805
		*start += I915_GTT_PAGE_SIZE;
2806

2807 2808 2809 2810 2811
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2812
	node = list_next_entry(node, node_list);
2813
	if (node->color != color)
2814
		*end -= I915_GTT_PAGE_SIZE;
2815
}
B
Ben Widawsky 已提交
2816

2817 2818 2819 2820 2821 2822
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2823
	ppgtt = i915_ppgtt_create(i915);
2824 2825
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2826

2827
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2828 2829 2830 2831
		err = -ENODEV;
		goto err_ppgtt;
	}

2832 2833 2834 2835 2836 2837 2838 2839 2840
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2841 2842

	i915->mm.aliasing_ppgtt = ppgtt;
2843

2844 2845
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2846

2847 2848
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2849

2850 2851 2852
	return 0;

err_ppgtt:
2853
	i915_ppgtt_put(ppgtt);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2866
	i915_ppgtt_put(ppgtt);
2867

2868 2869
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2870 2871
}

2872
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2873
{
2874 2875 2876 2877 2878 2879 2880 2881 2882
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2883
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2884
	unsigned long hole_start, hole_end;
2885
	struct drm_mm_node *entry;
2886
	int ret;
2887

2888 2889 2890 2891 2892 2893 2894 2895 2896
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
			       intel_guc_reserved_gtt_size(&dev_priv->guc));

2897 2898 2899
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2900

2901
	/* Reserve a mappable slot for our lockless error capture */
2902
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2903 2904 2905
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2906 2907 2908
	if (ret)
		return ret;

2909 2910 2911 2912 2913 2914
	if (USES_GUC(dev_priv)) {
		ret = intel_guc_reserve_ggtt_top(&dev_priv->guc);
		if (ret)
			goto err_reserve;
	}

2915
	/* Clear any non-preallocated blocks */
2916
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2917 2918
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2919 2920
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2921 2922 2923
	}

	/* And finally clear the reserved guard page */
2924
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2925

2926
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2927
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2928
		if (ret)
2929
			goto err_appgtt;
2930 2931
	}

2932
	return 0;
2933

2934 2935 2936
err_appgtt:
	intel_guc_release_ggtt_top(&dev_priv->guc);
err_reserve:
2937 2938
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2939 2940
}

2941 2942
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2943
 * @dev_priv: i915 device
2944
 */
2945
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2946
{
2947
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2948
	struct i915_vma *vma, *vn;
2949
	struct pagevec *pvec;
2950

2951
	ggtt->vm.closed = true;
2952 2953

	mutex_lock(&dev_priv->drm.struct_mutex);
2954 2955
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2956
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2957
		WARN_ON(i915_vma_unbind(vma));
2958

2959 2960 2961
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2962 2963
	intel_guc_release_ggtt_top(&dev_priv->guc);

2964
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2965
		intel_vgt_deballoon(dev_priv);
2966
		i915_address_space_fini(&ggtt->vm);
2967 2968
	}

2969
	ggtt->vm.cleanup(&ggtt->vm);
2970

2971
	pvec = &dev_priv->mm.wc_stash.pvec;
2972 2973 2974 2975 2976
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2977
	mutex_unlock(&dev_priv->drm.struct_mutex);
2978 2979

	arch_phys_wc_del(ggtt->mtrr);
2980
	io_mapping_fini(&ggtt->iomap);
2981

2982
	i915_gem_cleanup_stolen(dev_priv);
2983
}
2984

2985
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2986 2987 2988 2989 2990 2991
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2992
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2993 2994 2995 2996 2997
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2998 2999

#ifdef CONFIG_X86_32
3000
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
3001 3002 3003 3004
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

3005 3006 3007
	return bdw_gmch_ctl << 20;
}

3008
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

3019
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
3020
{
3021
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3022
	struct pci_dev *pdev = dev_priv->drm.pdev;
3023
	phys_addr_t phys_addr;
3024
	int ret;
B
Ben Widawsky 已提交
3025 3026

	/* For Modern GENs the PTEs and register space are split in the BAR */
3027
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
3028

I
Imre Deak 已提交
3029
	/*
3030 3031 3032
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
3033 3034 3035
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
3036
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3037
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
3038
	else
3039
		ggtt->gsm = ioremap_wc(phys_addr, size);
3040
	if (!ggtt->gsm) {
3041
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
3042 3043 3044
		return -ENOMEM;
	}

3045
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3046
	if (ret) {
B
Ben Widawsky 已提交
3047 3048
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
3049
		iounmap(ggtt->gsm);
3050
		return ret;
B
Ben Widawsky 已提交
3051 3052
	}

3053 3054 3055 3056
	ggtt->vm.scratch_pte =
		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
				    I915_CACHE_NONE, 0);

3057
	return 0;
B
Ben Widawsky 已提交
3058 3059
}

3060 3061
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
3062
{
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3106
	struct intel_ppat_entry *entry = NULL;
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3129
		if (!entry)
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3206
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3244 3245
}

B
Ben Widawsky 已提交
3246 3247 3248
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3249
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3250
{
3251 3252 3253 3254
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3255

3256
	if (!HAS_PPGTT(ppat->i915)) {
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3270 3271 3272
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3273

3274 3275 3276 3277 3278 3279 3280 3281
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3282 3283
}

3284
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3285
{
3286 3287 3288 3289
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3290 3291 3292 3293 3294 3295 3296

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3308 3309
	 */

3310 3311 3312 3313 3314 3315 3316 3317
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3318 3319
}

3320 3321 3322 3323 3324
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3325
	cleanup_scratch_page(vm);
3326 3327
}

3328 3329
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3330 3331 3332 3333 3334
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3335
	if (INTEL_GEN(dev_priv) >= 10)
3336
		cnl_setup_private_ppat(ppat);
3337
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3338
		chv_setup_private_ppat(ppat);
3339
	else
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3351 3352
}

3353
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3354
{
3355
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3356
	struct pci_dev *pdev = dev_priv->drm.pdev;
3357
	unsigned int size;
B
Ben Widawsky 已提交
3358
	u16 snb_gmch_ctl;
3359
	int err;
B
Ben Widawsky 已提交
3360 3361

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3362 3363 3364 3365
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3366

3367 3368 3369 3370 3371
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3372

3373
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3374
	if (IS_CHERRYVIEW(dev_priv))
3375
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3376
	else
3377
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3378

3379
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3380 3381 3382
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3383
	if (intel_scanout_needs_vtd_wa(dev_priv))
3384
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3385

3386
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3387

3388
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3389 3390
	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3391 3392 3393 3394
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3395 3396 3397 3398 3399

		/* Prevent recursively calling stop_machine() and deadlocks. */
		dev_info(dev_priv->drm.dev,
			 "Disabling error capture for VT-d workaround\n");
		i915_disable_error_state(dev_priv, -ENODEV);
3400 3401
	}

3402 3403
	ggtt->invalidate = gen6_ggtt_invalidate;

3404 3405 3406 3407 3408
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3409 3410
	ggtt->vm.pte_encode = gen8_pte_encode;

3411 3412
	setup_private_pat(dev_priv);

3413
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3414 3415
}

3416
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3417
{
3418
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3419
	struct pci_dev *pdev = dev_priv->drm.pdev;
3420
	unsigned int size;
3421
	u16 snb_gmch_ctl;
3422
	int err;
3423

3424 3425 3426 3427
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3428

3429 3430
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3431
	 */
3432
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3433
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3434
		return -ENXIO;
3435 3436
	}

3437 3438 3439 3440 3441
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3442
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3443

3444
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3445
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3446

3447 3448 3449
	ggtt->vm.clear_range = nop_clear_range;
	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3450 3451 3452
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3453

3454 3455
	ggtt->invalidate = gen6_ggtt_invalidate;

3456
	if (HAS_EDRAM(dev_priv))
3457
		ggtt->vm.pte_encode = iris_pte_encode;
3458
	else if (IS_HASWELL(dev_priv))
3459
		ggtt->vm.pte_encode = hsw_pte_encode;
3460
	else if (IS_VALLEYVIEW(dev_priv))
3461
		ggtt->vm.pte_encode = byt_pte_encode;
3462
	else if (INTEL_GEN(dev_priv) >= 7)
3463
		ggtt->vm.pte_encode = ivb_pte_encode;
3464
	else
3465
		ggtt->vm.pte_encode = snb_pte_encode;
3466

3467 3468 3469 3470 3471
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3472
	return ggtt_probe_common(ggtt, size);
3473 3474
}

3475
static void i915_gmch_remove(struct i915_address_space *vm)
3476
{
3477
	intel_gmch_remove();
3478
}
3479

3480
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3481
{
3482
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3483
	phys_addr_t gmadr_base;
3484 3485
	int ret;

3486
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3487 3488 3489 3490 3491
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3492
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3493

3494 3495 3496 3497
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3498
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3499 3500 3501 3502
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3503

3504 3505
	ggtt->invalidate = gmch_ggtt_invalidate;

3506 3507 3508 3509 3510
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3511
	if (unlikely(ggtt->do_idle_maps))
3512 3513
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3514 3515 3516
	return 0;
}

3517
/**
3518
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3519
 * @dev_priv: i915 device
3520
 */
3521
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3522
{
3523
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3524 3525
	int ret;

3526 3527
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3528

3529 3530 3531 3532 3533 3534
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3535
	if (ret)
3536 3537
		return ret;

3538
	if ((ggtt->vm.total - 1) >> 32) {
3539
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3540
			  " of address space! Found %lldM!\n",
3541 3542 3543 3544
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3545 3546
	}

3547
	if (ggtt->mappable_end > ggtt->vm.total) {
3548
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3549
			  " aperture=%pa, total=%llx\n",
3550 3551
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3552 3553
	}

3554
	/* GMADR is the PCI mmio aperture into the global GTT. */
3555
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3556
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3557
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3558
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3559
	if (intel_vtd_active())
3560
		DRM_INFO("VT-d active for gfx access\n");
3561 3562

	return 0;
3563 3564 3565 3566
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3567
 * @dev_priv: i915 device
3568
 */
3569
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3570 3571 3572 3573
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3574 3575
	stash_init(&dev_priv->mm.wc_stash);

3576 3577 3578 3579
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3580
	 */
C
Chris Wilson 已提交
3581
	mutex_lock(&dev_priv->drm.struct_mutex);
3582
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3583

3584 3585
	ggtt->vm.is_ggtt = true;

3586 3587 3588
	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3589
	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3590
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3591
	mutex_unlock(&dev_priv->drm.struct_mutex);
3592

3593 3594
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3595
				dev_priv->ggtt.mappable_end)) {
3596 3597 3598 3599
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3600
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3601

3602 3603 3604 3605
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3606
	ret = i915_gem_init_stolen(dev_priv);
3607 3608 3609 3610
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3611 3612

out_gtt_cleanup:
3613
	ggtt->vm.cleanup(&ggtt->vm);
3614
	return ret;
3615
}
3616

3617
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3618
{
3619
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3620 3621 3622 3623 3624
		return -EIO;

	return 0;
}

3625 3626
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3627 3628
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3629
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3630 3631

	i915_ggtt_invalidate(i915);
3632 3633 3634 3635
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3636 3637 3638 3639
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3640 3641 3642 3643
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3644 3645

	i915_ggtt_invalidate(i915);
3646 3647
}

3648
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3649
{
3650
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3651
	struct i915_vma *vma, *vn;
3652

3653
	i915_check_and_clear_faults(dev_priv);
3654

3655 3656
	mutex_lock(&ggtt->vm.mutex);

3657
	/* First fill our portion of the GTT with scratch pages */
3658 3659
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3660 3661

	/* clflush objects bound into the GGTT and rebind them. */
3662
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3663
		struct drm_i915_gem_object *obj = vma->obj;
3664

3665 3666
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3667

3668 3669
		mutex_unlock(&ggtt->vm.mutex);

3670
		if (!i915_vma_unbind(vma))
3671
			goto lock;
3672

3673 3674 3675
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
3676 3677
		if (obj) {
			i915_gem_object_lock(obj);
3678
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3679 3680
			i915_gem_object_unlock(obj);
		}
3681 3682 3683

lock:
		mutex_lock(&ggtt->vm.mutex);
3684
	}
3685

3686
	ggtt->vm.closed = false;
3687
	i915_ggtt_invalidate(dev_priv);
3688

3689 3690
	mutex_unlock(&ggtt->vm.mutex);

3691
	if (INTEL_GEN(dev_priv) >= 8) {
3692
		struct intel_ppat *ppat = &dev_priv->ppat;
3693

3694 3695
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3696 3697 3698 3699
		return;
	}
}

3700
static struct scatterlist *
3701
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3702
	     unsigned int width, unsigned int height,
3703
	     unsigned int stride,
3704
	     struct sg_table *st, struct scatterlist *sg)
3705 3706 3707 3708 3709
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3710
		src_idx = stride * (height - 1) + column + offset;
3711 3712 3713 3714 3715 3716
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3717
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3718 3719
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3720
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3721
			sg = sg_next(sg);
3722
			src_idx -= stride;
3723 3724
		}
	}
3725 3726

	return sg;
3727 3728
}

3729 3730 3731
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3732
{
3733
	unsigned int size = intel_rotation_info_size(rot_info);
3734
	struct sg_table *st;
3735
	struct scatterlist *sg;
3736
	int ret = -ENOMEM;
3737
	int i;
3738 3739 3740 3741 3742 3743

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3744
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3745 3746 3747
	if (ret)
		goto err_sg_alloc;

3748 3749 3750
	st->nents = 0;
	sg = st->sgl;

3751
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3752
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3753 3754
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3755 3756
	}

3757 3758 3759 3760 3761 3762
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3763 3764
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3765

3766 3767
	return ERR_PTR(ret);
}
3768

3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
static struct scatterlist *
remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
	    unsigned int width, unsigned int height,
	    unsigned int stride,
	    struct sg_table *st, struct scatterlist *sg)
{
	unsigned int row;

	for (row = 0; row < height; row++) {
		unsigned int left = width * I915_GTT_PAGE_SIZE;

		while (left) {
			dma_addr_t addr;
			unsigned int length;

			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */

			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);

			length = min(left, length);

			st->nents++;

			sg_set_page(sg, NULL, length, 0);
			sg_dma_address(sg) = addr;
			sg_dma_len(sg) = length;
			sg = sg_next(sg);

			offset += length / I915_GTT_PAGE_SIZE;
			left -= length;
		}

		offset += stride - width;
	}

	return sg;
}

static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info *rem_info,
		  struct drm_i915_gem_object *obj)
{
	unsigned int size = intel_remapped_info_size(rem_info);
	struct sg_table *st;
	struct scatterlist *sg;
	int ret = -ENOMEM;
	int i;

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

	ret = sg_alloc_table(st, size, GFP_KERNEL);
	if (ret)
		goto err_sg_alloc;

	st->nents = 0;
	sg = st->sgl;

	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
		sg = remap_pages(obj, rem_info->plane[i].offset,
				 rem_info->plane[i].width, rem_info->plane[i].height,
				 rem_info->plane[i].stride, st, sg);
	}

	i915_sg_trim(st);

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);

	return ERR_PTR(ret);
}

3852
static noinline struct sg_table *
3853 3854 3855 3856
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3857
	struct scatterlist *sg, *iter;
3858
	unsigned int count = view->partial.size;
3859
	unsigned int offset;
3860 3861 3862 3863 3864 3865
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3866
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3867 3868 3869
	if (ret)
		goto err_sg_alloc;

3870
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3871 3872
	GEM_BUG_ON(!iter);

3873 3874
	sg = st->sgl;
	st->nents = 0;
3875 3876
	do {
		unsigned int len;
3877

3878 3879 3880 3881 3882 3883
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3884 3885

		st->nents++;
3886 3887 3888
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3889 3890
			i915_sg_trim(st); /* Drop any unused tail entries. */

3891 3892
			return st;
		}
3893

3894 3895 3896 3897
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3898 3899 3900 3901 3902 3903 3904

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3905
static int
3906
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3907
{
3908
	int ret;
3909

3910 3911 3912 3913 3914 3915 3916
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3917
	switch (vma->ggtt_view.type) {
3918 3919 3920
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3921 3922
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3923 3924
		return 0;

3925
	case I915_GGTT_VIEW_ROTATED:
3926
		vma->pages =
3927 3928 3929
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

3930 3931 3932 3933 3934
	case I915_GGTT_VIEW_REMAPPED:
		vma->pages =
			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
		break;

3935
	case I915_GGTT_VIEW_PARTIAL:
3936
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3937 3938
		break;
	}
3939

3940
	ret = 0;
3941
	if (IS_ERR(vma->pages)) {
3942 3943
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3944 3945
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3946
	}
3947
	return ret;
3948 3949
}

3950 3951
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3986
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3987
	GEM_BUG_ON(drm_mm_node_allocated(node));
3988 3989 3990 3991 3992 3993 3994 3995 3996

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3997 3998 3999
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4000 4001 4002 4003 4004 4005 4006
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

4032 4033
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
4034 4035 4036 4037 4038 4039 4040 4041 4042
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
4043
 *         must be #I915_GTT_PAGE_SIZE aligned
4044 4045 4046
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
4047 4048 4049 4050 4051 4052
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
4053 4054
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
4071
	enum drm_mm_insert_mode mode;
4072
	u64 offset;
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4083
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4084
	GEM_BUG_ON(drm_mm_node_allocated(node));
4085 4086 4087 4088 4089 4090 4091

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

4092 4093
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
4094
		mode = DRM_MM_INSERT_HIGHEST;
4095 4096
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4108 4109 4110
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4111 4112 4113
	if (err != -ENOSPC)
		return err;

4114 4115 4116 4117 4118 4119 4120 4121 4122
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

4123 4124 4125
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4155 4156 4157 4158 4159
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4160 4161 4162
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4163
}
4164 4165 4166

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4167
#include "selftests/i915_gem_gtt.c"
4168
#endif