i915_gem_gtt.c 105.4 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36 37
#include <drm/drmP.h>
#include <drm/i915_drm.h>
38

39
#include "i915_drv.h"
40
#include "i915_vgpu.h"
41 42
#include "i915_trace.h"
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111 112
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
113 114
	/*
	 * Note that as an uncached mmio write, this will flush the
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

136 137
int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
			       	int enable_ppgtt)
138
{
139
	bool has_full_ppgtt;
140
	bool has_full_48bit_ppgtt;
141

142 143 144
	if (!dev_priv->info.has_aliasing_ppgtt)
		return 0;

145 146
	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
147

148
	if (intel_vgpu_active(dev_priv)) {
149
		/* GVT-g has no support for 32bit ppgtt */
150
		has_full_ppgtt = false;
151
		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
152
	}
153

154 155 156 157
	/*
	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
	 * execlists, the sole mechanism available to submit work.
	 */
158
	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
159 160 161 162 163
		return 0;

	if (enable_ppgtt == 1)
		return 1;

164
	if (enable_ppgtt == 2 && has_full_ppgtt)
165 166
		return 2;

167 168 169
	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
		return 3;

170
	/* Disable ppgtt on SNB if VT-d is on. */
171
	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
172
		DRM_INFO("Disabling PPGTT because VT-d is on\n");
173
		return 0;
174 175
	}

176
	/* Early VLV doesn't have this */
177
	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
178 179 180 181
		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
		return 0;
	}

182
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
183 184 185 186 187 188 189
		if (has_full_48bit_ppgtt)
			return 3;

		if (has_full_ppgtt)
			return 2;
	}

190
	return 1;
191 192
}

193 194 195
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
196
{
197
	u32 pte_flags;
198 199 200 201 202 203 204 205
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
206 207

	/* Currently applicable only to VLV */
208
	pte_flags = 0;
209 210 211
	if (vma->obj->gt_ro)
		pte_flags |= PTE_READ_ONLY;

212
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
213 214

	return 0;
215 216 217 218
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
219
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
220
}
221

222 223 224 225 226 227
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

228 229
	vma->page_sizes = vma->obj->mm.page_sizes;

230 231 232 233 234 235 236 237 238 239 240 241
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
242 243

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
244 245
}

246
static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
247
				  enum i915_cache_level level)
B
Ben Widawsky 已提交
248
{
249
	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
250
	pte |= addr;
251 252 253

	switch (level) {
	case I915_CACHE_NONE:
254
		pte |= PPAT_UNCACHED;
255 256
		break;
	case I915_CACHE_WT:
257
		pte |= PPAT_DISPLAY_ELLC;
258 259
		break;
	default:
260
		pte |= PPAT_CACHED;
261 262 263
		break;
	}

B
Ben Widawsky 已提交
264 265 266
	return pte;
}

267 268
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
269
{
270
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
271 272
	pde |= addr;
	if (level != I915_CACHE_NONE)
273
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
274
	else
275
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
276 277 278
	return pde;
}

279 280 281
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

282 283
static gen6_pte_t snb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
284
				 u32 unused)
285
{
286
	gen6_pte_t pte = GEN6_PTE_VALID;
287
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
288 289

	switch (level) {
290 291 292 293 294 295 296 297
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
298
		MISSING_CASE(level);
299 300 301 302 303
	}

	return pte;
}

304 305
static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
306
				 u32 unused)
307
{
308
	gen6_pte_t pte = GEN6_PTE_VALID;
309 310 311 312 313
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
314 315 316 317 318
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
319
		pte |= GEN6_PTE_UNCACHED;
320 321
		break;
	default:
322
		MISSING_CASE(level);
323 324
	}

325 326 327
	return pte;
}

328 329
static gen6_pte_t byt_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
330
				 u32 flags)
331
{
332
	gen6_pte_t pte = GEN6_PTE_VALID;
333 334
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

335 336
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
337 338 339 340 341 342 343

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

344 345
static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
346
				 u32 unused)
347
{
348
	gen6_pte_t pte = GEN6_PTE_VALID;
349
	pte |= HSW_PTE_ADDR_ENCODE(addr);
350 351

	if (level != I915_CACHE_NONE)
352
		pte |= HSW_WB_LLC_AGE3;
353 354 355 356

	return pte;
}

357 358
static gen6_pte_t iris_pte_encode(dma_addr_t addr,
				  enum i915_cache_level level,
359
				  u32 unused)
360
{
361
	gen6_pte_t pte = GEN6_PTE_VALID;
362 363
	pte |= HSW_PTE_ADDR_ENCODE(addr);

364 365 366 367
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
368
		pte |= HSW_WT_ELLC_LLC_AGE3;
369 370
		break;
	default:
371
		pte |= HSW_WB_ELLC_LLC_AGE3;
372 373
		break;
	}
374 375 376 377

	return pte;
}

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
	int nr;

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

413
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
414
{
415 416
	struct pagevec stack;
	struct page *page;
417

418 419
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
420

421 422 423
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
424 425 426 427 428

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
429 430 431
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
432

433
	/*
434
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
435 436 437 438 439 440
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
441
	pagevec_init(&stack);
442 443
	do {
		struct page *page;
444

445 446 447 448
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

449 450
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
451

452 453
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
454

455 456
		/* Merge spare WC pages to the global stash */
		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
457

458 459 460
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
461
	}
462

463 464 465 466 467 468 469
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
470 471
}

472 473
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
474
{
475 476
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
477

478
	lockdep_assert_held(&vm->free_pages.lock);
479
	GEM_BUG_ON(!pagevec_count(pvec));
480

481
	if (vm->pt_kmap_wc) {
482 483
		/*
		 * When we use WC, first fill up the global stash and then
484 485
		 * only if full immediately free the overflow.
		 */
486
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
487

488 489 490 491 492 493 494 495
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
496

497 498 499 500 501 502 503 504 505 506
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
507
		set_pages_array_wb(pvec->pages, pvec->nr);
508 509

		spin_lock(&vm->free_pages.lock);
510 511 512
	}

	__pagevec_release(pvec);
513 514 515 516
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
517 518 519 520 521 522 523 524
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
525 526
	spin_lock(&vm->free_pages.lock);
	if (!pagevec_add(&vm->free_pages.pvec, page))
527
		vm_free_pages_release(vm, false);
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	spin_unlock(&vm->free_pages.lock);
}

static void i915_address_space_init(struct i915_address_space *vm,
				    struct drm_i915_private *dev_priv)
{
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->unbound_list);
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
554
}
555

556 557 558 559
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
560
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
561 562
	if (unlikely(!p->page))
		return -ENOMEM;
563

564 565 566 567
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
				      DMA_ATTR_NO_WARN);
568 569 570
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
571
	}
572 573

	return 0;
574 575
}

576
static int setup_page_dma(struct i915_address_space *vm,
577
			  struct i915_page_dma *p)
578
{
579
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
580 581
}

582
static void cleanup_page_dma(struct i915_address_space *vm,
583
			     struct i915_page_dma *p)
584
{
585 586
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
587 588
}

589
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
590

591 592
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
593 594
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
595

596 597 598
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
599
{
600
	u64 * const vaddr = kmap_atomic(p->page);
601

602
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
603

604
	kunmap_atomic(vaddr);
605 606
}

607 608 609
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
610
{
611
	fill_page_dma(vm, p, (u64)v << 32 | v);
612 613
}

614
static int
615
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
616
{
617
	unsigned long size;
618

619 620 621 622 623 624 625 626 627 628 629 630
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
	 * huge-gtt-pages, see also i915_vma_insert().
	 *
	 * TODO: we should really consider write-protecting the scratch-page and
	 * sharing between ppgtt
	 */
631
	size = I915_GTT_PAGE_SIZE_4K;
632 633
	if (i915_vm_is_48bit(vm) &&
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
634 635
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
636
	}
637 638 639 640 641 642
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
643

644
		page = alloc_pages(gfp, order);
645
		if (unlikely(!page))
646
			goto skip;
647

648 649 650 651
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
					  DMA_ATTR_NO_WARN);
652 653
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
654

655 656
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
657

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
		vm->scratch_page.order = order;
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
674 675
}

676
static void cleanup_scratch_page(struct i915_address_space *vm)
677
{
678 679
	struct i915_page_dma *p = &vm->scratch_page;

680 681 682
	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
		       PCI_DMA_BIDIRECTIONAL);
	__free_pages(p->page, p->order);
683 684
}

685
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
686
{
687
	struct i915_page_table *pt;
688

689
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
690
	if (unlikely(!pt))
691 692
		return ERR_PTR(-ENOMEM);

693 694 695 696
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
697

698
	pt->used_ptes = 0;
699 700 701
	return pt;
}

702
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
703
{
704
	cleanup_px(vm, pt);
705 706 707 708 709 710
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
711 712
	fill_px(vm, pt,
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
713 714
}

715
static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt,
716 717
			       struct i915_page_table *pt)
{
718
	fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte);
719 720
}

721
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
722
{
723
	struct i915_page_directory *pd;
724

725
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
726
	if (unlikely(!pd))
727 728
		return ERR_PTR(-ENOMEM);

729 730 731 732
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
733

734
	pd->used_pdes = 0;
735 736 737
	return pd;
}

738
static void free_pd(struct i915_address_space *vm,
739
		    struct i915_page_directory *pd)
740
{
741 742
	cleanup_px(vm, pd);
	kfree(pd);
743 744 745 746 747
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
748 749
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
750
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
751 752
}

753
static int __pdp_init(struct i915_address_space *vm,
754 755
		      struct i915_page_directory_pointer *pdp)
{
756
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
757

758
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
759
					    I915_GFP_ALLOW_FAIL);
760
	if (unlikely(!pdp->page_directory))
761 762
		return -ENOMEM;

763
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
764

765 766 767 768 769 770 771 772 773
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

774 775 776 777 778
static inline bool use_4lvl(const struct i915_address_space *vm)
{
	return i915_vm_is_48bit(vm);
}

779 780
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
781 782 783 784
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

785
	GEM_BUG_ON(!use_4lvl(vm));
786 787 788 789 790

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

791
	ret = __pdp_init(vm, pdp);
792 793 794
	if (ret)
		goto fail_bitmap;

795
	ret = setup_px(vm, pdp);
796 797 798 799 800 801 802 803 804 805 806 807 808
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

809
static void free_pdp(struct i915_address_space *vm,
810 811 812
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
813 814 815 816 817 818

	if (!use_4lvl(vm))
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
819 820
}

821 822 823 824 825 826 827
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

828
	fill_px(vm, pdp, scratch_pdpe);
829 830 831 832 833
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
834 835
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
836
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
837 838
}

839 840 841 842 843 844 845
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
846
	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
847 848
}

849 850 851 852
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
853
				struct i915_page_table *pt,
854
				u64 start, u64 length)
855
{
856
	unsigned int num_entries = gen8_pte_count(start, length);
M
Mika Kuoppala 已提交
857 858
	unsigned int pte = gen8_pte_index(start);
	unsigned int pte_end = pte + num_entries;
859 860 861
	const gen8_pte_t scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
	gen8_pte_t *vaddr;
862

863
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
864

865 866 867
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
868

869
	vaddr = kmap_atomic_px(pt);
M
Mika Kuoppala 已提交
870
	while (pte < pte_end)
871
		vaddr[pte++] = scratch_pte;
872
	kunmap_atomic(vaddr);
873 874

	return false;
875
}
876

877 878 879 880 881 882 883 884 885 886 887 888 889 890
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

891
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
892
				struct i915_page_directory *pd,
893
				u64 start, u64 length)
894 895
{
	struct i915_page_table *pt;
896
	u32 pde;
897 898

	gen8_for_each_pde(pt, pd, start, length, pde) {
899 900
		GEM_BUG_ON(pt == vm->scratch_pt);

901 902
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
903

904
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
905
		GEM_BUG_ON(!pd->used_pdes);
906
		pd->used_pdes--;
907 908

		free_pt(vm, pt);
909 910
	}

911 912
	return !pd->used_pdes;
}
913

914 915 916 917 918 919 920 921
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
922
	if (!use_4lvl(vm))
923 924 925 926 927
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
928
}
929

930 931 932 933
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
934
				 struct i915_page_directory_pointer *pdp,
935
				 u64 start, u64 length)
936 937
{
	struct i915_page_directory *pd;
938
	unsigned int pdpe;
939

940
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
941 942
		GEM_BUG_ON(pd == vm->scratch_pd);

943 944
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
945

946
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
947
		GEM_BUG_ON(!pdp->used_pdpes);
948
		pdp->used_pdpes--;
949

950 951
		free_pd(vm, pd);
	}
952

953
	return !pdp->used_pdpes;
954
}
955

956 957 958 959 960 961
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

962 963 964 965 966 967 968 969 970 971 972 973 974
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

975 976 977 978
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
979 980
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
981
{
982 983
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
984
	struct i915_page_directory_pointer *pdp;
985
	unsigned int pml4e;
986

987
	GEM_BUG_ON(!use_4lvl(vm));
988

989
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
990 991
		GEM_BUG_ON(pdp == vm->scratch_pdp);

992 993
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
994

995 996 997
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
998 999 1000
	}
}

1001
static inline struct sgt_dma {
1002 1003
	struct scatterlist *sg;
	dma_addr_t dma, max;
1004 1005 1006 1007 1008
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
1009

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

1027 1028
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1029
			      struct i915_page_directory_pointer *pdp,
1030
			      struct sgt_dma *iter,
1031
			      struct gen8_insert_pte *idx,
1032 1033
			      enum i915_cache_level cache_level)
{
1034 1035 1036 1037
	struct i915_page_directory *pd;
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
	gen8_pte_t *vaddr;
	bool ret;
1038

1039
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1040 1041
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1042
	do {
1043 1044
		vaddr[idx->pte] = pte_encode | iter->dma;

1045 1046 1047 1048 1049 1050 1051
		iter->dma += PAGE_SIZE;
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1052

1053 1054
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1055
		}
1056

1057 1058 1059 1060 1061 1062
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1063
				/* Limited by sg length for 3lvl */
1064 1065
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1066
					ret = true;
1067
					break;
1068 1069
				}

1070
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1071
				pd = pdp->page_directory[idx->pdpe];
1072
			}
1073

1074
			kunmap_atomic(vaddr);
1075
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1076
		}
1077
	} while (1);
1078
	kunmap_atomic(vaddr);
1079

1080
	return ret;
1081 1082
}

1083
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1084
				   struct i915_vma *vma,
1085 1086
				   enum i915_cache_level cache_level,
				   u32 unused)
1087
{
1088
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1089
	struct sgt_dma iter = sgt_dma(vma);
1090
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1091

1092 1093
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
				      cache_level);
1094 1095

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1096
}
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
					   enum i915_cache_level cache_level)
{
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1112
		bool maybe_64K = false;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1134 1135 1136 1137 1138 1139 1140
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
			     rem >= (max - index) << PAGE_SHIFT))
				maybe_64K = true;

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1160 1161 1162 1163 1164 1165
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
				       rem >= (max - index) << PAGE_SHIFT)))
					maybe_64K = false;

1166 1167 1168 1169 1170 1171
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1188
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

				encode = pte_encode | vma->vm->scratch_page.daddr;
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1210
		}
1211 1212

		vma->page_sizes.gtt |= page_size;
1213 1214 1215
	} while (iter->sg);
}

1216
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1217
				   struct i915_vma *vma,
1218 1219 1220 1221
				   enum i915_cache_level cache_level,
				   u32 unused)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1222
	struct sgt_dma iter = sgt_dma(vma);
1223
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1224

1225 1226 1227 1228 1229 1230 1231 1232
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level);
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
						     &iter, &idx, cache_level))
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1233 1234

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1235
	}
1236 1237
}

1238
static void gen8_free_page_tables(struct i915_address_space *vm,
1239
				  struct i915_page_directory *pd)
1240 1241 1242
{
	int i;

1243
	if (!px_page(pd))
1244 1245
		return;

1246 1247 1248
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1249
	}
B
Ben Widawsky 已提交
1250 1251
}

1252 1253
static int gen8_init_scratch(struct i915_address_space *vm)
{
1254
	int ret;
1255

1256
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1257 1258
	if (ret)
		return ret;
1259

1260
	vm->scratch_pt = alloc_pt(vm);
1261
	if (IS_ERR(vm->scratch_pt)) {
1262 1263
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1264 1265
	}

1266
	vm->scratch_pd = alloc_pd(vm);
1267
	if (IS_ERR(vm->scratch_pd)) {
1268 1269
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1270 1271
	}

1272
	if (use_4lvl(vm)) {
1273
		vm->scratch_pdp = alloc_pdp(vm);
1274
		if (IS_ERR(vm->scratch_pdp)) {
1275 1276
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1277 1278 1279
		}
	}

1280 1281
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1282
	if (use_4lvl(vm))
1283
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1284 1285

	return 0;
1286 1287

free_pd:
1288
	free_pd(vm, vm->scratch_pd);
1289
free_pt:
1290
	free_pt(vm, vm->scratch_pt);
1291
free_scratch_page:
1292
	cleanup_scratch_page(vm);
1293 1294

	return ret;
1295 1296
}

1297 1298
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1299
	struct i915_address_space *vm = &ppgtt->vm;
1300
	struct drm_i915_private *dev_priv = vm->i915;
1301 1302 1303
	enum vgt_g2v_type msg;
	int i;

1304 1305
	if (use_4lvl(vm)) {
		const u64 daddr = px_dma(&ppgtt->pml4);
1306

1307 1308
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1309 1310 1311 1312

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1313
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1314
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1315

1316 1317
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1329 1330
static void gen8_free_scratch(struct i915_address_space *vm)
{
1331
	if (use_4lvl(vm))
1332 1333 1334 1335
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1336 1337
}

1338
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1339
				    struct i915_page_directory_pointer *pdp)
1340
{
1341
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1342 1343
	int i;

1344
	for (i = 0; i < pdpes; i++) {
1345
		if (pdp->page_directory[i] == vm->scratch_pd)
1346 1347
			continue;

1348 1349
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1350
	}
1351

1352
	free_pdp(vm, pdp);
1353 1354 1355 1356 1357 1358
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1359
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1360
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1361 1362
			continue;

1363
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1364 1365
	}

1366
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1367 1368 1369 1370
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1371
	struct drm_i915_private *dev_priv = vm->i915;
1372
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1373

1374
	if (intel_vgpu_active(dev_priv))
1375 1376
		gen8_ppgtt_notify_vgt(ppgtt, false);

1377
	if (use_4lvl(vm))
1378
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1379
	else
1380
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1381

1382
	gen8_free_scratch(vm);
1383 1384
}

1385 1386 1387
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1388
{
1389
	struct i915_page_table *pt;
1390
	u64 from = start;
1391
	unsigned int pde;
1392

1393
	gen8_for_each_pde(pt, pd, start, length, pde) {
1394 1395
		int count = gen8_pte_count(start, length);

1396
		if (pt == vm->scratch_pt) {
1397 1398
			pd->used_pdes++;

1399
			pt = alloc_pt(vm);
1400 1401
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1402
				goto unwind;
1403
			}
1404

1405
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1406
				gen8_initialize_pt(vm, pt);
1407 1408

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1409
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1410
		}
1411

1412
		pt->used_ptes += count;
1413
	}
1414
	return 0;
1415

1416 1417
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1418
	return -ENOMEM;
1419 1420
}

1421 1422 1423
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1424
{
1425
	struct i915_page_directory *pd;
1426 1427
	u64 from = start;
	unsigned int pdpe;
1428 1429
	int ret;

1430
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1431
		if (pd == vm->scratch_pd) {
1432 1433
			pdp->used_pdpes++;

1434
			pd = alloc_pd(vm);
1435 1436
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1437
				goto unwind;
1438
			}
1439

1440
			gen8_initialize_pd(vm, pd);
1441
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1442
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1443 1444

			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1445 1446 1447
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1448 1449
		if (unlikely(ret))
			goto unwind_pd;
1450
	}
1451

B
Ben Widawsky 已提交
1452
	return 0;
1453

1454 1455 1456 1457 1458 1459 1460
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1461 1462 1463
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1464 1465
}

1466 1467
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1468
{
1469 1470 1471
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1472

1473 1474 1475 1476 1477 1478 1479 1480 1481
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1482

1483
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1484 1485 1486 1487
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1488

1489 1490 1491
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1492

1493
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1494 1495
		if (unlikely(ret))
			goto unwind_pdp;
1496 1497 1498 1499
	}

	return 0;

1500 1501 1502 1503 1504
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1505 1506 1507
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1508 1509
}

1510 1511
static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
			  struct i915_page_directory_pointer *pdp,
1512
			  u64 start, u64 length,
1513 1514 1515
			  gen8_pte_t scratch_pte,
			  struct seq_file *m)
{
1516
	struct i915_address_space *vm = &ppgtt->vm;
1517
	struct i915_page_directory *pd;
1518
	u32 pdpe;
1519

1520
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1521
		struct i915_page_table *pt;
1522 1523 1524
		u64 pd_len = length;
		u64 pd_start = start;
		u32 pde;
1525

1526
		if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1527 1528 1529
			continue;

		seq_printf(m, "\tPDPE #%d\n", pdpe);
1530
		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1531
			u32 pte;
1532 1533
			gen8_pte_t *pt_vaddr;

1534
			if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1535 1536
				continue;

1537
			pt_vaddr = kmap_atomic_px(pt);
1538
			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1539 1540 1541
				u64 va = (pdpe << GEN8_PDPE_SHIFT |
					  pde << GEN8_PDE_SHIFT |
					  pte << GEN8_PTE_SHIFT);
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
				int i;
				bool found = false;

				for (i = 0; i < 4; i++)
					if (pt_vaddr[pte + i] != scratch_pte)
						found = true;
				if (!found)
					continue;

				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
				for (i = 0; i < 4; i++) {
					if (pt_vaddr[pte + i] != scratch_pte)
						seq_printf(m, " %llx", pt_vaddr[pte + i]);
					else
						seq_puts(m, "  SCRATCH ");
				}
				seq_puts(m, "\n");
			}
			kunmap_atomic(pt_vaddr);
		}
	}
}

static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
1567
	struct i915_address_space *vm = &ppgtt->vm;
1568 1569
	const gen8_pte_t scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1570
	u64 start = 0, length = ppgtt->vm.total;
1571

1572
	if (use_4lvl(vm)) {
1573
		u64 pml4e;
1574 1575 1576
		struct i915_pml4 *pml4 = &ppgtt->pml4;
		struct i915_page_directory_pointer *pdp;

1577
		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1578
			if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1579 1580 1581
				continue;

			seq_printf(m, "    PML4E #%llu\n", pml4e);
1582
			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1583
		}
1584 1585
	} else {
		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1586 1587 1588
	}
}

1589
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1590
{
1591
	struct i915_address_space *vm = &ppgtt->vm;
1592 1593
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1594
	u64 start = 0, length = ppgtt->vm.total;
1595 1596
	u64 from = start;
	unsigned int pdpe;
1597

1598 1599 1600 1601
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1602

1603 1604 1605 1606
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1607

1608 1609
	pdp->used_pdpes++; /* never remove */
	return 0;
1610

1611 1612 1613 1614 1615 1616 1617 1618
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1619 1620
}

1621
/*
1622 1623 1624 1625
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1626
 *
1627
 */
1628
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1629
{
1630 1631 1632 1633 1634 1635 1636
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1637 1638
	kref_init(&ppgtt->ref);

1639 1640
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
1641

1642
	ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ?
1643 1644 1645
		1ULL << 48 :
		1ULL << 32;

1646 1647
	i915_address_space_init(&ppgtt->vm, i915);

1648 1649 1650
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1651
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1652
		ppgtt->vm.pt_kmap_wc = true;
1653

1654 1655 1656
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1657

1658 1659 1660 1661
	if (use_4lvl(&ppgtt->vm)) {
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1662

1663
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1664

1665 1666 1667
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1668
	} else {
1669 1670 1671
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1672

1673 1674 1675
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1676
				__pdp_fini(&ppgtt->pdp);
1677
				goto err_scratch;
1678
			}
1679
		}
1680

1681 1682 1683
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1684
	}
1685

1686
	if (intel_vgpu_active(i915))
1687 1688
		gen8_ppgtt_notify_vgt(ppgtt, true);

1689
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1690 1691
	ppgtt->debug_dump = gen8_dump_ppgtt;

1692
	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1693 1694 1695 1696
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;

1697
	return ppgtt;
1698

1699
err_scratch:
1700
	gen8_free_scratch(&ppgtt->vm);
1701 1702 1703
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1704 1705
}

1706
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
B
Ben Widawsky 已提交
1707
{
1708
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1709
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	struct i915_page_table *pt;
	u32 pte, pde;

	gen6_for_all_pdes(pt, &base->pd, pde) {
		gen6_pte_t *vaddr;

		if (pt == base->vm.scratch_pt)
			continue;

		if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
			u32 expected =
				GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
				GEN6_PDE_VALID;
			u32 pd_entry = readl(ppgtt->pd_addr + pde);

			if (pd_entry != expected)
				seq_printf(m,
					   "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
					   pde,
					   pd_entry,
					   expected);

			seq_printf(m, "\tPDE: %x\n", pd_entry);
		}

		vaddr = kmap_atomic_px(base->pd.page_table[pde]);
		for (pte = 0; pte < GEN6_PTES; pte += 4) {
B
Ben Widawsky 已提交
1737
			int i;
1738

B
Ben Widawsky 已提交
1739
			for (i = 0; i < 4; i++)
1740 1741 1742
				if (vaddr[pte + i] != scratch_pte)
					break;
			if (i == 4)
B
Ben Widawsky 已提交
1743 1744
				continue;

1745 1746 1747
			seq_printf(m, "\t\t(%03d, %04d) %08lx: ",
				   pde, pte,
				   (pde * GEN6_PTES + pte) * PAGE_SIZE);
B
Ben Widawsky 已提交
1748
			for (i = 0; i < 4; i++) {
1749 1750
				if (vaddr[pte + i] != scratch_pte)
					seq_printf(m, " %08x", vaddr[pte + i]);
B
Ben Widawsky 已提交
1751
				else
1752
					seq_puts(m, "  SCRATCH");
B
Ben Widawsky 已提交
1753 1754 1755
			}
			seq_puts(m, "\n");
		}
1756
		kunmap_atomic(vaddr);
B
Ben Widawsky 已提交
1757 1758 1759
	}
}

1760
/* Write pde (index) from the page directory @pd to the page table @pt */
1761
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1762 1763
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1764
{
1765
	/* Caller needs to make sure the write completes if necessary */
1766 1767
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1768
}
B
Ben Widawsky 已提交
1769

1770
static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1771
{
1772
	struct intel_engine_cs *engine;
1773
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1774

1775
	for_each_engine(engine, dev_priv, id) {
1776 1777
		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
				 GEN8_GFX_PPGTT_48B : 0;
1778
		I915_WRITE(RING_MODE_GEN7(engine),
1779
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1780 1781
	}
}
B
Ben Widawsky 已提交
1782

1783
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1784
{
1785
	struct intel_engine_cs *engine;
1786
	u32 ecochk, ecobits;
1787
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1788

1789 1790
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1791

1792
	ecochk = I915_READ(GAM_ECOCHK);
1793
	if (IS_HASWELL(dev_priv)) {
1794 1795 1796 1797 1798 1799
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1800

1801
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1802
		/* GFX_MODE is per-ring on gen7+ */
1803
		I915_WRITE(RING_MODE_GEN7(engine),
1804
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1805
	}
1806
}
B
Ben Widawsky 已提交
1807

1808
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1809
{
1810
	u32 ecochk, gab_ctl, ecobits;
1811

1812 1813 1814
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1815

1816 1817 1818 1819 1820 1821 1822
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1823 1824
}

1825
/* PPGTT support for Sandybdrige/Gen6 and later */
1826
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1827
				   u64 start, u64 length)
1828
{
1829
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1830 1831 1832 1833
	unsigned int first_entry = start >> PAGE_SHIFT;
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
	unsigned int num_entries = length >> PAGE_SHIFT;
1834
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1835

1836
	while (num_entries) {
1837 1838 1839
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
		const unsigned int end = min(pte + num_entries, GEN6_PTES);
		const unsigned int count = end - pte;
1840
		gen6_pte_t *vaddr;
1841

1842 1843 1844 1845 1846 1847 1848 1849
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1850

1851 1852
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1853 1854 1855 1856
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1857

1858 1859 1860 1861 1862
		vaddr = kmap_atomic_px(pt);
		do {
			vaddr[pte++] = scratch_pte;
		} while (pte < end);
		kunmap_atomic(vaddr);
1863

1864
		pte = 0;
1865
	}
1866 1867
}

1868
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1869
				      struct i915_vma *vma,
1870 1871
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1872
{
1873
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1874
	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1875 1876
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1877
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1878
	struct sgt_dma iter = sgt_dma(vma);
1879 1880
	gen6_pte_t *vaddr;

1881 1882
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1883
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1884 1885
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1886

1887 1888 1889 1890 1891
		iter.dma += PAGE_SIZE;
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1892

1893 1894 1895
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1896

1897
		if (++act_pte == GEN6_PTES) {
1898 1899
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1900
			act_pte = 0;
D
Daniel Vetter 已提交
1901
		}
1902
	} while (1);
1903
	kunmap_atomic(vaddr);
1904 1905

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1906 1907
}

1908
static int gen6_alloc_va_range(struct i915_address_space *vm,
1909
			       u64 start, u64 length)
1910
{
1911
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1912
	struct i915_page_table *pt;
1913 1914 1915
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1916

1917
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1918 1919
		const unsigned int count = gen6_pte_count(start, length);

1920 1921 1922 1923
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1924

1925
			gen6_initialize_pt(ppgtt, pt);
1926
			ppgtt->base.pd.page_table[pde] = pt;
1927 1928 1929 1930 1931 1932

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1933 1934

			GEM_BUG_ON(pt->used_ptes);
1935
		}
1936 1937

		pt->used_ptes += count;
1938 1939
	}

1940
	if (flush) {
1941 1942
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1943 1944 1945
	}

	return 0;
1946 1947

unwind_out:
1948
	gen6_ppgtt_clear_range(vm, from, start - from);
1949
	return -ENOMEM;
1950 1951
}

1952
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1953
{
1954 1955 1956
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1957
	int ret;
1958

1959
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1960 1961
	if (ret)
		return ret;
1962

1963 1964 1965 1966
	ppgtt->scratch_pte =
		vm->pte_encode(vm->scratch_page.daddr,
			       I915_CACHE_NONE, PTE_READ_ONLY);

1967
	vm->scratch_pt = alloc_pt(vm);
1968
	if (IS_ERR(vm->scratch_pt)) {
1969
		cleanup_scratch_page(vm);
1970 1971 1972
		return PTR_ERR(vm->scratch_pt);
	}

1973
	gen6_initialize_pt(ppgtt, vm->scratch_pt);
1974 1975
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1976 1977 1978 1979

	return 0;
}

1980
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1981
{
1982 1983
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1984 1985
}

1986
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1987
{
1988
	struct i915_page_table *pt;
1989
	u32 pde;
1990

1991
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1992 1993 1994 1995 1996 1997 1998
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1999

2000
	i915_vma_destroy(ppgtt->vma);
2001 2002 2003

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
2004 2005
}

2006
static int pd_vma_set_pages(struct i915_vma *vma)
2007
{
2008 2009 2010
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
2011

2012 2013 2014
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
2015

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	u32 ggtt_offset = i915_ggtt_offset(vma) / PAGE_SIZE;
	struct i915_page_table *pt;
	unsigned int pde;
2028

2029 2030
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2031

2032 2033
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
2034

2035 2036
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2037

2038
	return 0;
2039
}
2040

2041
static void pd_vma_unbind(struct i915_vma *vma)
2042
{
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;
	int i;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
	if (!vma)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < ARRAY_SIZE(vma->last_read); i++)
		init_request_active(&vma->last_read[i], NULL);
	init_request_active(&vma->last_fence, NULL);

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
	list_add(&vma->vm_link, &vma->vm->unbound_list);

	return vma;
}
2102

2103
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2104 2105 2106
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

2107 2108 2109 2110 2111 2112 2113 2114 2115
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2116 2117 2118 2119 2120 2121 2122 2123
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
	return i915_vma_pin(ppgtt->vma,
			    0, GEN6_PD_ALIGN,
			    PIN_GLOBAL | PIN_HIGH);
2124 2125
}

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2137
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2138
{
2139
	struct i915_ggtt * const ggtt = &i915->ggtt;
2140
	struct gen6_hw_ppgtt *ppgtt;
2141 2142 2143 2144 2145 2146
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2147 2148
	kref_init(&ppgtt->base.ref);

2149 2150
	ppgtt->base.vm.i915 = i915;
	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2151

2152
	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2153

2154 2155
	i915_address_space_init(&ppgtt->base.vm, i915);

2156
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2157 2158 2159 2160
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
	ppgtt->base.debug_dump = gen6_dump_ppgtt;
2161

2162
	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2163 2164 2165
	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2166

2167 2168
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2169
	err = gen6_ppgtt_init_scratch(ppgtt);
2170 2171 2172
	if (err)
		goto err_free;

2173 2174 2175
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2176
		goto err_scratch;
2177
	}
2178

2179
	return &ppgtt->base;
2180

2181 2182
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2183 2184 2185
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2186
}
2187

2188
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2189 2190 2191 2192 2193
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2194
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2195
	if (IS_BROADWELL(dev_priv))
2196
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2197
	else if (IS_CHERRYVIEW(dev_priv))
2198
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2199
	else if (IS_GEN9_LP(dev_priv))
2200
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2201 2202
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2220 2221
}

2222
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2223
{
2224
	gtt_write_workarounds(dev_priv);
2225

2226 2227 2228
	/* In the case of execlists, PPGTT is enabled by the context descriptor
	 * and the PDPs are contained within the context itself.  We don't
	 * need to do anything here. */
2229
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2230 2231
		return 0;

2232
	if (!USES_PPGTT(dev_priv))
2233 2234
		return 0;

2235
	if (IS_GEN6(dev_priv))
2236
		gen6_ppgtt_enable(dev_priv);
2237
	else if (IS_GEN7(dev_priv))
2238 2239 2240
		gen7_ppgtt_enable(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 8)
		gen8_ppgtt_enable(dev_priv);
2241
	else
2242
		MISSING_CASE(INTEL_GEN(dev_priv));
2243

2244 2245
	return 0;
}
2246

2247 2248 2249 2250 2251 2252 2253 2254 2255
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2256
struct i915_hw_ppgtt *
2257
i915_ppgtt_create(struct drm_i915_private *i915,
2258
		  struct drm_i915_file_private *fpriv)
2259 2260 2261
{
	struct i915_hw_ppgtt *ppgtt;

2262 2263 2264
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2265

2266
	ppgtt->vm.file = fpriv;
2267

2268
	trace_i915_ppgtt_create(&ppgtt->vm);
2269

2270 2271 2272
	return ppgtt;
}

2273
void i915_ppgtt_close(struct i915_address_space *vm)
2274 2275 2276 2277 2278 2279
{
	GEM_BUG_ON(vm->closed);
	vm->closed = true;
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
{
	struct list_head *phases[] = {
		&vm->active_list,
		&vm->inactive_list,
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2293
			i915_vma_destroy(vma);
2294 2295 2296
	}
}

2297
void i915_ppgtt_release(struct kref *kref)
2298 2299 2300 2301
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2302
	trace_i915_ppgtt_release(&ppgtt->vm);
2303

2304
	ppgtt_destroy_vma(&ppgtt->vm);
2305

2306 2307 2308
	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2309

2310 2311
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2312 2313
	kfree(ppgtt);
}
2314

2315 2316 2317
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2318
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2319 2320 2321 2322
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2323
	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2324 2325
}

2326
static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2327
{
2328
	struct intel_engine_cs *engine;
2329
	enum intel_engine_id id;
2330
	u32 fault;
2331

2332
	for_each_engine(engine, dev_priv, id) {
2333 2334
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2335
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2336
					 "\tAddr: 0x%08lx\n"
2337 2338 2339
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2340 2341 2342 2343
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2344
			I915_WRITE(RING_FAULT_REG(engine),
2345
				   fault & ~RING_FAULT_VALID);
2346 2347
		}
	}
2348

2349 2350 2351 2352 2353 2354 2355 2356
	POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
}

static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2357 2358 2359 2360 2361 2362 2363 2364
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2365
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2366 2367
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2368 2369 2370
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2371 2372 2373
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
		I915_WRITE(GEN8_RING_FAULT_REG,
			   fault & ~RING_FAULT_VALID);
	}

	POSTING_READ(GEN8_RING_FAULT_REG);
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
		gen8_check_and_clear_faults(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_check_and_clear_faults(dev_priv);
	else
		return;
2393 2394
}

2395
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2396
{
2397
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2398 2399 2400 2401

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2402
	if (INTEL_GEN(dev_priv) < 6)
2403 2404
		return;

2405
	i915_check_and_clear_faults(dev_priv);
2406

2407
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2408

2409
	i915_ggtt_invalidate(dev_priv);
2410 2411
}

2412 2413
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2414
{
2415
	do {
2416 2417 2418 2419
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
			return 0;

		/* If the DMA remap fails, one cause can be that we have
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2430
				 obj->base.size >> PAGE_SHIFT, NULL,
2431 2432 2433
				 I915_SHRINK_BOUND |
				 I915_SHRINK_UNBOUND |
				 I915_SHRINK_ACTIVE));
2434

2435
	return -ENOSPC;
2436 2437
}

2438
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2439 2440 2441 2442
{
	writeq(pte, addr);
}

2443 2444
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2445
				  u64 offset,
2446 2447 2448
				  enum i915_cache_level level,
				  u32 unused)
{
2449
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2450
	gen8_pte_t __iomem *pte =
2451
		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2452

2453
	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2454

2455
	ggtt->invalidate(vm->i915);
2456 2457
}

B
Ben Widawsky 已提交
2458
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2459
				     struct i915_vma *vma,
2460 2461
				     enum i915_cache_level level,
				     u32 unused)
B
Ben Widawsky 已提交
2462
{
2463
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2464 2465
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2466
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2467
	dma_addr_t addr;
2468

2469
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2470 2471
	gtt_entries += vma->node.start >> PAGE_SHIFT;
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2472
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2473

2474 2475 2476
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2477
	 */
2478
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2479 2480
}

2481 2482
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2483
				  u64 offset,
2484 2485 2486
				  enum i915_cache_level level,
				  u32 flags)
{
2487
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2488
	gen6_pte_t __iomem *pte =
2489
		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2490

2491
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2492

2493
	ggtt->invalidate(vm->i915);
2494 2495
}

2496 2497 2498 2499 2500 2501
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2502
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2503
				     struct i915_vma *vma,
2504 2505
				     enum i915_cache_level level,
				     u32 flags)
2506
{
2507
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2508
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2509
	unsigned int i = vma->node.start >> PAGE_SHIFT;
2510
	struct sgt_iter iter;
2511
	dma_addr_t addr;
2512
	for_each_sgt_dma(addr, iter, vma->pages)
2513
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2514

2515 2516 2517
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2518
	 */
2519
	ggtt->invalidate(vm->i915);
2520 2521
}

2522
static void nop_clear_range(struct i915_address_space *vm,
2523
			    u64 start, u64 length)
2524 2525 2526
{
}

B
Ben Widawsky 已提交
2527
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2528
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2529
{
2530
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2531 2532
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2533 2534 2535
	const gen8_pte_t scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
	gen8_pte_t __iomem *gtt_base =
2536 2537
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2593
	struct i915_vma *vma;
2594 2595 2596 2597 2598 2599 2600
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2601
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2602 2603 2604 2605 2606 2607
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2608
					     struct i915_vma *vma,
2609 2610 2611
					     enum i915_cache_level level,
					     u32 unused)
{
2612
	struct insert_entries arg = { vm, vma, level };
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2642
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2643
				  u64 start, u64 length)
2644
{
2645
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2646 2647
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2648
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2649 2650
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2651 2652 2653 2654 2655 2656 2657
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2658
	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2659
				     I915_CACHE_LLC, 0);
2660

2661 2662 2663 2664
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2665 2666
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2667
				  u64 offset,
2668 2669 2670 2671 2672 2673 2674 2675 2676
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2677
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2678
				     struct i915_vma *vma,
2679 2680
				     enum i915_cache_level cache_level,
				     u32 unused)
2681 2682 2683 2684
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2685 2686
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2687 2688
}

2689
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2690
				  u64 start, u64 length)
2691
{
2692
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2693 2694
}

2695 2696 2697
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2698
{
2699
	struct drm_i915_private *i915 = vma->vm->i915;
2700
	struct drm_i915_gem_object *obj = vma->obj;
2701
	u32 pte_flags;
2702 2703

	/* Currently applicable only to VLV */
2704
	pte_flags = 0;
2705 2706 2707
	if (obj->gt_ro)
		pte_flags |= PTE_READ_ONLY;

2708
	intel_runtime_pm_get(i915);
2709
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2710
	intel_runtime_pm_put(i915);
2711

2712 2713
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2714 2715 2716 2717 2718
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2719
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2720 2721 2722 2723

	return 0;
}

2724 2725 2726 2727 2728 2729 2730 2731 2732
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;

	intel_runtime_pm_get(i915);
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
	intel_runtime_pm_put(i915);
}

2733 2734 2735
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2736
{
2737
	struct drm_i915_private *i915 = vma->vm->i915;
2738
	u32 pte_flags;
2739
	int ret;
2740

2741
	/* Currently applicable only to VLV */
2742 2743
	pte_flags = 0;
	if (vma->obj->gt_ro)
2744
		pte_flags |= PTE_READ_ONLY;
2745

2746 2747 2748
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2749
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2750 2751 2752
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2753
			if (ret)
2754
				return ret;
2755 2756
		}

2757 2758
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2759 2760
	}

2761
	if (flags & I915_VMA_GLOBAL_BIND) {
2762
		intel_runtime_pm_get(i915);
2763
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2764
		intel_runtime_pm_put(i915);
2765
	}
2766

2767
	return 0;
2768 2769
}

2770
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2771
{
2772
	struct drm_i915_private *i915 = vma->vm->i915;
2773

2774 2775
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
		intel_runtime_pm_get(i915);
2776
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2777 2778
		intel_runtime_pm_put(i915);
	}
2779

2780
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2781
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2782 2783 2784

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2785 2786
}

2787 2788
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2789
{
D
David Weinehall 已提交
2790 2791
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2792
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2793

2794
	if (unlikely(ggtt->do_idle_maps)) {
2795
		if (i915_gem_wait_for_idle(dev_priv, 0)) {
2796 2797 2798 2799 2800
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2801

2802
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2803
}
2804

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2815 2816
	vma->page_sizes = vma->obj->mm.page_sizes;

2817 2818 2819
	return 0;
}

C
Chris Wilson 已提交
2820
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2821
				  unsigned long color,
2822 2823
				  u64 *start,
				  u64 *end)
2824
{
2825
	if (node->allocated && node->color != color)
2826
		*start += I915_GTT_PAGE_SIZE;
2827

2828 2829 2830 2831 2832
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2833
	node = list_next_entry(node, node_list);
2834
	if (node->color != color)
2835
		*end -= I915_GTT_PAGE_SIZE;
2836
}
B
Ben Widawsky 已提交
2837

2838 2839 2840 2841 2842 2843
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2844
	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2845 2846
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2847

2848
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2849 2850 2851 2852
		err = -ENODEV;
		goto err_ppgtt;
	}

2853 2854 2855 2856 2857 2858 2859 2860 2861
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2862 2863

	i915->mm.aliasing_ppgtt = ppgtt;
2864

2865 2866
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2867

2868 2869
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2870

2871 2872 2873
	return 0;

err_ppgtt:
2874
	i915_ppgtt_put(ppgtt);
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2887
	i915_ppgtt_put(ppgtt);
2888

2889 2890
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2891 2892
}

2893
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2894
{
2895 2896 2897 2898 2899 2900 2901 2902 2903
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2904
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2905
	unsigned long hole_start, hole_end;
2906
	struct drm_mm_node *entry;
2907
	int ret;
2908

2909 2910 2911
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2912

2913
	/* Reserve a mappable slot for our lockless error capture */
2914
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2915 2916 2917
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2918 2919 2920
	if (ret)
		return ret;

2921
	/* Clear any non-preallocated blocks */
2922
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2923 2924
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2925 2926
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2927 2928 2929
	}

	/* And finally clear the reserved guard page */
2930
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2931

2932
	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2933
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2934
		if (ret)
2935
			goto err;
2936 2937
	}

2938
	return 0;
2939 2940 2941 2942

err:
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2943 2944
}

2945 2946
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2947
 * @dev_priv: i915 device
2948
 */
2949
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2950
{
2951
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2952
	struct i915_vma *vma, *vn;
2953
	struct pagevec *pvec;
2954

2955
	ggtt->vm.closed = true;
2956 2957

	mutex_lock(&dev_priv->drm.struct_mutex);
2958 2959
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2960 2961
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2962
		WARN_ON(i915_vma_unbind(vma));
2963

2964 2965 2966
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2967
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2968
		intel_vgt_deballoon(dev_priv);
2969
		i915_address_space_fini(&ggtt->vm);
2970 2971
	}

2972
	ggtt->vm.cleanup(&ggtt->vm);
2973

2974
	pvec = &dev_priv->mm.wc_stash.pvec;
2975 2976 2977 2978 2979
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2980
	mutex_unlock(&dev_priv->drm.struct_mutex);
2981 2982

	arch_phys_wc_del(ggtt->mtrr);
2983
	io_mapping_fini(&ggtt->iomap);
2984 2985

	i915_gem_cleanup_stolen(&dev_priv->drm);
2986
}
2987

2988
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2989 2990 2991 2992 2993 2994
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2995
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2996 2997 2998 2999 3000
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
3001 3002 3003 3004 3005 3006 3007

#ifdef CONFIG_X86_32
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

3008 3009 3010
	return bdw_gmch_ctl << 20;
}

3011
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

3022
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
3023
{
3024
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3025
	struct pci_dev *pdev = dev_priv->drm.pdev;
3026
	phys_addr_t phys_addr;
3027
	int ret;
B
Ben Widawsky 已提交
3028 3029

	/* For Modern GENs the PTEs and register space are split in the BAR */
3030
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
3031

I
Imre Deak 已提交
3032
	/*
3033 3034 3035
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
3036 3037 3038
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
3039
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3040
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
3041
	else
3042
		ggtt->gsm = ioremap_wc(phys_addr, size);
3043
	if (!ggtt->gsm) {
3044
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
3045 3046 3047
		return -ENOMEM;
	}

3048
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3049
	if (ret) {
B
Ben Widawsky 已提交
3050 3051
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
3052
		iounmap(ggtt->gsm);
3053
		return ret;
B
Ben Widawsky 已提交
3054 3055
	}

3056
	return 0;
B
Ben Widawsky 已提交
3057 3058
}

3059 3060
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
3061
{
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3105
	struct intel_ppat_entry *entry = NULL;
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3128
		if (!entry)
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3205
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3243 3244
}

B
Ben Widawsky 已提交
3245 3246 3247
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3248
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3249
{
3250 3251 3252 3253
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3254

3255
	if (!USES_PPGTT(ppat->i915)) {
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3269 3270 3271
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3272

3273 3274 3275 3276 3277 3278 3279 3280
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3281 3282
}

3283
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3284
{
3285 3286 3287 3288
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3289 3290 3291 3292 3293 3294 3295

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3307 3308
	 */

3309 3310 3311 3312 3313 3314 3315 3316
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3317 3318
}

3319 3320 3321 3322 3323
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3324
	cleanup_scratch_page(vm);
3325 3326
}

3327 3328
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3329 3330 3331 3332 3333
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3334
	if (INTEL_GEN(dev_priv) >= 10)
3335
		cnl_setup_private_ppat(ppat);
3336
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3337
		chv_setup_private_ppat(ppat);
3338
	else
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3350 3351
}

3352
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3353
{
3354
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3355
	struct pci_dev *pdev = dev_priv->drm.pdev;
3356
	unsigned int size;
B
Ben Widawsky 已提交
3357
	u16 snb_gmch_ctl;
3358
	int err;
B
Ben Widawsky 已提交
3359 3360

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3361 3362 3363 3364
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3365

3366 3367 3368 3369 3370
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3371

3372
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3373
	if (IS_CHERRYVIEW(dev_priv))
3374
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3375
	else
3376
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3377

3378 3379 3380 3381
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3382
	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3383
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3384

3385
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3386

3387 3388
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3389 3390 3391 3392
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3393 3394
	}

3395 3396
	ggtt->invalidate = gen6_ggtt_invalidate;

3397 3398 3399 3400 3401
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3402 3403
	setup_private_pat(dev_priv);

3404
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3405 3406
}

3407
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3408
{
3409
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3410
	struct pci_dev *pdev = dev_priv->drm.pdev;
3411
	unsigned int size;
3412
	u16 snb_gmch_ctl;
3413
	int err;
3414

3415 3416 3417 3418
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3419

3420 3421
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3422
	 */
3423
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3424
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3425
		return -ENXIO;
3426 3427
	}

3428 3429 3430 3431 3432
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3433
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3434

3435
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3436
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3437

3438 3439 3440 3441
	ggtt->vm.clear_range = gen6_ggtt_clear_range;
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3442

3443 3444
	ggtt->invalidate = gen6_ggtt_invalidate;

3445
	if (HAS_EDRAM(dev_priv))
3446
		ggtt->vm.pte_encode = iris_pte_encode;
3447
	else if (IS_HASWELL(dev_priv))
3448
		ggtt->vm.pte_encode = hsw_pte_encode;
3449
	else if (IS_VALLEYVIEW(dev_priv))
3450
		ggtt->vm.pte_encode = byt_pte_encode;
3451
	else if (INTEL_GEN(dev_priv) >= 7)
3452
		ggtt->vm.pte_encode = ivb_pte_encode;
3453
	else
3454
		ggtt->vm.pte_encode = snb_pte_encode;
3455

3456 3457 3458 3459 3460
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3461
	return ggtt_probe_common(ggtt, size);
3462 3463
}

3464
static void i915_gmch_remove(struct i915_address_space *vm)
3465
{
3466
	intel_gmch_remove();
3467
}
3468

3469
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3470
{
3471
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3472
	phys_addr_t gmadr_base;
3473 3474
	int ret;

3475
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3476 3477 3478 3479 3480
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3481
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3482

3483 3484 3485 3486
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3487
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3488 3489 3490 3491
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3492

3493 3494
	ggtt->invalidate = gmch_ggtt_invalidate;

3495 3496 3497 3498 3499
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3500
	if (unlikely(ggtt->do_idle_maps))
3501 3502
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3503 3504 3505
	return 0;
}

3506
/**
3507
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3508
 * @dev_priv: i915 device
3509
 */
3510
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3511
{
3512
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3513 3514
	int ret;

3515 3516
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3517

3518 3519 3520 3521 3522 3523
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3524
	if (ret)
3525 3526
		return ret;

3527 3528 3529 3530 3531
	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
	 * This is easier than doing range restriction on the fly, as we
	 * currently don't have any bits spare to pass in this upper
	 * restriction!
	 */
3532
	if (USES_GUC(dev_priv)) {
3533 3534 3535
		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3536 3537
	}

3538
	if ((ggtt->vm.total - 1) >> 32) {
3539
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3540
			  " of address space! Found %lldM!\n",
3541 3542 3543 3544
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3545 3546
	}

3547
	if (ggtt->mappable_end > ggtt->vm.total) {
3548
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3549
			  " aperture=%pa, total=%llx\n",
3550 3551
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3552 3553
	}

3554
	/* GMADR is the PCI mmio aperture into the global GTT. */
3555
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3556
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3557
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3558
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3559
	if (intel_vtd_active())
3560
		DRM_INFO("VT-d active for gfx access\n");
3561 3562

	return 0;
3563 3564 3565 3566
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3567
 * @dev_priv: i915 device
3568
 */
3569
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3570 3571 3572 3573
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3574 3575
	stash_init(&dev_priv->mm.wc_stash);

3576 3577 3578 3579
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3580
	 */
C
Chris Wilson 已提交
3581
	mutex_lock(&dev_priv->drm.struct_mutex);
3582
	i915_address_space_init(&ggtt->vm, dev_priv);
3583
	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3584
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3585
	mutex_unlock(&dev_priv->drm.struct_mutex);
3586

3587 3588
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3589
				dev_priv->ggtt.mappable_end)) {
3590 3591 3592 3593
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3594
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3595

3596 3597 3598 3599
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3600
	ret = i915_gem_init_stolen(dev_priv);
3601 3602 3603 3604
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3605 3606

out_gtt_cleanup:
3607
	ggtt->vm.cleanup(&ggtt->vm);
3608
	return ret;
3609
}
3610

3611
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3612
{
3613
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3614 3615 3616 3617 3618
		return -EIO;

	return 0;
}

3619 3620
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3621 3622
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3623
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3624 3625

	i915_ggtt_invalidate(i915);
3626 3627 3628 3629
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3630 3631 3632 3633
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3634 3635

	i915_ggtt_invalidate(i915);
3636 3637
}

3638
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3639
{
3640
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3641
	struct i915_vma *vma, *vn;
3642

3643
	i915_check_and_clear_faults(dev_priv);
3644 3645

	/* First fill our portion of the GTT with scratch pages */
3646
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3647

3648
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3649 3650

	/* clflush objects bound into the GGTT and rebind them. */
3651 3652
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3653
		struct drm_i915_gem_object *obj = vma->obj;
3654

3655 3656
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3657

3658 3659
		if (!i915_vma_unbind(vma))
			continue;
3660

3661 3662 3663 3664 3665
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
		if (obj)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3666
	}
3667

3668
	ggtt->vm.closed = false;
3669
	i915_ggtt_invalidate(dev_priv);
3670

3671
	if (INTEL_GEN(dev_priv) >= 8) {
3672
		struct intel_ppat *ppat = &dev_priv->ppat;
3673

3674 3675
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3676 3677 3678 3679
		return;
	}
}

3680
static struct scatterlist *
3681
rotate_pages(const dma_addr_t *in, unsigned int offset,
3682
	     unsigned int width, unsigned int height,
3683
	     unsigned int stride,
3684
	     struct sg_table *st, struct scatterlist *sg)
3685 3686 3687 3688 3689
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3690
		src_idx = stride * (height - 1) + column;
3691 3692 3693 3694 3695 3696 3697
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3698
			sg_dma_address(sg) = in[offset + src_idx];
3699 3700
			sg_dma_len(sg) = PAGE_SIZE;
			sg = sg_next(sg);
3701
			src_idx -= stride;
3702 3703
		}
	}
3704 3705

	return sg;
3706 3707
}

3708 3709 3710
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3711
{
3712
	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3713
	unsigned int size = intel_rotation_info_size(rot_info);
3714 3715
	struct sgt_iter sgt_iter;
	dma_addr_t dma_addr;
3716 3717 3718
	unsigned long i;
	dma_addr_t *page_addr_list;
	struct sg_table *st;
3719
	struct scatterlist *sg;
3720
	int ret = -ENOMEM;
3721 3722

	/* Allocate a temporary list of source pages for random access. */
M
Michal Hocko 已提交
3723
	page_addr_list = kvmalloc_array(n_pages,
3724
					sizeof(dma_addr_t),
3725
					GFP_KERNEL);
3726 3727 3728 3729 3730 3731 3732 3733
	if (!page_addr_list)
		return ERR_PTR(ret);

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3734
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3735 3736 3737 3738 3739
	if (ret)
		goto err_sg_alloc;

	/* Populate source page list from the object. */
	i = 0;
C
Chris Wilson 已提交
3740
	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3741
		page_addr_list[i++] = dma_addr;
3742

3743
	GEM_BUG_ON(i != n_pages);
3744 3745 3746
	st->nents = 0;
	sg = st->sgl;

3747 3748 3749 3750
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3751 3752
	}

M
Michal Hocko 已提交
3753
	kvfree(page_addr_list);
3754 3755 3756 3757 3758 3759

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:
M
Michal Hocko 已提交
3760
	kvfree(page_addr_list);
3761

3762 3763
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3764

3765 3766
	return ERR_PTR(ret);
}
3767

3768
static noinline struct sg_table *
3769 3770 3771 3772
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3773
	struct scatterlist *sg, *iter;
3774
	unsigned int count = view->partial.size;
3775
	unsigned int offset;
3776 3777 3778 3779 3780 3781
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3782
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3783 3784 3785
	if (ret)
		goto err_sg_alloc;

3786
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3787 3788
	GEM_BUG_ON(!iter);

3789 3790
	sg = st->sgl;
	st->nents = 0;
3791 3792
	do {
		unsigned int len;
3793

3794 3795 3796 3797 3798 3799
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3800 3801

		st->nents++;
3802 3803 3804 3805 3806
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
			return st;
		}
3807

3808 3809 3810 3811
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3812 3813 3814 3815 3816 3817 3818

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3819
static int
3820
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3821
{
3822
	int ret;
3823

3824 3825 3826 3827 3828 3829 3830
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3831
	switch (vma->ggtt_view.type) {
3832 3833 3834
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3835 3836
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3837 3838
		return 0;

3839
	case I915_GGTT_VIEW_ROTATED:
3840
		vma->pages =
3841 3842 3843 3844
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

	case I915_GGTT_VIEW_PARTIAL:
3845
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3846 3847
		break;
	}
3848

3849 3850
	ret = 0;
	if (unlikely(IS_ERR(vma->pages))) {
3851 3852
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3853 3854
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3855
	}
3856
	return ret;
3857 3858
}

3859 3860
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3895
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3896
	GEM_BUG_ON(drm_mm_node_allocated(node));
3897 3898 3899 3900 3901 3902 3903 3904 3905

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3906 3907 3908
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3909 3910 3911 3912 3913 3914 3915
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3941 3942
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3943 3944 3945 3946 3947 3948 3949 3950 3951
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3952
 *         must be #I915_GTT_PAGE_SIZE aligned
3953 3954 3955
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3956 3957 3958 3959 3960 3961
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3962 3963
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3980
	enum drm_mm_insert_mode mode;
3981
	u64 offset;
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3992
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3993
	GEM_BUG_ON(drm_mm_node_allocated(node));
3994 3995 3996 3997 3998 3999 4000

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

4001 4002 4003 4004 4005
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
		mode = DRM_MM_INSERT_HIGH;
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4017 4018 4019
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4020 4021 4022
	if (err != -ENOSPC)
		return err;

4023 4024 4025
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4055 4056 4057 4058 4059
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4060 4061 4062
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4063
}
4064 4065 4066

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4067
#include "selftests/i915_gem_gtt.c"
4068
#endif