i915_gem_gtt.c 101.9 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_vgpu.h"
40
#include "i915_reset.h"
41 42
#include "i915_trace.h"
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111 112
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
113 114
	/*
	 * Note that as an uncached mmio write, this will flush the
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

136 137 138
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
139
{
140
	u32 pte_flags;
141 142 143 144 145 146 147 148
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
149

150
	/* Applicable to VLV, and gen8+ */
151
	pte_flags = 0;
152
	if (i915_gem_object_is_readonly(vma->obj))
153 154
		pte_flags |= PTE_READ_ONLY;

155
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
156 157

	return 0;
158 159 160 161
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
162
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
163
}
164

165 166 167 168 169 170
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

171 172
	vma->page_sizes = vma->obj->mm.page_sizes;

173 174 175 176 177 178 179 180 181 182 183 184
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
185 186

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
187 188
}

189 190 191
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
192
{
193 194 195 196
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
197 198 199

	switch (level) {
	case I915_CACHE_NONE:
200
		pte |= PPAT_UNCACHED;
201 202
		break;
	case I915_CACHE_WT:
203
		pte |= PPAT_DISPLAY_ELLC;
204 205
		break;
	default:
206
		pte |= PPAT_CACHED;
207 208 209
		break;
	}

B
Ben Widawsky 已提交
210 211 212
	return pte;
}

213 214
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
215
{
216
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
217 218
	pde |= addr;
	if (level != I915_CACHE_NONE)
219
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
220
	else
221
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
222 223 224
	return pde;
}

225 226 227
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

228 229 230
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
231
{
232
	gen6_pte_t pte = GEN6_PTE_VALID;
233
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
234 235

	switch (level) {
236 237 238 239 240 241 242 243
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
244
		MISSING_CASE(level);
245 246 247 248 249
	}

	return pte;
}

250 251 252
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
253
{
254
	gen6_pte_t pte = GEN6_PTE_VALID;
255 256 257 258 259
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
260 261 262 263 264
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
265
		pte |= GEN6_PTE_UNCACHED;
266 267
		break;
	default:
268
		MISSING_CASE(level);
269 270
	}

271 272 273
	return pte;
}

274 275 276
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
277
{
278
	gen6_pte_t pte = GEN6_PTE_VALID;
279 280
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

281 282
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
283 284 285 286 287 288 289

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

290 291 292
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
293
{
294
	gen6_pte_t pte = GEN6_PTE_VALID;
295
	pte |= HSW_PTE_ADDR_ENCODE(addr);
296 297

	if (level != I915_CACHE_NONE)
298
		pte |= HSW_WB_LLC_AGE3;
299 300 301 302

	return pte;
}

303 304 305
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
306
{
307
	gen6_pte_t pte = GEN6_PTE_VALID;
308 309
	pte |= HSW_PTE_ADDR_ENCODE(addr);

310 311 312 313
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
314
		pte |= HSW_WT_ELLC_LLC_AGE3;
315 316
		break;
	default:
317
		pte |= HSW_WB_ELLC_LLC_AGE3;
318 319
		break;
	}
320 321 322 323

	return pte;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
	int nr;

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

359
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
360
{
361 362
	struct pagevec stack;
	struct page *page;
363

364 365
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
366

367 368 369
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
370 371 372 373 374

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
375 376 377
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
378

379
	/*
380
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
381 382 383 384 385 386
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
387
	pagevec_init(&stack);
388 389
	do {
		struct page *page;
390

391 392 393 394
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

395 396
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
397

398 399
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
400

401 402
		/* Merge spare WC pages to the global stash */
		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
403

404 405 406
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
407
	}
408

409 410 411 412 413 414 415
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
416 417
}

418 419
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
420
{
421 422
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
423

424
	lockdep_assert_held(&vm->free_pages.lock);
425
	GEM_BUG_ON(!pagevec_count(pvec));
426

427
	if (vm->pt_kmap_wc) {
428 429
		/*
		 * When we use WC, first fill up the global stash and then
430 431
		 * only if full immediately free the overflow.
		 */
432
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
433

434 435 436 437 438 439 440 441
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
442

443 444 445 446 447 448 449 450 451 452
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
453
		set_pages_array_wb(pvec->pages, pvec->nr);
454 455

		spin_lock(&vm->free_pages.lock);
456 457 458
	}

	__pagevec_release(pvec);
459 460 461 462
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
463 464 465 466 467 468 469 470
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
471 472
	spin_lock(&vm->free_pages.lock);
	if (!pagevec_add(&vm->free_pages.pvec, page))
473
		vm_free_pages_release(vm, false);
474 475 476
	spin_unlock(&vm->free_pages.lock);
}

477
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
478
{
479 480 481 482 483 484
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
485
	lockdep_set_subclass(&vm->mutex, subclass);
486
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
487

488 489 490 491 492 493 494
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->unbound_list);
495
	INIT_LIST_HEAD(&vm->bound_list);
496 497 498 499 500 501 502 503 504 505 506
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
507 508

	mutex_destroy(&vm->mutex);
509
}
510

511 512 513 514
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
515
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
516 517
	if (unlikely(!p->page))
		return -ENOMEM;
518

519 520 521
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
522
				      DMA_ATTR_SKIP_CPU_SYNC |
523
				      DMA_ATTR_NO_WARN);
524 525 526
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
527
	}
528 529

	return 0;
530 531
}

532
static int setup_page_dma(struct i915_address_space *vm,
533
			  struct i915_page_dma *p)
534
{
535
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
536 537
}

538
static void cleanup_page_dma(struct i915_address_space *vm,
539
			     struct i915_page_dma *p)
540
{
541 542
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
543 544
}

545
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
546

547 548
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
549 550
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
551

552 553 554
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
555
{
556
	u64 * const vaddr = kmap_atomic(p->page);
557

558
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
559

560
	kunmap_atomic(vaddr);
561 562
}

563 564 565
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
566
{
567
	fill_page_dma(vm, p, (u64)v << 32 | v);
568 569
}

570
static int
571
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
572
{
573
	unsigned long size;
574

575 576 577 578 579 580 581
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
582 583 584
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
585
	 */
586
	size = I915_GTT_PAGE_SIZE_4K;
587 588
	if (i915_vm_is_48bit(vm) &&
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
589 590
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
591
	}
592 593 594 595 596 597
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
598

599
		page = alloc_pages(gfp, order);
600
		if (unlikely(!page))
601
			goto skip;
602

603 604 605
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
606
					  DMA_ATTR_SKIP_CPU_SYNC |
607
					  DMA_ATTR_NO_WARN);
608 609
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
610

611 612
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
613

614 615
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
616
		vm->scratch_order = order;
617 618 619 620 621 622 623 624 625 626 627 628 629
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
630 631
}

632
static void cleanup_scratch_page(struct i915_address_space *vm)
633
{
634
	struct i915_page_dma *p = &vm->scratch_page;
635
	int order = vm->scratch_order;
636

637
	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
638
		       PCI_DMA_BIDIRECTIONAL);
639
	__free_pages(p->page, order);
640 641
}

642
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
643
{
644
	struct i915_page_table *pt;
645

646
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
647
	if (unlikely(!pt))
648 649
		return ERR_PTR(-ENOMEM);

650 651 652 653
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
654

655
	pt->used_ptes = 0;
656 657 658
	return pt;
}

659
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
660
{
661
	cleanup_px(vm, pt);
662 663 664 665 666 667
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
668
	fill_px(vm, pt, vm->scratch_pte);
669 670
}

671
static void gen6_initialize_pt(struct i915_address_space *vm,
672 673
			       struct i915_page_table *pt)
{
674
	fill32_px(vm, pt, vm->scratch_pte);
675 676
}

677
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
678
{
679
	struct i915_page_directory *pd;
680

681
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
682
	if (unlikely(!pd))
683 684
		return ERR_PTR(-ENOMEM);

685 686 687 688
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
689

690
	pd->used_pdes = 0;
691 692 693
	return pd;
}

694
static void free_pd(struct i915_address_space *vm,
695
		    struct i915_page_directory *pd)
696
{
697 698
	cleanup_px(vm, pd);
	kfree(pd);
699 700 701 702 703
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
704 705
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
706
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
707 708
}

709
static int __pdp_init(struct i915_address_space *vm,
710 711
		      struct i915_page_directory_pointer *pdp)
{
712
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
713

714
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
715
					    I915_GFP_ALLOW_FAIL);
716
	if (unlikely(!pdp->page_directory))
717 718
		return -ENOMEM;

719
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
720

721 722 723 724 725 726 727 728 729
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

730 731 732 733 734
static inline bool use_4lvl(const struct i915_address_space *vm)
{
	return i915_vm_is_48bit(vm);
}

735 736
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
737 738 739 740
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

741
	GEM_BUG_ON(!use_4lvl(vm));
742 743 744 745 746

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

747
	ret = __pdp_init(vm, pdp);
748 749 750
	if (ret)
		goto fail_bitmap;

751
	ret = setup_px(vm, pdp);
752 753 754 755 756 757 758 759 760 761 762 763 764
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

765
static void free_pdp(struct i915_address_space *vm,
766 767 768
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
769 770 771 772 773 774

	if (!use_4lvl(vm))
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
775 776
}

777 778 779 780 781 782 783
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

784
	fill_px(vm, pdp, scratch_pdpe);
785 786 787 788 789
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
790 791
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
792
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
793 794
}

795 796
/*
 * PDE TLBs are a pain to invalidate on GEN8+. When we modify
797 798 799 800 801 802
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
803
	ppgtt->pd_dirty_engines = ALL_ENGINES;
804 805
}

806 807 808
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
809
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
810
				struct i915_page_table *pt,
811
				u64 start, u64 length)
812
{
813
	unsigned int num_entries = gen8_pte_count(start, length);
814
	gen8_pte_t *vaddr;
815

816
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
817

818 819 820
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
821

822
	vaddr = kmap_atomic_px(pt);
823
	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
824
	kunmap_atomic(vaddr);
825 826

	return false;
827
}
828

829 830 831 832 833 834 835 836 837 838 839 840 841 842
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

843
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
844
				struct i915_page_directory *pd,
845
				u64 start, u64 length)
846 847
{
	struct i915_page_table *pt;
848
	u32 pde;
849 850

	gen8_for_each_pde(pt, pd, start, length, pde) {
851 852
		GEM_BUG_ON(pt == vm->scratch_pt);

853 854
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
855

856
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
857
		GEM_BUG_ON(!pd->used_pdes);
858
		pd->used_pdes--;
859 860

		free_pt(vm, pt);
861 862
	}

863 864
	return !pd->used_pdes;
}
865

866 867 868 869 870 871 872 873
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
874
	if (!use_4lvl(vm))
875 876 877 878 879
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
880
}
881

882 883 884 885
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
886
				 struct i915_page_directory_pointer *pdp,
887
				 u64 start, u64 length)
888 889
{
	struct i915_page_directory *pd;
890
	unsigned int pdpe;
891

892
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
893 894
		GEM_BUG_ON(pd == vm->scratch_pd);

895 896
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
897

898
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
899
		GEM_BUG_ON(!pdp->used_pdpes);
900
		pdp->used_pdpes--;
901

902 903
		free_pd(vm, pd);
	}
904

905
	return !pdp->used_pdpes;
906
}
907

908 909 910 911 912 913
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

914 915 916 917 918 919 920 921 922 923 924 925 926
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

927 928 929 930
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
931 932
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
933
{
934 935
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
936
	struct i915_page_directory_pointer *pdp;
937
	unsigned int pml4e;
938

939
	GEM_BUG_ON(!use_4lvl(vm));
940

941
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
942 943
		GEM_BUG_ON(pdp == vm->scratch_pdp);

944 945
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
946

947 948 949
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
950 951 952
	}
}

953
static inline struct sgt_dma {
954 955
	struct scatterlist *sg;
	dma_addr_t dma, max;
956 957 958 959 960
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
961

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

979 980
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
981
			      struct i915_page_directory_pointer *pdp,
982
			      struct sgt_dma *iter,
983
			      struct gen8_insert_pte *idx,
984 985
			      enum i915_cache_level cache_level,
			      u32 flags)
986
{
987
	struct i915_page_directory *pd;
988
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
989 990
	gen8_pte_t *vaddr;
	bool ret;
991

992
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
993 994
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
995
	do {
996 997
		vaddr[idx->pte] = pte_encode | iter->dma;

998
		iter->dma += I915_GTT_PAGE_SIZE;
999 1000 1001 1002 1003 1004
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1005

1006 1007
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1008
		}
1009

1010 1011 1012 1013 1014 1015
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1016
				/* Limited by sg length for 3lvl */
1017 1018
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1019
					ret = true;
1020
					break;
1021 1022
				}

1023
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1024
				pd = pdp->page_directory[idx->pdpe];
1025
			}
1026

1027
			kunmap_atomic(vaddr);
1028
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1029
		}
1030
	} while (1);
1031
	kunmap_atomic(vaddr);
1032

1033
	return ret;
1034 1035
}

1036
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1037
				   struct i915_vma *vma,
1038
				   enum i915_cache_level cache_level,
1039
				   u32 flags)
1040
{
1041
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1042
	struct sgt_dma iter = sgt_dma(vma);
1043
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1044

1045
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1046
				      cache_level, flags);
1047 1048

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1049
}
1050

1051 1052 1053
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1054 1055
					   enum i915_cache_level cache_level,
					   u32 flags)
1056
{
1057
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1058 1059 1060 1061 1062 1063 1064 1065
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1066
		bool maybe_64K = false;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1088 1089 1090 1091
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1092
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1093 1094
				maybe_64K = true;

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1114 1115 1116
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1117
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1118 1119
					maybe_64K = false;

1120 1121 1122 1123 1124 1125
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1142
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1156
				encode = vma->vm->scratch_pte;
M
Matthew Auld 已提交
1157 1158 1159 1160 1161 1162 1163
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1164
		}
1165 1166

		vma->page_sizes.gtt |= page_size;
1167 1168 1169
	} while (iter->sg);
}

1170
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1171
				   struct i915_vma *vma,
1172
				   enum i915_cache_level cache_level,
1173
				   u32 flags)
1174 1175
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1176
	struct sgt_dma iter = sgt_dma(vma);
1177
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1178

1179
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1180 1181
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1182 1183 1184 1185
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1186 1187
						     &iter, &idx, cache_level,
						     flags))
1188
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1189 1190

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1191
	}
1192 1193
}

1194
static void gen8_free_page_tables(struct i915_address_space *vm,
1195
				  struct i915_page_directory *pd)
1196 1197 1198
{
	int i;

1199 1200 1201
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1202
	}
B
Ben Widawsky 已提交
1203 1204
}

1205 1206
static int gen8_init_scratch(struct i915_address_space *vm)
{
1207
	int ret;
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
	    vm->i915->kernel_context->ppgtt) {
		struct i915_address_space *clone =
			&vm->i915->kernel_context->ppgtt->vm;

		GEM_BUG_ON(!clone->has_read_only);

1221
		vm->scratch_order = clone->scratch_order;
1222 1223 1224 1225 1226 1227 1228
		vm->scratch_pte = clone->scratch_pte;
		vm->scratch_pt  = clone->scratch_pt;
		vm->scratch_pd  = clone->scratch_pd;
		vm->scratch_pdp = clone->scratch_pdp;
		return 0;
	}

1229
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1230 1231
	if (ret)
		return ret;
1232

1233 1234 1235 1236 1237
	vm->scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr,
				I915_CACHE_LLC,
				PTE_READ_ONLY);

1238
	vm->scratch_pt = alloc_pt(vm);
1239
	if (IS_ERR(vm->scratch_pt)) {
1240 1241
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1242 1243
	}

1244
	vm->scratch_pd = alloc_pd(vm);
1245
	if (IS_ERR(vm->scratch_pd)) {
1246 1247
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1248 1249
	}

1250
	if (use_4lvl(vm)) {
1251
		vm->scratch_pdp = alloc_pdp(vm);
1252
		if (IS_ERR(vm->scratch_pdp)) {
1253 1254
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1255 1256 1257
		}
	}

1258 1259
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1260
	if (use_4lvl(vm))
1261
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1262 1263

	return 0;
1264 1265

free_pd:
1266
	free_pd(vm, vm->scratch_pd);
1267
free_pt:
1268
	free_pt(vm, vm->scratch_pt);
1269
free_scratch_page:
1270
	cleanup_scratch_page(vm);
1271 1272

	return ret;
1273 1274
}

1275 1276
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1277
	struct i915_address_space *vm = &ppgtt->vm;
1278
	struct drm_i915_private *dev_priv = vm->i915;
1279 1280 1281
	enum vgt_g2v_type msg;
	int i;

1282 1283
	if (use_4lvl(vm)) {
		const u64 daddr = px_dma(&ppgtt->pml4);
1284

1285 1286
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1287 1288 1289 1290

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1291
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1292
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1293

1294 1295
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1307 1308
static void gen8_free_scratch(struct i915_address_space *vm)
{
1309 1310 1311
	if (!vm->scratch_page.daddr)
		return;

1312
	if (use_4lvl(vm))
1313 1314 1315 1316
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1317 1318
}

1319
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1320
				    struct i915_page_directory_pointer *pdp)
1321
{
1322
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1323 1324
	int i;

1325
	for (i = 0; i < pdpes; i++) {
1326
		if (pdp->page_directory[i] == vm->scratch_pd)
1327 1328
			continue;

1329 1330
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1331
	}
1332

1333
	free_pdp(vm, pdp);
1334 1335 1336 1337 1338 1339
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1340
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1341
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1342 1343
			continue;

1344
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1345 1346
	}

1347
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1348 1349 1350 1351
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1352
	struct drm_i915_private *dev_priv = vm->i915;
1353
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1354

1355
	if (intel_vgpu_active(dev_priv))
1356 1357
		gen8_ppgtt_notify_vgt(ppgtt, false);

1358
	if (use_4lvl(vm))
1359
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1360
	else
1361
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1362

1363
	gen8_free_scratch(vm);
1364 1365
}

1366 1367 1368
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1369
{
1370
	struct i915_page_table *pt;
1371
	u64 from = start;
1372
	unsigned int pde;
1373

1374
	gen8_for_each_pde(pt, pd, start, length, pde) {
1375 1376
		int count = gen8_pte_count(start, length);

1377
		if (pt == vm->scratch_pt) {
1378 1379
			pd->used_pdes++;

1380
			pt = alloc_pt(vm);
1381 1382
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1383
				goto unwind;
1384
			}
1385

1386
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1387
				gen8_initialize_pt(vm, pt);
1388 1389

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1390
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1391
		}
1392

1393
		pt->used_ptes += count;
1394
	}
1395
	return 0;
1396

1397 1398
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1399
	return -ENOMEM;
1400 1401
}

1402 1403 1404
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1405
{
1406
	struct i915_page_directory *pd;
1407 1408
	u64 from = start;
	unsigned int pdpe;
1409 1410
	int ret;

1411
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1412
		if (pd == vm->scratch_pd) {
1413 1414
			pdp->used_pdpes++;

1415
			pd = alloc_pd(vm);
1416 1417
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1418
				goto unwind;
1419
			}
1420

1421
			gen8_initialize_pd(vm, pd);
1422
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1423
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1424 1425 1426
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1427 1428
		if (unlikely(ret))
			goto unwind_pd;
1429
	}
1430

B
Ben Widawsky 已提交
1431
	return 0;
1432

1433 1434 1435 1436 1437 1438 1439
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1440 1441 1442
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1443 1444
}

1445 1446
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1447
{
1448 1449 1450
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1451

1452 1453 1454 1455 1456 1457 1458 1459 1460
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1461

1462
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1463 1464 1465 1466
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1467

1468 1469 1470
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1471

1472
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1473 1474
		if (unlikely(ret))
			goto unwind_pdp;
1475 1476 1477 1478
	}

	return 0;

1479 1480 1481 1482 1483
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1484 1485 1486
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1487 1488
}

1489
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1490
{
1491
	struct i915_address_space *vm = &ppgtt->vm;
1492 1493
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1494
	u64 start = 0, length = ppgtt->vm.total;
1495 1496
	u64 from = start;
	unsigned int pdpe;
1497

1498 1499 1500 1501
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1502

1503 1504 1505 1506
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1507

1508 1509
	pdp->used_pdpes++; /* never remove */
	return 0;
1510

1511 1512 1513 1514 1515 1516 1517 1518
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1519 1520
}

1521
/*
1522 1523 1524 1525
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1526
 *
1527
 */
1528
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1529
{
1530 1531 1532 1533 1534 1535 1536
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1537 1538
	kref_init(&ppgtt->ref);

1539 1540
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
1541
	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);
1542

1543 1544
	/* From bdw, there is support for read-only pages in the PPGTT. */
	ppgtt->vm.has_read_only = true;
1545

1546
	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
1547

1548 1549 1550
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1551
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1552
		ppgtt->vm.pt_kmap_wc = true;
1553

1554 1555 1556
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1557

1558 1559 1560 1561
	if (use_4lvl(&ppgtt->vm)) {
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1562

1563
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1564

1565 1566 1567
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1568
	} else {
1569 1570 1571
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1572

1573 1574 1575
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1576
				__pdp_fini(&ppgtt->pdp);
1577
				goto err_scratch;
1578
			}
1579
		}
1580

1581 1582 1583
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1584
	}
1585

1586
	if (intel_vgpu_active(i915))
1587 1588
		gen8_ppgtt_notify_vgt(ppgtt, true);

1589
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1590

1591
	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1592 1593 1594 1595
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;

1596
	return ppgtt;
1597

1598
err_scratch:
1599
	gen8_free_scratch(&ppgtt->vm);
1600 1601 1602
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1603 1604
}

1605
/* Write pde (index) from the page directory @pd to the page table @pt */
1606
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1607 1608
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1609
{
1610
	/* Caller needs to make sure the write completes if necessary */
1611 1612
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1613
}
B
Ben Widawsky 已提交
1614

1615
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1616
{
1617
	struct intel_engine_cs *engine;
1618
	u32 ecochk, ecobits;
1619
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1620

1621 1622
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1623

1624
	ecochk = I915_READ(GAM_ECOCHK);
1625
	if (IS_HASWELL(dev_priv)) {
1626 1627 1628 1629 1630 1631
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1632

1633
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1634
		/* GFX_MODE is per-ring on gen7+ */
1635
		I915_WRITE(RING_MODE_GEN7(engine),
1636
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1637
	}
1638
}
B
Ben Widawsky 已提交
1639

1640
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1641
{
1642
	u32 ecochk, gab_ctl, ecobits;
1643

1644 1645 1646
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1647

1648 1649 1650 1651 1652 1653
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

1654 1655
	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1656 1657
}

1658
/* PPGTT support for Sandybdrige/Gen6 and later */
1659
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1660
				   u64 start, u64 length)
1661
{
1662
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1663
	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1664 1665
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1666
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1667
	const gen6_pte_t scratch_pte = vm->scratch_pte;
1668

1669
	while (num_entries) {
1670
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1671
		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1672
		gen6_pte_t *vaddr;
1673

1674 1675 1676 1677 1678 1679 1680 1681
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1682

1683 1684
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1685 1686 1687 1688
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1689

1690
		vaddr = kmap_atomic_px(pt);
1691
		memset32(vaddr + pte, scratch_pte, count);
1692
		kunmap_atomic(vaddr);
1693

1694
		pte = 0;
1695
	}
1696 1697
}

1698
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1699
				      struct i915_vma *vma,
1700 1701
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1702
{
1703
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1704
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1705 1706
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1707
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1708
	struct sgt_dma iter = sgt_dma(vma);
1709 1710
	gen6_pte_t *vaddr;

1711 1712
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1713
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1714 1715
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1716

1717
		iter.dma += I915_GTT_PAGE_SIZE;
1718 1719 1720 1721
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1722

1723 1724 1725
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1726

1727
		if (++act_pte == GEN6_PTES) {
1728 1729
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1730
			act_pte = 0;
D
Daniel Vetter 已提交
1731
		}
1732
	} while (1);
1733
	kunmap_atomic(vaddr);
1734 1735

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1736 1737
}

1738
static int gen6_alloc_va_range(struct i915_address_space *vm,
1739
			       u64 start, u64 length)
1740
{
1741
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1742
	struct i915_page_table *pt;
1743 1744 1745
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1746

1747
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1748 1749
		const unsigned int count = gen6_pte_count(start, length);

1750 1751 1752 1753
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1754

1755
			gen6_initialize_pt(vm, pt);
1756
			ppgtt->base.pd.page_table[pde] = pt;
1757 1758 1759 1760 1761 1762

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1763 1764

			GEM_BUG_ON(pt->used_ptes);
1765
		}
1766 1767

		pt->used_ptes += count;
1768 1769
	}

1770
	if (flush) {
1771 1772
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1773 1774 1775
	}

	return 0;
1776 1777

unwind_out:
1778
	gen6_ppgtt_clear_range(vm, from, start - from);
1779
	return -ENOMEM;
1780 1781
}

1782
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1783
{
1784 1785 1786
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1787
	int ret;
1788

1789
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1790 1791
	if (ret)
		return ret;
1792

1793 1794 1795
	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
					 I915_CACHE_NONE,
					 PTE_READ_ONLY);
1796

1797
	vm->scratch_pt = alloc_pt(vm);
1798
	if (IS_ERR(vm->scratch_pt)) {
1799
		cleanup_scratch_page(vm);
1800 1801 1802
		return PTR_ERR(vm->scratch_pt);
	}

1803
	gen6_initialize_pt(vm, vm->scratch_pt);
1804 1805
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1806 1807 1808 1809

	return 0;
}

1810
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1811
{
1812 1813
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1814 1815
}

1816
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1817
{
1818
	struct i915_page_table *pt;
1819
	u32 pde;
1820

1821
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1822 1823 1824 1825 1826 1827 1828
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1829

1830
	i915_vma_destroy(ppgtt->vma);
1831 1832 1833

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1834 1835
}

1836
static int pd_vma_set_pages(struct i915_vma *vma)
1837
{
1838 1839 1840
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1841

1842 1843 1844
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
1855
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1856 1857
	struct i915_page_table *pt;
	unsigned int pde;
1858

1859 1860
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1861

1862 1863
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
1864

1865 1866
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1867

1868
	return 0;
1869
}
1870

1871
static void pd_vma_unbind(struct i915_vma *vma)
1872
{
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

1909
	vma = i915_vma_alloc();
1910 1911 1912
	if (!vma)
		return ERR_PTR(-ENOMEM);

1913
	i915_active_init(i915, &vma->active, NULL);
1914
	INIT_ACTIVE_REQUEST(&vma->last_fence);
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
1926 1927

	mutex_lock(&vma->vm->mutex);
1928
	list_add(&vma->vm_link, &vma->vm->unbound_list);
1929
	mutex_unlock(&vma->vm->mutex);
1930 1931 1932

	return vma;
}
1933

1934
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
1935 1936
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1937
	int err;
1938

1939 1940 1941 1942 1943 1944 1945 1946 1947
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

1948 1949 1950 1951 1952
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	err = i915_vma_pin(ppgtt->vma,
			   0, GEN6_PD_ALIGN,
			   PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto unpin;

	return 0;

unpin:
	ppgtt->pin_count = 0;
	return err;
1964 1965
}

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

1977
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
1978
{
1979
	struct i915_ggtt * const ggtt = &i915->ggtt;
1980
	struct gen6_hw_ppgtt *ppgtt;
1981 1982 1983 1984 1985 1986
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1987 1988
	kref_init(&ppgtt->base.ref);

1989 1990
	ppgtt->base.vm.i915 = i915;
	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
1991
	ppgtt->base.vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);
1992

1993
	i915_address_space_init(&ppgtt->base.vm, VM_CLASS_PPGTT);
1994

1995
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
1996 1997 1998
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
1999

2000
	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2001 2002 2003
	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2004

2005 2006
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2007
	err = gen6_ppgtt_init_scratch(ppgtt);
2008 2009 2010
	if (err)
		goto err_free;

2011 2012 2013
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2014
		goto err_scratch;
2015
	}
2016

2017
	return &ppgtt->base;
2018

2019 2020
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2021 2022 2023
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2024
}
2025

2026
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2027 2028 2029 2030 2031
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2032
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2033
	if (IS_BROADWELL(dev_priv))
2034
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2035
	else if (IS_CHERRYVIEW(dev_priv))
2036
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2037
	else if (IS_GEN9_LP(dev_priv))
2038
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2039 2040
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2058 2059
}

2060
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2061
{
2062
	gtt_write_workarounds(dev_priv);
2063

2064
	if (IS_GEN(dev_priv, 6))
2065
		gen6_ppgtt_enable(dev_priv);
2066
	else if (IS_GEN(dev_priv, 7))
2067
		gen7_ppgtt_enable(dev_priv);
2068

2069 2070
	return 0;
}
2071

2072 2073 2074 2075 2076 2077 2078 2079 2080
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2081
struct i915_hw_ppgtt *
2082
i915_ppgtt_create(struct drm_i915_private *i915,
2083
		  struct drm_i915_file_private *fpriv)
2084 2085 2086
{
	struct i915_hw_ppgtt *ppgtt;

2087 2088 2089
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2090

2091
	ppgtt->vm.file = fpriv;
2092

2093
	trace_i915_ppgtt_create(&ppgtt->vm);
2094

2095 2096 2097
	return ppgtt;
}

2098
void i915_ppgtt_close(struct i915_address_space *vm)
2099 2100 2101 2102 2103 2104
{
	GEM_BUG_ON(vm->closed);
	vm->closed = true;
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
2105 2106
{
	struct list_head *phases[] = {
2107
		&vm->bound_list,
2108 2109 2110 2111 2112 2113 2114 2115 2116
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2117
			i915_vma_destroy(vma);
2118 2119 2120
	}
}

2121
void i915_ppgtt_release(struct kref *kref)
2122 2123 2124 2125
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2126
	trace_i915_ppgtt_release(&ppgtt->vm);
2127

2128
	ppgtt_destroy_vma(&ppgtt->vm);
2129

2130
	GEM_BUG_ON(!list_empty(&ppgtt->vm.bound_list));
2131
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2132

2133 2134
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2135 2136
	kfree(ppgtt);
}
2137

2138 2139 2140
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2141
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2142 2143 2144 2145
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2146
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2147 2148
}

2149
static void gen6_check_faults(struct drm_i915_private *dev_priv)
2150
{
2151
	struct intel_engine_cs *engine;
2152
	enum intel_engine_id id;
2153
	u32 fault;
2154

2155
	for_each_engine(engine, dev_priv, id) {
2156 2157
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2158
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2159
					 "\tAddr: 0x%08lx\n"
2160 2161 2162
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2163 2164 2165 2166
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2167 2168
		}
	}
2169 2170
}

2171
static void gen8_check_faults(struct drm_i915_private *dev_priv)
2172 2173 2174 2175
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2176 2177 2178 2179 2180 2181 2182 2183
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2184
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2185 2186
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2187 2188 2189
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2190 2191 2192
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
	}
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
2203
		gen8_check_faults(dev_priv);
2204
	else if (INTEL_GEN(dev_priv) >= 6)
2205
		gen6_check_faults(dev_priv);
2206 2207
	else
		return;
2208 2209

	i915_clear_error_registers(dev_priv);
2210 2211
}

2212
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2213
{
2214
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2215 2216 2217 2218

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2219
	if (INTEL_GEN(dev_priv) < 6)
2220 2221
		return;

2222
	i915_check_and_clear_faults(dev_priv);
2223

2224
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2225

2226
	i915_ggtt_invalidate(dev_priv);
2227 2228
}

2229 2230
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2231
{
2232
	do {
2233 2234 2235 2236
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2237 2238
			return 0;

2239 2240
		/*
		 * If the DMA remap fails, one cause can be that we have
2241 2242 2243 2244 2245 2246 2247
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2248
				 obj->base.size >> PAGE_SHIFT, NULL,
2249
				 I915_SHRINK_BOUND |
2250
				 I915_SHRINK_UNBOUND));
2251

2252
	return -ENOSPC;
2253 2254
}

2255
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2256 2257 2258 2259
{
	writeq(pte, addr);
}

2260 2261
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2262
				  u64 offset,
2263 2264 2265
				  enum i915_cache_level level,
				  u32 unused)
{
2266
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2267
	gen8_pte_t __iomem *pte =
2268
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2269

2270
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2271

2272
	ggtt->invalidate(vm->i915);
2273 2274
}

B
Ben Widawsky 已提交
2275
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2276
				     struct i915_vma *vma,
2277
				     enum i915_cache_level level,
2278
				     u32 flags)
B
Ben Widawsky 已提交
2279
{
2280
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2281 2282
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2283
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2284
	dma_addr_t addr;
2285

2286 2287 2288 2289
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2290

2291
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2292
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2293
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2294
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2295

2296 2297 2298
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2299
	 */
2300
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2301 2302
}

2303 2304
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2305
				  u64 offset,
2306 2307 2308
				  enum i915_cache_level level,
				  u32 flags)
{
2309
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2310
	gen6_pte_t __iomem *pte =
2311
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2312

2313
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2314

2315
	ggtt->invalidate(vm->i915);
2316 2317
}

2318 2319 2320 2321 2322 2323
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2324
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2325
				     struct i915_vma *vma,
2326 2327
				     enum i915_cache_level level,
				     u32 flags)
2328
{
2329
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2330
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2331
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2332
	struct sgt_iter iter;
2333
	dma_addr_t addr;
2334
	for_each_sgt_dma(addr, iter, vma->pages)
2335
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2336

2337 2338 2339
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2340
	 */
2341
	ggtt->invalidate(vm->i915);
2342 2343
}

2344
static void nop_clear_range(struct i915_address_space *vm,
2345
			    u64 start, u64 length)
2346 2347 2348
{
}

B
Ben Widawsky 已提交
2349
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2350
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2351
{
2352
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2353 2354
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2355
	const gen8_pte_t scratch_pte = vm->scratch_pte;
2356
	gen8_pte_t __iomem *gtt_base =
2357 2358
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2414
	struct i915_vma *vma;
2415
	enum i915_cache_level level;
2416
	u32 flags;
2417 2418 2419 2420 2421 2422
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2423
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2424 2425 2426 2427 2428 2429
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2430
					     struct i915_vma *vma,
2431
					     enum i915_cache_level level,
2432
					     u32 flags)
2433
{
2434
	struct insert_entries arg = { vm, vma, level, flags };
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2464
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2465
				  u64 start, u64 length)
2466
{
2467
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2468 2469
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2470
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2471 2472
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2473 2474 2475 2476 2477 2478 2479
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2480
	scratch_pte = vm->scratch_pte;
2481

2482 2483 2484 2485
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2486 2487
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2488
				  u64 offset,
2489 2490 2491 2492 2493 2494 2495 2496 2497
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2498
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2499
				     struct i915_vma *vma,
2500 2501
				     enum i915_cache_level cache_level,
				     u32 unused)
2502 2503 2504 2505
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2506 2507
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2508 2509
}

2510
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2511
				  u64 start, u64 length)
2512
{
2513
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2514 2515
}

2516 2517 2518
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2519
{
2520
	struct drm_i915_private *i915 = vma->vm->i915;
2521
	struct drm_i915_gem_object *obj = vma->obj;
2522
	intel_wakeref_t wakeref;
2523
	u32 pte_flags;
2524

2525
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2526
	pte_flags = 0;
2527
	if (i915_gem_object_is_readonly(obj))
2528 2529
		pte_flags |= PTE_READ_ONLY;

2530 2531
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2532

2533 2534
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2535 2536 2537 2538 2539
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2540
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2541 2542 2543 2544

	return 0;
}

2545 2546 2547
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2548
	intel_wakeref_t wakeref;
2549

2550 2551
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2552 2553
}

2554 2555 2556
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2557
{
2558
	struct drm_i915_private *i915 = vma->vm->i915;
2559
	u32 pte_flags;
2560
	int ret;
2561

2562
	/* Currently applicable only to VLV */
2563
	pte_flags = 0;
2564
	if (i915_gem_object_is_readonly(vma->obj))
2565
		pte_flags |= PTE_READ_ONLY;
2566

2567 2568 2569
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2570
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2571 2572 2573
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2574
			if (ret)
2575
				return ret;
2576 2577
		}

2578 2579
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2580 2581
	}

2582
	if (flags & I915_VMA_GLOBAL_BIND) {
2583 2584
		intel_wakeref_t wakeref;

2585 2586 2587 2588
		with_intel_runtime_pm(i915, wakeref) {
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2589
	}
2590

2591
	return 0;
2592 2593
}

2594
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2595
{
2596
	struct drm_i915_private *i915 = vma->vm->i915;
2597

2598
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2599
		struct i915_address_space *vm = vma->vm;
2600 2601
		intel_wakeref_t wakeref;

2602 2603
		with_intel_runtime_pm(i915, wakeref)
			vm->clear_range(vm, vma->node.start, vma->size);
2604
	}
2605

2606
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2607
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2608 2609 2610

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2611 2612
}

2613 2614
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2615
{
D
David Weinehall 已提交
2616 2617
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2618
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2619

2620
	if (unlikely(ggtt->do_idle_maps)) {
2621
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2622 2623 2624 2625 2626
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2627

2628
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2629
}
2630

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2641 2642
	vma->page_sizes = vma->obj->mm.page_sizes;

2643 2644 2645
	return 0;
}

C
Chris Wilson 已提交
2646
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2647
				  unsigned long color,
2648 2649
				  u64 *start,
				  u64 *end)
2650
{
2651
	if (node->allocated && node->color != color)
2652
		*start += I915_GTT_PAGE_SIZE;
2653

2654 2655 2656 2657 2658
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2659
	node = list_next_entry(node, node_list);
2660
	if (node->color != color)
2661
		*end -= I915_GTT_PAGE_SIZE;
2662
}
B
Ben Widawsky 已提交
2663

2664 2665 2666 2667 2668 2669
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2670
	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2671 2672
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2673

2674
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2675 2676 2677 2678
		err = -ENODEV;
		goto err_ppgtt;
	}

2679 2680 2681 2682 2683 2684 2685 2686 2687
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2688 2689

	i915->mm.aliasing_ppgtt = ppgtt;
2690

2691 2692
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2693

2694 2695
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2696

2697 2698 2699
	return 0;

err_ppgtt:
2700
	i915_ppgtt_put(ppgtt);
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2713
	i915_ppgtt_put(ppgtt);
2714

2715 2716
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2717 2718
}

2719
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2720
{
2721 2722 2723 2724 2725 2726 2727 2728 2729
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2730
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2731
	unsigned long hole_start, hole_end;
2732
	struct drm_mm_node *entry;
2733
	int ret;
2734

2735 2736 2737 2738 2739 2740 2741 2742 2743
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
			       intel_guc_reserved_gtt_size(&dev_priv->guc));

2744 2745 2746
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2747

2748
	/* Reserve a mappable slot for our lockless error capture */
2749
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2750 2751 2752
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2753 2754 2755
	if (ret)
		return ret;

2756
	/* Clear any non-preallocated blocks */
2757
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2758 2759
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2760 2761
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2762 2763 2764
	}

	/* And finally clear the reserved guard page */
2765
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2766

2767
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2768
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2769
		if (ret)
2770
			goto err;
2771 2772
	}

2773
	return 0;
2774 2775 2776 2777

err:
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2778 2779
}

2780 2781
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2782
 * @dev_priv: i915 device
2783
 */
2784
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2785
{
2786
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2787
	struct i915_vma *vma, *vn;
2788
	struct pagevec *pvec;
2789

2790
	ggtt->vm.closed = true;
2791 2792

	mutex_lock(&dev_priv->drm.struct_mutex);
2793 2794
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2795
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2796
		WARN_ON(i915_vma_unbind(vma));
2797

2798 2799 2800
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2801
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2802
		intel_vgt_deballoon(dev_priv);
2803
		i915_address_space_fini(&ggtt->vm);
2804 2805
	}

2806
	ggtt->vm.cleanup(&ggtt->vm);
2807

2808
	pvec = &dev_priv->mm.wc_stash.pvec;
2809 2810 2811 2812 2813
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2814
	mutex_unlock(&dev_priv->drm.struct_mutex);
2815 2816

	arch_phys_wc_del(ggtt->mtrr);
2817
	io_mapping_fini(&ggtt->iomap);
2818

2819
	i915_gem_cleanup_stolen(dev_priv);
2820
}
2821

2822
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2823 2824 2825 2826 2827 2828
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2829
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2830 2831 2832 2833 2834
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2835 2836

#ifdef CONFIG_X86_32
2837
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2838 2839 2840 2841
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2842 2843 2844
	return bdw_gmch_ctl << 20;
}

2845
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2856
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2857
{
2858
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2859
	struct pci_dev *pdev = dev_priv->drm.pdev;
2860
	phys_addr_t phys_addr;
2861
	int ret;
B
Ben Widawsky 已提交
2862 2863

	/* For Modern GENs the PTEs and register space are split in the BAR */
2864
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2865

I
Imre Deak 已提交
2866
	/*
2867 2868 2869
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2870 2871 2872
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2873
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2874
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2875
	else
2876
		ggtt->gsm = ioremap_wc(phys_addr, size);
2877
	if (!ggtt->gsm) {
2878
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2879 2880 2881
		return -ENOMEM;
	}

2882
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2883
	if (ret) {
B
Ben Widawsky 已提交
2884 2885
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
2886
		iounmap(ggtt->gsm);
2887
		return ret;
B
Ben Widawsky 已提交
2888 2889
	}

2890 2891 2892 2893
	ggtt->vm.scratch_pte =
		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
				    I915_CACHE_NONE, 0);

2894
	return 0;
B
Ben Widawsky 已提交
2895 2896
}

2897 2898
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
2899
{
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
2943
	struct intel_ppat_entry *entry = NULL;
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
2966
		if (!entry)
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3043
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3081 3082
}

B
Ben Widawsky 已提交
3083 3084 3085
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3086
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3087
{
3088 3089 3090 3091
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3092

3093
	if (!HAS_PPGTT(ppat->i915)) {
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3107 3108 3109
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3110

3111 3112 3113 3114 3115 3116 3117 3118
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3119 3120
}

3121
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3122
{
3123 3124 3125 3126
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3127 3128 3129 3130 3131 3132 3133

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3145 3146
	 */

3147 3148 3149 3150 3151 3152 3153 3154
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3155 3156
}

3157 3158 3159 3160 3161
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3162
	cleanup_scratch_page(vm);
3163 3164
}

3165 3166
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3167 3168 3169 3170 3171
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3172
	if (INTEL_GEN(dev_priv) >= 10)
3173
		cnl_setup_private_ppat(ppat);
3174
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3175
		chv_setup_private_ppat(ppat);
3176
	else
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3188 3189
}

3190
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3191
{
3192
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3193
	struct pci_dev *pdev = dev_priv->drm.pdev;
3194
	unsigned int size;
B
Ben Widawsky 已提交
3195
	u16 snb_gmch_ctl;
3196
	int err;
B
Ben Widawsky 已提交
3197 3198

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3199 3200 3201 3202
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3203

3204 3205 3206 3207 3208
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3209

3210
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3211
	if (IS_CHERRYVIEW(dev_priv))
3212
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3213
	else
3214
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3215

3216
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3217 3218 3219
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3220
	if (intel_scanout_needs_vtd_wa(dev_priv))
3221
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3222

3223
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3224

3225
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3226 3227
	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3228 3229 3230 3231
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3232 3233 3234 3235 3236

		/* Prevent recursively calling stop_machine() and deadlocks. */
		dev_info(dev_priv->drm.dev,
			 "Disabling error capture for VT-d workaround\n");
		i915_disable_error_state(dev_priv, -ENODEV);
3237 3238
	}

3239 3240
	ggtt->invalidate = gen6_ggtt_invalidate;

3241 3242 3243 3244 3245
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3246 3247
	ggtt->vm.pte_encode = gen8_pte_encode;

3248 3249
	setup_private_pat(dev_priv);

3250
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3251 3252
}

3253
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3254
{
3255
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3256
	struct pci_dev *pdev = dev_priv->drm.pdev;
3257
	unsigned int size;
3258
	u16 snb_gmch_ctl;
3259
	int err;
3260

3261 3262 3263 3264
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3265

3266 3267
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3268
	 */
3269
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3270
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3271
		return -ENXIO;
3272 3273
	}

3274 3275 3276 3277 3278
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3279
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3280

3281
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3282
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3283

3284 3285 3286 3287
	ggtt->vm.clear_range = gen6_ggtt_clear_range;
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3288

3289 3290
	ggtt->invalidate = gen6_ggtt_invalidate;

3291
	if (HAS_EDRAM(dev_priv))
3292
		ggtt->vm.pte_encode = iris_pte_encode;
3293
	else if (IS_HASWELL(dev_priv))
3294
		ggtt->vm.pte_encode = hsw_pte_encode;
3295
	else if (IS_VALLEYVIEW(dev_priv))
3296
		ggtt->vm.pte_encode = byt_pte_encode;
3297
	else if (INTEL_GEN(dev_priv) >= 7)
3298
		ggtt->vm.pte_encode = ivb_pte_encode;
3299
	else
3300
		ggtt->vm.pte_encode = snb_pte_encode;
3301

3302 3303 3304 3305 3306
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3307
	return ggtt_probe_common(ggtt, size);
3308 3309
}

3310
static void i915_gmch_remove(struct i915_address_space *vm)
3311
{
3312
	intel_gmch_remove();
3313
}
3314

3315
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3316
{
3317
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3318
	phys_addr_t gmadr_base;
3319 3320
	int ret;

3321
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3322 3323 3324 3325 3326
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3327
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3328

3329 3330 3331 3332
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3333
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3334 3335 3336 3337
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3338

3339 3340
	ggtt->invalidate = gmch_ggtt_invalidate;

3341 3342 3343 3344 3345
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3346
	if (unlikely(ggtt->do_idle_maps))
3347 3348
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3349 3350 3351
	return 0;
}

3352
/**
3353
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3354
 * @dev_priv: i915 device
3355
 */
3356
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3357
{
3358
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3359 3360
	int ret;

3361 3362
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3363

3364 3365 3366 3367 3368 3369
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3370
	if (ret)
3371 3372
		return ret;

3373 3374 3375 3376 3377
	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
	 * This is easier than doing range restriction on the fly, as we
	 * currently don't have any bits spare to pass in this upper
	 * restriction!
	 */
3378
	if (USES_GUC(dev_priv)) {
3379 3380 3381
		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3382 3383
	}

3384
	if ((ggtt->vm.total - 1) >> 32) {
3385
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3386
			  " of address space! Found %lldM!\n",
3387 3388 3389 3390
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3391 3392
	}

3393
	if (ggtt->mappable_end > ggtt->vm.total) {
3394
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3395
			  " aperture=%pa, total=%llx\n",
3396 3397
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3398 3399
	}

3400
	/* GMADR is the PCI mmio aperture into the global GTT. */
3401
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3402
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3403
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3404
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3405
	if (intel_vtd_active())
3406
		DRM_INFO("VT-d active for gfx access\n");
3407 3408

	return 0;
3409 3410 3411 3412
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3413
 * @dev_priv: i915 device
3414
 */
3415
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3416 3417 3418 3419
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3420 3421
	stash_init(&dev_priv->mm.wc_stash);

3422 3423 3424 3425
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3426
	 */
C
Chris Wilson 已提交
3427
	mutex_lock(&dev_priv->drm.struct_mutex);
3428
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3429

3430 3431
	ggtt->vm.is_ggtt = true;

3432 3433 3434
	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3435
	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3436
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3437
	mutex_unlock(&dev_priv->drm.struct_mutex);
3438

3439 3440
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3441
				dev_priv->ggtt.mappable_end)) {
3442 3443 3444 3445
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3446
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3447

3448 3449 3450 3451
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3452
	ret = i915_gem_init_stolen(dev_priv);
3453 3454 3455 3456
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3457 3458

out_gtt_cleanup:
3459
	ggtt->vm.cleanup(&ggtt->vm);
3460
	return ret;
3461
}
3462

3463
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3464
{
3465
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3466 3467 3468 3469 3470
		return -EIO;

	return 0;
}

3471 3472
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3473 3474
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3475
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3476 3477

	i915_ggtt_invalidate(i915);
3478 3479 3480 3481
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3482 3483 3484 3485
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3486 3487 3488 3489
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3490 3491

	i915_ggtt_invalidate(i915);
3492 3493
}

3494
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3495
{
3496
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3497
	struct i915_vma *vma, *vn;
3498

3499
	i915_check_and_clear_faults(dev_priv);
3500

3501 3502
	mutex_lock(&ggtt->vm.mutex);

3503
	/* First fill our portion of the GTT with scratch pages */
3504 3505
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3506 3507

	/* clflush objects bound into the GGTT and rebind them. */
3508
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3509
		struct drm_i915_gem_object *obj = vma->obj;
3510

3511 3512
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3513

3514 3515
		mutex_unlock(&ggtt->vm.mutex);

3516
		if (!i915_vma_unbind(vma))
3517
			goto lock;
3518

3519 3520 3521 3522 3523
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
		if (obj)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3524 3525 3526

lock:
		mutex_lock(&ggtt->vm.mutex);
3527
	}
3528

3529
	ggtt->vm.closed = false;
3530
	i915_ggtt_invalidate(dev_priv);
3531

3532 3533
	mutex_unlock(&ggtt->vm.mutex);

3534
	if (INTEL_GEN(dev_priv) >= 8) {
3535
		struct intel_ppat *ppat = &dev_priv->ppat;
3536

3537 3538
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3539 3540 3541 3542
		return;
	}
}

3543
static struct scatterlist *
3544
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3545
	     unsigned int width, unsigned int height,
3546
	     unsigned int stride,
3547
	     struct sg_table *st, struct scatterlist *sg)
3548 3549 3550 3551 3552
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3553
		src_idx = stride * (height - 1) + column + offset;
3554 3555 3556 3557 3558 3559
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3560
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3561 3562
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3563
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3564
			sg = sg_next(sg);
3565
			src_idx -= stride;
3566 3567
		}
	}
3568 3569

	return sg;
3570 3571
}

3572 3573 3574
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3575
{
3576
	unsigned int size = intel_rotation_info_size(rot_info);
3577
	struct sg_table *st;
3578
	struct scatterlist *sg;
3579
	int ret = -ENOMEM;
3580
	int i;
3581 3582 3583 3584 3585 3586

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3587
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3588 3589 3590
	if (ret)
		goto err_sg_alloc;

3591 3592 3593
	st->nents = 0;
	sg = st->sgl;

3594
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3595
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3596 3597
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3598 3599
	}

3600 3601 3602 3603 3604 3605
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3606 3607
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3608

3609 3610
	return ERR_PTR(ret);
}
3611

3612
static noinline struct sg_table *
3613 3614 3615 3616
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3617
	struct scatterlist *sg, *iter;
3618
	unsigned int count = view->partial.size;
3619
	unsigned int offset;
3620 3621 3622 3623 3624 3625
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3626
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3627 3628 3629
	if (ret)
		goto err_sg_alloc;

3630
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3631 3632
	GEM_BUG_ON(!iter);

3633 3634
	sg = st->sgl;
	st->nents = 0;
3635 3636
	do {
		unsigned int len;
3637

3638 3639 3640 3641 3642 3643
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3644 3645

		st->nents++;
3646 3647 3648
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3649 3650
			i915_sg_trim(st); /* Drop any unused tail entries. */

3651 3652
			return st;
		}
3653

3654 3655 3656 3657
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3658 3659 3660 3661 3662 3663 3664

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3665
static int
3666
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3667
{
3668
	int ret;
3669

3670 3671 3672 3673 3674 3675 3676
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3677
	switch (vma->ggtt_view.type) {
3678 3679 3680
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3681 3682
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3683 3684
		return 0;

3685
	case I915_GGTT_VIEW_ROTATED:
3686
		vma->pages =
3687 3688 3689 3690
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

	case I915_GGTT_VIEW_PARTIAL:
3691
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3692 3693
		break;
	}
3694

3695
	ret = 0;
3696
	if (IS_ERR(vma->pages)) {
3697 3698
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3699 3700
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3701
	}
3702
	return ret;
3703 3704
}

3705 3706
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3741
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3742
	GEM_BUG_ON(drm_mm_node_allocated(node));
3743 3744 3745 3746 3747 3748 3749 3750 3751

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3752 3753 3754
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3755 3756 3757 3758 3759 3760 3761
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3787 3788
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3789 3790 3791 3792 3793 3794 3795 3796 3797
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3798
 *         must be #I915_GTT_PAGE_SIZE aligned
3799 3800 3801
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3802 3803 3804 3805 3806 3807
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3808 3809
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3826
	enum drm_mm_insert_mode mode;
3827
	u64 offset;
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3838
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3839
	GEM_BUG_ON(drm_mm_node_allocated(node));
3840 3841 3842 3843 3844 3845 3846

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

3847 3848
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
3849
		mode = DRM_MM_INSERT_HIGHEST;
3850 3851
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

3863 3864 3865
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
3866 3867 3868
	if (err != -ENOSPC)
		return err;

3869 3870 3871 3872 3873 3874 3875 3876 3877
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

3878 3879 3880
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
3910 3911 3912 3913 3914
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

3915 3916 3917
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
3918
}
3919 3920 3921

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
3922
#include "selftests/i915_gem_gtt.c"
3923
#endif