creation.py 69.2 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16
import numpy as np
17
import math
18 19
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
Z
zhiboniu 已提交
20 21 22 23
from ..static import Variable, device_guard
from ..framework import _current_expected_place, _get_paddle_place
from ..framework import dygraph_only
from ..framework import core
24 25
from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
P
Pei Yang 已提交
26
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
Z
zhiboniu 已提交
27
from ..framework import convert_np_dtype_to_dtype_, _varbase_creator, OpProtoHolder
28
# TODO: define functions to get create a tensor
29
import paddle
W
wanghuancoder 已提交
30
from paddle import _C_ops
31 32
from ..fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check
import warnings
33

34 35
__all__ = []

W
wangchaochaohu 已提交
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


def linspace(start, stop, num, dtype=None, name=None):
    r"""
57
    Return fixed number of evenly spaced values within a given interval.
58 59 60 61 62 63 64 65 66 67

    Args:
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a Tensor of shape [1] with data type int32.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
68
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
94
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
95 96
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
97
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
98 99
    if not isinstance(num, Variable):
        with device_guard("cpu"):
100
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    if _non_static_mode():
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)

    helper = LayerHelper("linspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(start, 'start', (int, float), 'linspace')

    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
125 126 127 128
    if ((stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]) or (
                (stop_dtype == "int64" or start_dtype == "int64")
                and out_dtype == "int32"):
129 130 131 132 133 134 135
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))

    out = helper.create_variable_for_type_inference(dtype=dtype)

136 137 138 139 140 141 142 143
    helper.append_op(type='linspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
144 145 146 147 148
    if isinstance(num, int):
        out.desc.set_shape((num, ))
    return out


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
    
    Notes:
        This API does not compute the gradient.
    
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
171
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
        just has the value with exponential of :attr:`start` with base :attr:`base`. 

    Examples:
        .. code-block:: python
            :name: logspace-example

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
    if _non_static_mode():
        return _C_ops.logspace(tensor_start, tensor_stop, tensor_num,
                               tensor_base, 'dtype', dtype)

    helper = LayerHelper("logspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    base_dtype = convert_dtype(tensor_base.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(start, 'start', (int, float), 'logspace')

    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(stop, 'stop', (int, float), 'logspace')

    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'logspace')

    if isinstance(base, Variable):
        check_dtype(base.dtype, 'base',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(base, 'base', (int, float), 'logspace')

    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'logspace')
    if ((stop_dtype == "float64" or start_dtype == "float64"
                                 or base_dtype == "float64")
                                 and out_dtype in ["float32", "int32"]) or \
       ((stop_dtype == "int64" or start_dtype == "int64"
                               or base_dtype == "int64")
                               and out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of logspace."
            .format(start_dtype, stop_dtype, base_dtype, dtype))

    out = helper.create_variable_for_type_inference(dtype=dtype)

257 258 259 260 261 262 263 264 265
    helper.append_op(type='logspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num,
                         'Base': tensor_base
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
266 267 268 269 270
    if isinstance(num, int):
        out.desc.set_shape((num, ))
    return out


271 272
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
273
    r"""
C
chentianyu03 已提交
274 275
    Constructs a ``paddle.Tensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.
276

277 278
    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.
279 280

    Args:
C
chentianyu03 已提交
281 282
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
283
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
C
chentianyu03 已提交
284 285
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
286
            except for python float number which gets dtype from ``get_default_type`` .
287 288 289
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
290 291 292
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
C
chentianyu03 已提交
293
        Tensor: A Tensor constructed from ``data`` .
294 295 296 297 298 299 300 301 302 303 304

    Examples:

    .. code-block:: python

        import paddle
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
305
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
306
        #        [1])
307

308 309 310
        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
311
        #        [1])
312

313 314 315
        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])        
316

317 318
        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
319 320
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])
321

C
chentianyu03 已提交
322
        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
323
        # <class 'paddle.Tensor'>
324 325

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
326
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
C
chentianyu03 已提交
327 328
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
329
    """
330
    place = _get_paddle_place(place)
331 332
    if place is None:
        place = _current_expected_place()
333 334 335 336
    elif not isinstance(
            place,
        (core.Place, core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace,
         core.NPUPlace, core.XPUPlace, core.MLUPlace, core.CustomPlace)):
337
        raise ValueError(
F
fwenguang 已提交
338
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace, paddle.NPUPlace, paddle.XPUPlace, paddle.MLUPlace, paddle.CustomPlace"
339 340 341
        )

    if not isinstance(data, np.ndarray):
342

343
        def _handle_dtype(data, dtype):
344 345 346 347 348
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

349 350 351 352
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
353
            if data.dtype == np.object_:
354 355 356 357
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
358 359 360 361 362 363
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
364
            data = data._copy_to(place, False)
365
            data = _handle_dtype(data, dtype)
366
            data.stop_gradient = stop_gradient
367
            return data
368
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
369
            # should't expose it to users, just for internal use.
370 371
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
372 373 374 375
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
376 377 378 379
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
380
            return data
381 382
        else:
            raise TypeError(
383 384
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor"
                .format(type(data)))
385 386 387 388 389 390 391 392 393 394 395 396 397 398
        if not dtype:
            if data.dtype in [
                    'float16', 'float32', 'float64', 'complex64', 'complex128'
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
                    default_type = 'complex64' if default_type in [
                        'float16', 'float32'
                    ] else 'complex128'
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
399 400

    if dtype and convert_dtype(dtype) != data.dtype:
401
        data = data.astype(convert_dtype(dtype))
402

J
Jiabin Yang 已提交
403
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
404 405 406 407 408 409
        return core.eager.Tensor(value=data,
                                 place=place,
                                 persistable=False,
                                 zero_copy=False,
                                 name=None,
                                 stop_gradient=stop_gradient)
410
    else:
411 412 413 414 415
        return paddle.Tensor(value=data,
                             place=place,
                             persistable=False,
                             zero_copy=False,
                             stop_gradient=stop_gradient)
416 417


418
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
419
    """
S
swtkiwi 已提交
420

421 422
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
423

P
Pei Yang 已提交
424
    Args:
425 426
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
427
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
428 429
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
430
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
431
    
P
Pei Yang 已提交
432
    Returns:
433
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
434
    
P
Pei Yang 已提交
435 436
    Examples:
        .. code-block:: python
437

P
Pei Yang 已提交
438
          import paddle
439 440
          
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
441
          output = paddle.full_like(input, 2.0)
442 443
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
444 445 446
    """

    if dtype is None:
447
        dtype = x.dtype
448
    else:
449 450 451
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

452 453 454 455
    if in_dygraph_mode():
        return _C_ops.final_state_full_like(x, fill_value, dtype, x.place)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
456
        return _C_ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
457

458
    helper = LayerHelper("full_like", **locals())
459
    check_variable_and_dtype(
460 461
        x, 'x',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
462
        'full_like')
463 464 465 466
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'full_like/zeros_like/ones_like')
467
    out = helper.create_variable_for_type_inference(dtype=dtype)
468

469 470 471 472 473 474 475
    helper.append_op(type='fill_any_like',
                     inputs={'X': [x]},
                     attrs={
                         'value': fill_value,
                         "dtype": dtype
                     },
                     outputs={'Out': [out]})
476
    out.stop_gradient = True
P
Pei Yang 已提交
477 478 479
    return out


480
def ones(shape, dtype=None, name=None):
481
    """
B
BrilliantYuKaimin 已提交
482
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
483 484

    Args:
B
BrilliantYuKaimin 已提交
485 486 487 488
        shape (tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape should be int32 or int64.
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
489
    
490
    Returns:
B
BrilliantYuKaimin 已提交
491
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
492 493 494

    Examples:
        .. code-block:: python
B
BrilliantYuKaimin 已提交
495
          :name: ones-example
496

497 498
          import paddle 
          
499
          # default dtype for ones OP
500 501 502 503 504 505 506 507 508
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
509
          # shape is a Tensor
510
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
511 512 513
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
514
    """
515 516 517
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
518 519


520
def ones_like(x, dtype=None, name=None):
521
    """
C
Chen Long 已提交
522
    Returns a Tensor filled with the value 1, with the same shape and
523
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
524 525

    Args:
526 527
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
528
        dtype(str|np.dtype, optional): The data type of the
529 530 531
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
532
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
533

534
    Returns:
535 536 537
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

538 539 540
    Examples:
        .. code-block:: python

541
            import paddle
542

543
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
544 545
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
546

547 548
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
549 550


551
def zeros(shape, dtype=None, name=None):
552
    """
C
Chen Long 已提交
553
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
554 555

    Args:
556
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
557
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
558 559 560
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
561 562

    Returns:
563
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
564 565 566 567 568

    Examples:
        .. code-block:: python

          import paddle
569
          
570 571 572 573 574 575 576 577 578
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
579
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
580
          data3 = paddle.zeros(shape=shape, dtype='int32') 
581 582
          # [[0 0]
          #  [0 0]]
583
    """
584 585 586
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
587 588


589
def zeros_like(x, dtype=None, name=None):
590
    """
591
    Returns a Tensor filled with the value 0, with the same shape and
592
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
593 594

    Args:
595 596
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
597
        dtype(str|np.dtype, optional): The data type of the
598 599 600
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
601
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
602 603

    Returns:
604 605
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
606

607

608 609 610
    Examples:
        .. code-block:: python

611
            import paddle
612

Z
zhupengyang 已提交
613
            x = paddle.to_tensor([1, 2, 3])
614 615
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
616

617 618
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
619 620


621
def eye(num_rows, num_columns=None, dtype=None, name=None):
622
    """
623
    
624
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
625

626
    Args:
627 628
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
629
            If None, default: num_rows.
W
wangchaochaohu 已提交
630
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
631 632
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
633
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
634

635
    Returns:
636
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
637

638 639
    Examples:
        .. code-block:: python
640
          
641
          import paddle
642

643
          data = paddle.eye(3, dtype='int32')
644 645 646
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
647
          data = paddle.eye(2, 3, dtype='int32')
648 649
          # [[1 0 0]
          #  [0 1 0]]
650 651
    """

652 653 654
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
655
        num_columns = num_rows
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows

    if _non_static_mode():
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
676 677 678 679 680 681 682 683 684
        helper.append_op(type='eye',
                         inputs={},
                         outputs={'Out': [out]},
                         attrs={
                             'num_rows': num_rows,
                             'num_columns': num_columns,
                             'dtype': dtype
                         },
                         stop_gradient=True)
685 686 687

    out.stop_gradient = True
    return out
688 689


690
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
691
    """
S
swtkiwi 已提交
692

693
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
694 695
    
    Args:
696
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
697 698
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
699
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
700 701
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
702
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
703
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
704 705
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
wangchaochaohu 已提交
706
    
707
    Returns:
708
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
709

W
wangchaochaohu 已提交
710 711
    Examples:
        .. code-block:: python
712
           :name: code-example1
W
wangchaochaohu 已提交
713

714
          import paddle
W
wangchaochaohu 已提交
715

716 717 718
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
719

720
          # attr shape is a list which contains Tensor.
721
          positive_2 = paddle.full([1], 2, "int32")
722 723
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
724

725
          # attr shape is a Tensor.
726
          shape = paddle.full([2], 2, "int32")
727 728 729
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
730
          
731
          # attr fill_value is a Tensor.
732
          val = paddle.full([1], 2.0, "float32")
733 734 735
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
736 737 738 739 740
    """

    if dtype is None:
        dtype = 'float32'

741
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
742 743


744
def arange(start=0, end=None, step=1, dtype=None, name=None):
745
    """
746
    Returns a 1-D Tensor with spaced values within a given interval.
747

748 749
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
750

751 752
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
753 754

    Parameters:
755 756 757 758 759 760 761 762 763 764 765 766
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
767
        dtype(str|np.dtype, optional): The data type of the
768 769
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
770
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
771

772 773
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
774 775
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
776

Z
zhupengyang 已提交
777
    Examples:
778 779
        .. code-block:: python

Z
zhupengyang 已提交
780
            import paddle
781

Z
zhupengyang 已提交
782 783
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
784

Z
zhupengyang 已提交
785 786
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
787

Z
zhupengyang 已提交
788 789 790
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
791

Z
zhupengyang 已提交
792 793 794
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
795 796 797 798 799 800 801
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
802

803 804 805 806 807
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
        return _C_ops.final_state_arange(start, end, step, dtype,
                                         _current_expected_place())

    if _in_legacy_dygraph():
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out

    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
842 843 844 845 846 847 848
    helper.append_op(type='range',
                     inputs={
                         'Start': start,
                         'End': end,
                         'Step': step
                     },
                     outputs={'Out': out})
849
    out.stop_gradient = True
850 851
    if out_shape is not None:
        out.desc.set_shape(out_shape)
852
    return out
W
WuHaobo 已提交
853 854 855 856 857 858


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
859
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
860 861

    assert x is not None, 'x cannot be None in {}'.format(op_type)
862 863
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
W
WuHaobo 已提交
864
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
865
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
866 867 868 869 870 871 872 873
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
874 875 876
        out = helper.create_variable(name=name,
                                     dtype=x.dtype,
                                     persistable=False)
W
WuHaobo 已提交
877 878 879 880 881 882 883 884

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
885 886
        outputs={"Out": out},
    )
W
WuHaobo 已提交
887 888 889 890

    return out


Y
yaoxuefeng 已提交
891
def tril(x, diagonal=0, name=None):
892
    r"""
893
    Returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
894
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
895 896 897 898
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
899
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
900
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
901 902 903 904 905 906 907
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
908
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
909 910

    Returns:
Y
yaoxuefeng 已提交
911
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
912
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
913 914 915 916

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
917
            import paddle
W
WuHaobo 已提交
918

919 920 921 922 923
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
924

925 926 927 928 929
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
930 931

            # example 2, positive diagonal value
932 933 934 935 936
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
937 938

            # example 3, negative diagonal value
939 940 941 942 943
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
944
    """
F
From00 已提交
945 946 947 948
    if in_dygraph_mode():
        return _C_ops.final_state_tril_triu(x, diagonal, True)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
949
        op = getattr(_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
950
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
951 952 953 954

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
955
def triu(x, diagonal=0, name=None):
956
    r"""
957
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
958
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
959 960 961 962
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
963
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
964 965 966 967 968 969 970 971
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
972
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
973 974

    Returns:
Y
yaoxuefeng 已提交
975
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
976
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
977 978 979 980 981

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
982
            import paddle
W
WuHaobo 已提交
983 984 985 986 987

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
988

W
WuHaobo 已提交
989 990

            # example 1, default diagonal
991
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
992
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
993 994 995 996 997
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
998
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
999 1000 1001 1002 1003
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1004
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
1005 1006 1007 1008 1009
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
F
From00 已提交
1010 1011 1012 1013
    if in_dygraph_mode():
        return _C_ops.final_state_tril_triu(x, diagonal, False)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1014
        op = getattr(_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1015
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
1016 1017

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1018 1019


1020
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1021
    """
C
Chen Long 已提交
1022
    Takes a list of N tensors as input *args, each of which is 1-dimensional vector, and creates N-dimensional grids.
S
suytingwan 已提交
1023 1024
    
    Args:
Y
yaoxuefeng 已提交
1025
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
1026
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
C
Chen Long 已提交
1027
        **kwargs (optional): Currently, only accept name in **kwargs 
1028
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1029 1030 1031
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
Y
yaoxuefeng 已提交
1032
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1033 1034 1035 1036 1037 1038

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1039 1040 1041 1042
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1043

Y
yaoxuefeng 已提交
1044 1045
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1046 1047 1048 1049 1050 1051

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1052 1053
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1054
    if _in_legacy_dygraph():
1055
        num = len(args)
W
wanghuancoder 已提交
1056
        out = _C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
1057
        return out
Y
YuanRisheng 已提交
1058 1059
    if in_dygraph_mode():
        return _C_ops.final_state_meshgrid(list(args))
S
suytingwan 已提交
1060

1061
    name = kwargs.get("name", None)
S
suytingwan 已提交
1062 1063
    helper = LayerHelper('meshgrid', **locals())

1064 1065
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
1066

1067
    for id, input_ in enumerate(args):
S
suytingwan 已提交
1068 1069 1070 1071
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

1072
    num = len(args)
S
suytingwan 已提交
1073
    out = [
1074
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
1075 1076
        for i in range(num)
    ]
1077 1078 1079
    helper.append_op(type='meshgrid',
                     inputs={'X': list(args)},
                     outputs={'Out': out})
S
suytingwan 已提交
1080 1081

    return out
1082 1083


L
Li Min 已提交
1084 1085
def diagflat(x, offset=0, name=None):
    """
1086
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1102
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diagflat(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diagflat(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diagflat(x, offset=-1)
          print(y.numpy())
          # [[0 0 0 0]
          #  [1 0 0 0]
          #  [0 2 0 0]
          #  [0 0 3 0]]
        
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([[1, 2], [3, 4]])
          y = paddle.diagflat(x)
          print(y.numpy())
          # [[1 0 0 0]
          #  [0 2 0 0]
          #  [0 0 3 0]
          #  [0 0 0 4]]

          y = paddle.diagflat(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0 0]
          #  [0 0 2 0 0]
          #  [0 0 0 3 0]
          #  [0 0 0 0 4]
          #  [0 0 0 0 0]]

          y = paddle.diagflat(x, offset=-1)
          print(y.numpy())
          # [[0 0 0 0 0]
          #  [1 0 0 0 0]
          #  [0 2 0 0 0]
          #  [0 0 3 0 0]
          #  [0 0 0 4 0]]
    """
    padding_value = 0
Z
zhiboniu 已提交
1162
    if paddle.in_dynamic_mode():
L
Li Min 已提交
1163
        if len(x.shape) == 1:
W
wanghuancoder 已提交
1164 1165
            return _C_ops.diag_v2(x, "offset", offset, "padding_value",
                                  padding_value)
L
Li Min 已提交
1166
        else:
W
wanghuancoder 已提交
1167 1168 1169 1170
            y, _ = _C_ops.flatten_contiguous_range(x, "start_axis", 0,
                                                   "stop_axis", -1)
            return _C_ops.diag_v2(y, "offset", offset, "padding_value",
                                  padding_value)
L
Li Min 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

    check_type(x, 'x', (Variable), 'diagflat')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diagflat')
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
1183 1184 1185 1186 1187 1188 1189
        helper.append_op(type='diag_v2',
                         inputs={'X': x},
                         outputs={'Out': out2},
                         attrs={
                             'offset': offset,
                             'padding_value': padding_value
                         })
L
Li Min 已提交
1190
    else:
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
        helper.append_op(type='flatten_contiguous_range',
                         inputs={'X': x},
                         outputs={
                             'Out': out1,
                             'XShape': out1_shape
                         },
                         attrs={
                             'start_axis': 0,
                             'stop_axis': -1
                         })
L
Li Min 已提交
1201 1202
        out1.stop_gradient = True

1203 1204 1205 1206 1207 1208 1209
        helper.append_op(type='diag_v2',
                         inputs={'X': out1},
                         outputs={'Out': out2},
                         attrs={
                             'offset': offset,
                             'padding_value': padding_value
                         })
L
Li Min 已提交
1210 1211 1212 1213
    out2.stop_gradient = True
    return out2


1214 1215
def diag(x, offset=0, padding_value=0, name=None):
    """
1216
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1232 1233
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
        
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diag(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diag(x, padding_value=6)
          print(y.numpy())
          # [[1 6 6]
          #  [6 2 6]
          #  [6 6 3]]

        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
          y = paddle.diag(x)
          print(y.numpy())
          # [1 5]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [2 6]

          y = paddle.diag(x, offset=-1)
          print(y.numpy())
          # [4]
    """
J
Jiabin Yang 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
    if in_dygraph_mode():
        return _C_ops.final_state_diag(x, offset, padding_value)
    else:
        if _in_legacy_dygraph():
            return _C_ops.diag_v2(x, "offset", offset, "padding_value",
                                  padding_value)
        else:
            check_type(x, 'x', (Variable), 'diag_v2')
            check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                        'diag_v2')
            check_type(offset, 'offset', (int), 'diag_v2')
            check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
            if len(x.shape) != 1 and len(x.shape) != 2:
                raise ValueError(
1295 1296
                    "The dimension of input x must be either 1 or 2, but received {}"
                    .format(len(x.shape)))
1297

J
Jiabin Yang 已提交
1298
            helper = LayerHelper("diag_v2", **locals())
1299

J
Jiabin Yang 已提交
1300
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1301

1302 1303 1304 1305 1306 1307 1308
            helper.append_op(type='diag_v2',
                             inputs={'X': x},
                             outputs={'Out': out},
                             attrs={
                                 'offset': offset,
                                 'padding_value': padding_value
                             })
1309

J
Jiabin Yang 已提交
1310 1311
            out.stop_gradient = True
            return out
1312 1313 1314 1315


def empty(shape, dtype=None, name=None):
    """
1316
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1327
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1328 1329 1330 1331 1332 1333 1334
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1335
            import paddle
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
            paddle.set_device("cpu")  # and use cpu device

            # example 1: argument ``shape`` is a list which doesn't contain Tensor.
            data1 = paddle.empty(shape=[2, 3], dtype='float32')
            print(data1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.00000000, 0.        , 0.00000000],
            #         [0.        , 0.29652897, 0.09356152]])       # uninitialized

            # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
            shape_data = paddle.to_tensor([2, 3]).astype('int32')
            data2 = paddle.empty(shape=shape_data, dtype='float32')
            print(data2)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.50543123, -0.09872390, -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized

            # example 3: argument ``shape`` is a list which contains Tensor.
            dim2 = paddle.to_tensor([3]).astype('int32')
            data3 = paddle.empty(shape=[2, dim2], dtype='float32')
            print(data3)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.00000000,  0.        , -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized
1361 1362 1363 1364 1365 1366 1367
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

Z
zhiboniu 已提交
1368
    if paddle.in_dynamic_mode():
1369
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
1370 1371
        out = _C_ops.empty('shape', shape, 'dtype',
                           convert_np_dtype_to_dtype_(dtype))
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
1387 1388 1389 1390
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='empty')
1391 1392 1393

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
1394 1395 1396 1397 1398
    helper.append_op(type='empty',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
1399 1400
    out.stop_gradient = True
    return out
1401 1402 1403 1404


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1405
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1406 1407 1408 1409 1410 1411 1412
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
    
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
1413
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
    
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

Z
zhiboniu 已提交
1435
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
1436 1437
        out = _C_ops.empty('shape', x.shape, 'dtype',
                           convert_np_dtype_to_dtype_(dtype))
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='empty_like')

    helper.append_op(type='empty',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
1464 1465
    out.stop_gradient = True
    return out
1466 1467 1468 1469


def assign(x, output=None):
    """
1470

1471
    Copy value of the :attr:`x` to the :attr:`output`.
1472 1473
 
    Parameters:
1474 1475
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1476
            data limitation.
1477
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1478 1479
 
    Returns:
1480
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
1481 1482 1483
 
    Examples:
        .. code-block:: python
1484 1485
          :name: assign-example

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
1497 1498
    input = x
    helper = LayerHelper('assign', **locals())
1499 1500
    check_type(input, 'input',
               (Variable, np.ndarray, list, tuple, float, int, bool), 'assign')
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
Z
zyfncg 已提交
1513
        if in_dygraph_mode():
1514
            if output is None:
Z
zyfncg 已提交
1515 1516 1517 1518 1519 1520
                output = _C_ops.final_state_assign(input)
            else:
                _C_ops.final_state_assign_out_(input, output)
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1521 1522 1523 1524 1525 1526 1527 1528 1529
            _C_ops.assign(input, output)
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
1530 1531 1532
            helper.append_op(type='assign',
                             inputs={'X': [input]},
                             outputs={'Out': [output]})
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    elif isinstance(input, np.ndarray):
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
                "received %s." % convert_dtype(dtype))
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
1571
        if _non_static_mode():
1572 1573
            _C_ops.assign_value(output, 'shape', list(input.shape), 'dtype',
                                dtype, value_name, values)
1574
        else:
1575 1576 1577 1578 1579 1580 1581
            helper.append_op(type='assign_value',
                             outputs={'Out': [output]},
                             attrs={
                                 'dtype': dtype,
                                 'shape': list(input.shape),
                                 value_name: values
                             })
1582

Z
zyfncg 已提交
1583
    if is_inplace and _in_legacy_dygraph():
1584 1585 1586
        output._bump_inplace_version()

    return output
1587 1588


1589 1590 1591 1592 1593 1594 1595 1596
def clone(x, name=None):
    """
    Returns a copy of input Tensor. It will always have a Tensor copy. 
    
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
1597
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617

    Returns: A Tensor copied from ``input`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


1618
#NOTE(zhiqiu): not public
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
        check_dtype(input.dtype, 'input', [
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
        ], 'memcpy', '(When the type of input in memcpy is Variable.)')
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
1671 1672 1673 1674
    helper.append_op(type='memcpy',
                     inputs={'X': [input]},
                     outputs={'Out': [output]},
                     attrs=attrs)
1675
    return output
F
Feiyu Chan 已提交
1676 1677 1678 1679 1680 1681 1682 1683


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
1684
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

    **Note**:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
            print(z.numpy())

            # [[0.+0.j 0.+1.j 0.+2.j]
            #  [1.+0.j 1.+1.j 1.+2.j]]
    """
Z
zhiboniu 已提交
1704
    if paddle.in_dynamic_mode():
F
Feiyu Chan 已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
        return paddle._C_ops.complex(real, imag)

    check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
    check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')

    op_type = "complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": real, "Y": imag}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(real.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796


def tril_indices(row, col, offset=0, dtype='int64'):
    """
    Return the indices of the lower triangular part of the 2-D matrix 
    whose row and col is knowed.Indices are ordered based on row and then columns. 
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
    
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and below the main diagonal are retained.  
            - If offset > 0, include just as many diagonals above the main diagonal.  
            - If offset < 0, excludes just as many diagonals below the main diagonal.  
 
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python
            :name: tril_indices-example

            import paddle
            
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3], 
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3], 
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a  int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        out = _C_ops.final_state_tril_indices(row, col, offset, dtype,
                                              _current_expected_place())
        return out

    if _in_legacy_dygraph():
        out = _C_ops.tril_indices('rows', row, 'cols', col, 'offset', offset,
                                  "dtype", dtype)
        return out

    else:
        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

1797 1798 1799 1800 1801 1802 1803 1804 1805
        helper.append_op(type='tril_indices',
                         inputs={},
                         outputs={'out': [out]},
                         attrs={
                             'rows': row,
                             'cols': col,
                             'offset': offset,
                             'dtype': dtype
                         })
1806
    return out