creation.py 36.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16 17
import numpy as np

L
Li Fuchen 已提交
18
from ..fluid.framework import Variable
19 20 21
from ..fluid.framework import unique_name
from ..fluid.framework import _current_expected_place
from ..fluid.framework import dygraph_only
P
Pei Yang 已提交
22 23 24 25 26 27
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..fluid.layers import fill_constant
28
from paddle.common_ops_import import *
W
wangchaochaohu 已提交
29

30
# TODO: define functions to get create a tensor  
31 32
from ..fluid.layers import crop_tensor  #DEFINE_ALIAS
from ..fluid.layers import fill_constant  #DEFINE_ALIAS
33
from ..fluid.layers import linspace  #DEFINE_ALIAS
34
import paddle
35

W
wangchaochaohu 已提交
36
__all__ = [
37
    'to_tensor',
38 39 40 41
    'crop_tensor',
    'diag',
    'fill_constant',
    #       'get_tensor_from_selected_rows',
42
    'linspace',
43 44 45 46
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
47
    'arange',
48
    'eye',
W
wangchaochaohu 已提交
49
    'full',
P
Pei Yang 已提交
50
    'full_like',
W
WuHaobo 已提交
51 52
    'triu',
    'tril',
53
    'meshgrid'
W
wangchaochaohu 已提交
54 55 56
]


57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    """
    Constructs a ``paddle.Tensor`` or ``paddle.ComplexTensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.

    If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy 
    will be performed and return origin tensor, otherwise a new tensor will be constructed
    and returned. Similarly, if the data is an numpy\.ndarray of with the same ``dtype`` 
    and the current place is cpu, no copy will be performed.

    The ``ComplexTensor`` is a unique type of paddle. If x is ``ComplexTensor``, then 
    ``x.real`` is the real part, and ``x.imag`` is the imaginary part.

    Args:
        data(scalar|tuple|list|ndarray|Tensor|ComplexTensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.
        dtype(str, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8'. And
            'complex64' , 'complex128' only for ComplexTensor.
            Default: None, infers data type from ``data`` .
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place.
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor or ComplexTensor constructed from ``data``.

    Raises:
        TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor, paddle.ComplexTensor
        ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
        ValueError: If ``place`` is not paddle.Place, paddle.CUDAPinnedPlace, paddle.CUDAPlace

    Examples:

    .. code-block:: python

        import paddle
        import numpy as np
        paddle.enable_imperative()
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor: generated_tensor_0
        # - place: CUDAPlace(0)   # allocate on global default place CPU:0
        # - shape: [1]
        # - layout: NCHW
        # - dtype: int64_t
        # - data: [1]

        x = paddle.to_tensor(1)
        paddle.to_tensor(x, dtype='int32', place=paddle.CPUPlace()) # A new tensor will be constructed due to different dtype or place
        # Tensor: generated_tensor_01
        # - place: CPUPlace
        # - shape: [1]
        # - layout: NCHW
        # - dtype: int
        # - data: [1]

        paddle.to_tensor((1.1, 2.2), place=paddle.CUDAPinnedPlace())
        # Tensor: generated_tensor_1
        #   - place: CUDAPinnedPlace
        #   - shape: [2]
        #   - layout: NCHW
        #   - dtype: double
        #   - data: [1.1 2.2]

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CUDAPlace(0), stop_gradient=False)
        # Tensor: generated_tensor_2
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: double
        #   - data: [0.1 0.2 0.3 0.4]

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]]), , dtype='complex64')
        # <class 'paddle.ComplexTensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # ComplexTensor[real]: generated_tensor_0.real
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: float
        #   - data: [1 2 3 4]
        # ComplexTensor[imag]: generated_tensor_0.imag
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: float
        #   - data: [1 0 2 0]
    """

    if place is None:
        place = _current_expected_place()
    elif not isinstance(place,
                        (core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)):
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )

    #Todo(zhouwei): Support allocate tensor on any other specified card
    if isinstance(place, core.CUDAPlace) and isinstance(
            _current_expected_place(), core.CUDAPlace) and place._get_device_id(
            ) != _current_expected_place()._get_device_id():
        place = _current_expected_place()

    if not isinstance(data, np.ndarray):
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
        elif isinstance(data, paddle.Tensor):
            data.stop_gradient = stop_gradient
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data
        elif isinstance(data, paddle.ComplexTensor):
            return data
        else:
            raise TypeError(
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor|paddle.ComplexTensor".
                format(type(data)))

    if dtype:
        dtype = convert_dtype(dtype)
        if dtype != data.dtype:
            data = data.astype(dtype)

    if not np.iscomplexobj(data):
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=True,
            stop_gradient=stop_gradient)
    else:
        name = unique_name.generate('generated_tensor')
        real_tensor = paddle.Tensor(
            value=data.real,
            place=place,
            zero_copy=True,
            name=name + ".real",
            stop_gradient=stop_gradient)
        imag_tensor = paddle.Tensor(
            value=data.imag,
            place=place,
            zero_copy=True,
            name=name + ".imag",
            stop_gradient=stop_gradient)
        return paddle.ComplexTensor(real_tensor, imag_tensor)


221
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
222
    """
S
swtkiwi 已提交
223

224 225
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
226

P
Pei Yang 已提交
227
    Args:
228 229
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
230
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
231 232
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
233 234
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
235
    Returns:
236
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
237
    
238
    Raises:
239 240
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None.
241
    
P
Pei Yang 已提交
242 243
    Examples:
        .. code-block:: python
244

P
Pei Yang 已提交
245 246
          import paddle
          import numpy as np
247
          
248
          paddle.disable_static()  # Now we are in imperative mode 
249
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
250
          output = paddle.full_like(input, 2.0)
251 252
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
253 254 255
    """

    if dtype is None:
256
        dtype = x.dtype
257
    else:
258 259 260 261 262
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
263

264
    helper = LayerHelper("full_like", **locals())
265 266 267
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'full_like')
268 269
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
270
                'full_like/zeros_like/ones_like')
271
    out = helper.create_variable_for_type_inference(dtype=dtype)
272

P
Pei Yang 已提交
273 274
    helper.append_op(
        type='fill_any_like',
275
        inputs={'X': [x]},
276
        attrs={'value': fill_value,
277
               "dtype": dtype},
P
Pei Yang 已提交
278
        outputs={'Out': [out]})
279
    out.stop_gradient = True
P
Pei Yang 已提交
280 281 282
    return out


283
def ones(shape, dtype=None, name=None):
284
    """
S
swtkiwi 已提交
285

286 287 288
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
289
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
290
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
291 292 293
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
294
    Returns:
295
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
296

297
    Raises:
298
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None.
299 300
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
301
    
302 303 304
    Examples:
        .. code-block:: python

305
          import paddle 
306
          paddle.disable_static()
307
          
308
          # default dtype for ones OP
309 310 311 312 313 314 315 316 317
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
318
          # shape is a Tensor
319 320 321 322
          shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
323
    """
324 325 326
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
327 328


329
def ones_like(x, dtype=None, name=None):
330
    """
331
	:alias_main: paddle.ones_like
332
	:alias: paddle.tensor.ones_like, paddle.tensor.creation.ones_like
S
swtkiwi 已提交
333

334 335
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
336 337

    Args:
338 339 340 341 342 343 344 345 346 347
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

348
    Returns:
349 350 351 352 353 354
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
355 356 357 358

    Examples:
        .. code-block:: python

359 360
            import paddle
            import numpy as np
361

362
            paddle.disable_static()
363

364 365 366
            x = paddle.to_tensor(np.array([1,2,3], dtype='float32'))
            out1 = paddle.zeros_like(x) # [1., 1., 1.]
            out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
367

368 369
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
370 371


372
def zeros(shape, dtype=None, name=None):
373 374 375 376
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
377
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
378
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
379 380 381
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
382 383

    Returns:
384
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
385

386
    Raises:
387
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None.
388 389 390
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
    
391 392 393 394
    Examples:
        .. code-block:: python

          import paddle
395
          
396
          paddle.disable_static()  # Now we are in imperative mode
397 398 399 400 401 402 403 404 405 406
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
          shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
407
          data3 = paddle.zeros(shape=shape, dtype='int32') 
408 409
          # [[0 0]
          #  [0 0]]
410
    """
411 412 413
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
414 415


416
def zeros_like(x, dtype=None, name=None):
417
    """
418
	:alias_main: paddle.zeros_like
419
	:alias: paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
S
swtkiwi 已提交
420

421 422
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
423 424

    Args:
425 426 427 428 429 430
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
431 432 433
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
434 435

    Returns:
436 437
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
438

439
    Raise:
440 441
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
442

443 444 445
    Examples:
        .. code-block:: python

446 447
            import paddle
            import numpy as np
448

449
            paddle.disable_static()
450

451 452 453
            x = paddle.to_tensor(np.array([1,2,3], dtype='float32'))
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
454

455 456
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
457 458


459
def eye(num_rows, num_columns=None, dtype=None, name=None):
460
    """
461
    
462
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
463

464
    Args:
465 466
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
467
            If None, default: num_rows.
W
wangchaochaohu 已提交
468
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
469 470
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
471 472
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
473

474
    Returns:
475
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
476 477
    
    Raises:
478 479
        TypeError: The ``dtype`` must be one of float16, float32, float64, int32 int64 and None.
        TypeError: The ``num_columns`` must be non-negative int.
480

481 482
    Examples:
        .. code-block:: python
483
          
484
          import paddle
485

486
          paddle.disable_static()  # Now we are in imperative mode
487
          data = paddle.eye(3, dtype='int32')
488 489 490
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
491
          data = paddle.eye(2, 3, dtype='int32')
492 493
          # [[1 0 0]
          #  [0 1 0]]
494 495
    """

496 497 498
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
499
        num_columns = num_rows
500 501 502 503 504
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
505 506


507
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
508
    """
S
swtkiwi 已提交
509

510
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
511 512
    
    Args:
513
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
514 515
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
516 517 518
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
519
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
520
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
521
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
522 523 524
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
525
    Returns:
526
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
527 528

    Raises:
529 530 531
        TypeError: The ``dtype`` must be one of None, bool, float16, float32, float64, int32 and int64.
        TypeError: The ``shape`` must be one of Tensor, list and tuple. The data type of ``shape`` must
            be int32 or int64 when the it's a Tensor
532
    
W
wangchaochaohu 已提交
533 534 535
    Examples:
        .. code-block:: python

536
          import paddle
W
wangchaochaohu 已提交
537

538
          paddle.disable_static()  # Now we are in imperative mode
539 540 541
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
542

543
          # attr shape is a list which contains Tensor.
544
          positive_2 = paddle.fill_constant([1], "int32", 2)
545 546
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
547

548
          # attr shape is a Tensor.
549 550 551 552
          shape = paddle.fill_constant([2], "int32", 2)
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
553
          
554
          # attr fill_value is a Tensor.
555 556 557 558
          val = paddle.fill_constant([1], "float32", 2.0)
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
559 560 561 562 563
    """

    if dtype is None:
        dtype = 'float32'

564
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
565 566


567
def arange(start=0, end=None, step=1, dtype=None, name=None):
568
    """
569
	:alias_main: paddle.arange
570
	:alias: paddle.tensor.arange, paddle.tensor.creation.arange
S
swtkiwi 已提交
571

572
    This OP returns a 1-D Tensor with spaced values within a given interval.
573

574 575
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
576

577 578
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
579 580

    Parameters:
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
599

600 601 602 603
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.
604

605
    Raises:
606
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
607

608 609 610 611
    examples:

        .. code-block:: python

612 613
        import paddle
        import numpy as np
614

615
        paddle.disable_static()
616

617 618
        out1 = paddle.arange(5)
        # [0, 1, 2, 3, 4]
619

620 621
        out2 = paddle.arange(3, 9, 2.0)
        # [3, 5, 7]
622

623 624 625
        # use 4.999 instead of 5.0 to avoid floating point rounding errors
        out3 = paddle.arange(4.999, dtype='float32')
        # [0., 1., 2., 3., 4.]
626

627
        start_var = paddle.to_tensor(np.array([3]))
628 629 630 631 632 633 634 635 636
        out4 = paddle.arange(start_var, 7)
        # [3, 4, 5, 6]
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
637

638
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
639 640 641 642 643 644


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
645
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
646 647 648 649 650

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
651
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


Y
yaoxuefeng 已提交
675
def tril(x, diagonal=0, name=None):
W
WuHaobo 已提交
676
    """
677 678
	:alias_main: paddle.tril
	:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
S
swtkiwi 已提交
679

W
WuHaobo 已提交
680
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
681
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
682 683 684 685
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
686
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
687 688 689 690 691 692 693 694 695 696 697 698
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
699 700
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
701 702 703

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
704
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
705 706 707 708 709

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
710
            import paddle
W
WuHaobo 已提交
711 712 713 714 715 716

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

717
            paddle.disable_static()
Y
yaoxuefeng 已提交
718

719
            x = paddle.to_variable(data)
Y
yaoxuefeng 已提交
720 721
            
            tril1 = paddle.tensor.tril(x)
W
WuHaobo 已提交
722 723 724 725 726
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
727
            tril2 = paddle.tensor.tril(x, diagonal=2)
W
WuHaobo 已提交
728 729 730 731 732
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
733
            tril3 = paddle.tensor.tril(x, diagonal=-1)
W
WuHaobo 已提交
734 735 736 737
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

738 739 740
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
741
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
742 743 744 745

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
746
def triu(x, diagonal=0, name=None):
W
WuHaobo 已提交
747
    """
748 749
	:alias_main: paddle.triu
	:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
S
swtkiwi 已提交
750

W
WuHaobo 已提交
751
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
752
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
753 754 755 756
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
757
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
758 759 760 761 762 763 764 765 766 767 768 769
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
770 771
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
772 773 774

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
775
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
776 777 778 779 780

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
781
            import paddle
W
WuHaobo 已提交
782 783 784 785 786

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
787

788
            paddle.disable_static()
W
WuHaobo 已提交
789 790

            # example 1, default diagonal
791
            x = paddle.to_variable(data)
Y
yaoxuefeng 已提交
792
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
793 794 795 796 797
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
798
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
799 800 801 802 803
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
804
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
805 806 807 808 809
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
810 811
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
812
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
813 814

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
815 816


817
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
818
    """
819 820
	:alias_main: paddle.meshgrid
	:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
S
swtkiwi 已提交
821

822
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
823 824 825
    vector, and creates N-dimensional grids.
    
    Args:
826
        *args(Variable|list of Variable) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
827
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
828 829
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
         Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk)

    Examples:
      .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np

          x = fluid.data(name='x', shape=[100], dtype='int32')
          y = fluid.data(name='y', shape=[200], dtype='int32')

          input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

          exe = fluid.Executor(place=fluid.CPUPlace())
849
          grid_x, grid_y = paddle.tensor.meshgrid(x, y)
S
suytingwan 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863
          res_1, res_2 = exe.run(fluid.default_main_program(),
                                 feed={'x': input_1,
                                       'y': input_2},
                                 fetch_list=[grid_x, grid_y])
     
          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

      .. code-block:: python

          #example 2: in dygraph mode

          import paddle
          import numpy as np
864
          
865
          paddle.disable_static()
S
suytingwan 已提交
866 867 868

          input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_4 = np.random.randint(0, 100, [200, ]).astype('int32')
869 870
          tensor_3 = paddle.to_tensor(input_3)
          tensor_4 = paddle.to_tensor(input_4)
871
          grid_x, grid_y = paddle.tensor.meshgrid(tensor_3, tensor_4)
S
suytingwan 已提交
872 873 874 875 876 877

          #the shape of grid_x is (100, 200)
          #the shape of grid_y is (100, 200)

    """

878 879
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
880
    if in_dygraph_mode():
881 882
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
883 884
        return out

885
    name = kwargs.get("name", None)
S
suytingwan 已提交
886 887
    helper = LayerHelper('meshgrid', **locals())

888 889
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
890

891
    for id, input_ in enumerate(args):
S
suytingwan 已提交
892 893 894 895
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

896
    num = len(args)
S
suytingwan 已提交
897
    out = [
898
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
899 900
        for i in range(num)
    ]
901 902
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
903 904

    return out
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993


def diag(x, offset=0, padding_value=0, name=None):
    """
    If ``x`` is a vector (1-D tensor), a 2-D square tensor whth the elements of ``x`` as the diagonal is returned.

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diag(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diag(x, padding_value=6)
          print(y.numpy())
          # [[1 6 6]
          #  [6 2 6]
          #  [6 6 3]]

        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
          y = paddle.diag(x)
          print(y.numpy())
          # [1 5]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [2 6]

          y = paddle.diag(x, offset=-1)
          print(y.numpy())
          # [4]
    """
    if in_dygraph_mode():
        return core.ops.diag_v2(x, "offset", offset, "padding_value",
                                padding_value)

    check_type(x, 'x', (Variable), 'diag_v2')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diag_v2')
    helper = LayerHelper("diag_v2", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diag_v2',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'offset': offset,
               'padding_value': padding_value})

    out.stop_gradient = True
    return out