creation.py 28.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
L
Li Fuchen 已提交
16
from ..fluid.framework import Variable
P
Pei Yang 已提交
17 18 19 20 21 22
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..fluid.layers import fill_constant
23
from paddle.common_ops_import import *
24
import paddle
W
wangchaochaohu 已提交
25

26
# TODO: define functions to get create a tensor  
27 28 29
from ..fluid.layers import crop_tensor  #DEFINE_ALIAS
from ..fluid.layers import diag  #DEFINE_ALIAS
from ..fluid.layers import fill_constant  #DEFINE_ALIAS
30
from ..fluid.layers import create_tensor  #DEFINE_ALIAS
31
from ..fluid.layers import linspace  #DEFINE_ALIAS
32
import paddle
33

W
wangchaochaohu 已提交
34
__all__ = [
35
    'create_tensor',
36 37 38 39 40 41 42
    #       'create_lod_tensor',
    #       'create_random_int_lodtensor',
    'crop_tensor',
    'diag',
    'eye',
    'fill_constant',
    #       'get_tensor_from_selected_rows',
43
    'linspace',
44 45 46 47
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
48
    'arange',
49
    'eye',
W
wangchaochaohu 已提交
50
    'full',
P
Pei Yang 已提交
51
    'full_like',
W
WuHaobo 已提交
52 53
    'triu',
    'tril',
54
    'meshgrid'
W
wangchaochaohu 已提交
55 56 57
]


58
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
59
    """
60 61
	:alias_main: paddle.full_like
	:alias: paddle.full_like,paddle.tensor.full_like,paddle.tensor.creation.full_like
S
swtkiwi 已提交
62

P
Pei Yang 已提交
63 64 65
    **full_like**
    This function creates a tensor filled with `fill_value` which has identical shape and dtype 
    with `input`.
66

P
Pei Yang 已提交
67
    Args:
68
        x(Variable): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
69
        fill_value(bool|float|int|Variable): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
70 71 72
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
73 74
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
75
    Returns:
76 77
        out(Variable): The Tensor variable storing the output.
    
P
Pei Yang 已提交
78 79
    Examples:
        .. code-block:: python
80

P
Pei Yang 已提交
81 82
          import paddle
          import numpy as np
83 84 85
          
          paddle.enable_imperative()  # Now we are in imperative mode 
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
86
          output = paddle.full_like(input, 2.0)
87
          #output result : [array([[2., 2., 2.], [2., 2., 2.]], dtype=float32)]
P
Pei Yang 已提交
88 89 90
    """

    if dtype is None:
91
        dtype = x.dtype
92
    else:
93 94 95 96 97
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
98

99 100 101
    helper = LayerHelper("full_like", **locals())
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
102
                'full_like/zeros_like')
103
    out = helper.create_variable_for_type_inference(dtype=dtype)
104

P
Pei Yang 已提交
105 106
    helper.append_op(
        type='fill_any_like',
107
        inputs={'X': [x]},
108
        attrs={'value': fill_value,
109
               "dtype": dtype},
P
Pei Yang 已提交
110
        outputs={'Out': [out]})
111
    out.stop_gradient = True
P
Pei Yang 已提交
112 113 114
    return out


115 116
def ones(shape, dtype=None, out=None, device=None):
    """
117 118
	:alias_main: paddle.ones
	:alias: paddle.ones,paddle.tensor.ones,paddle.tensor.creation.ones
S
swtkiwi 已提交
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
        shape(tuple|list): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        device(str, optional): Which device to run the operator. The :attr:`device` must be
            None,'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in 
            the paddle program. Default value is False.

    Returns:
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.

    Examples:
        .. code-block:: python

          import paddle
          data = paddle.ones(shape=[3, 2], dtype='float32') # [[1., 1.], [1., 1.], [1., 1.]]
141
          data = paddle.ones(shape=[2, 2], dtype='float32', device='cpu') # [[1., 1.], [1., 1.]]
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    """
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')

    if device is not None:
        if device not in ['cpu', 'gpu']:
            raise ValueError(
                "The value of 'device' in zeros_op must be cpu or gpu, but received %s."
                % (device))
        with fluid.device_guard(device):
            return fill_constant(value=1.0, shape=shape, dtype=dtype, out=out)
    return fill_constant(value=1.0, shape=shape, dtype=dtype, out=out)


def ones_like(input, dtype=None, device=None, name=None):
    """
159 160
	:alias_main: paddle.ones_like
	:alias: paddle.ones_like,paddle.tensor.ones_like,paddle.tensor.creation.ones_like
S
swtkiwi 已提交
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    This function creates a ones tensor which has identical shape and dtype 
    with `input`.

    Args:
        input(Variable): The input tensor which specifies shape and dtype.The dtype of input can be 
            float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set bool, float32, float64, int32, int64. 
            The default value is None, the dtype is the same as input.
        device(str, optional): Which device to run the operator. The :attr:`device` must be
            None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in 
            the paddle program. Default value is None.
        name(str, optional): The name of output variable, normally there is no need for user to set this this property. 
            Default value is None, the framework set the name of output variable.  
    Returns:
        out(Variable): The tensor variable storing the output.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.fluid as fluid

184
          x = fluid.data(name='x', dtype='float32', shape=[3])
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
          data = paddle.ones_like(x) # data=[1.0, 1.0, 1.0]
          data1 = paddle.ones_like(input=x, device="gpu") data1=[1.0, 1.0. 1.0]

    """

    helper = LayerHelper("zeros_like", **locals())

    attrs = {"value": 1.0}
    var_dtype = None
    if dtype is not None:
        check_dtype(
            dtype, 'create data type',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'zeros_like')
        var_dtype = convert_np_dtype_to_dtype_(dtype)
        attrs["dtype"] = var_dtype
    else:
        var_dtype = input.dtype

    out = helper.create_variable_for_type_inference(dtype=var_dtype)

    if device is not None:
        if device not in ['cpu', 'gpu']:
            raise ValueError(
                "The value of 'device' in zeros_op must be cpu or gpu, but received %s."
                % (device))
        with fluid.device_guard(device):
            helper.append_op(
                type='fill_any_like',
                inputs={'X': [input]},
                attrs=attrs,
                outputs={'Out': [out]})
            return out
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [input]},
        attrs=attrs,
        outputs={'Out': [out]})
    out.stop_gradient = True
    return out


227
def zeros(shape, dtype=None, name=None):
228
    """
229 230
	:alias_main: paddle.zeros
	:alias: paddle.zeros,paddle.tensor.zeros,paddle.tensor.creation.zeros
S
swtkiwi 已提交
231

232 233 234 235
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
        shape(tuple|list): Shape of output tensor.
236 237 238 239
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
240 241 242 243 244 245 246 247

    Returns:
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.

    Examples:
        .. code-block:: python

          import paddle
248 249
          
          paddle.enable_imperative()  # Now we are in imperative mode
250
          data = paddle.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
251
          data = paddle.zeros(shape=[2, 2], dtype='int32', name='zeros') # [[0, 0], [0, 0]]
252
    """
253 254 255
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
256 257


258
def zeros_like(x, dtype=None, name=None):
259
    """
260
	:alias_main: paddle.zeros_like
261
	:alias: paddle.zeros_like, paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
S
swtkiwi 已提交
262

263 264 265 266
    This function creates a zeros tensor which has identical shape and dtype 
    with `input`.

    Args:
267 268 269 270 271 272 273 274
        x(Variable): The input tensor which specifies shape and dtype. The
            dtype of input can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can
            be set bool, float16, float32, float64, int32, int64. The default
            value is None, the dtype is the same as input.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
275 276 277 278

    Returns:
        out(Variable): The tensor variable storing the output.

279 280 281
    Raise:
        TypeError: If dtype is not bool, float16, float32, float64, int32 or int64.

282 283 284
    Examples:
        .. code-block:: python

285 286
        import paddle
        import numpy as np
287

288
        paddle.enable_imperative()
289

290 291 292
        x = paddle.imperative.to_variable(np.array([1,2,3], dtype='float32'))
        out1 = paddle.zeros_like(x) # [1.0, 1.0, 1.0]
        out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
293

294 295
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
296 297


298
def eye(num_rows, num_columns=None, dtype=None, name=None):
299
    """
300
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
301

302 303 304
    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int, optional): the number of columns in each batch tensor.
305 306 307 308
            If None, default: num_rows.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the returned tensor.
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
309 310
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
311

312 313
    Returns:
        Variable: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
314 315 316 317
    
    Raises:
        TypeError: The `dtype` must be one of float16, float32, float64, int32 int64 and None.
        TypeError: The `num_columns` must be non-negative int.
318

319 320 321
    Examples:
        .. code-block:: python
          import paddle
322 323

          paddle.enable_imperative()  # Now we are in imperative mode
324
          data = paddle.eye(3, dtype='int32')
325 326 327
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
328
          data = paddle.eye(2, 3, dtype='int32')
329 330
          # [[1 0 0]
          #  [0 1 0]]
331 332
    """

333 334 335
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
336
        num_columns = num_rows
337 338 339 340 341
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
342 343


344
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
345
    """
346 347
	:alias_main: paddle.full
	:alias: paddle.full,paddle.tensor.full,paddle.tensor.creation.full
S
swtkiwi 已提交
348

349
    This Op return a Tensor with the `fill_value` which size is same as `shape`
W
wangchaochaohu 已提交
350 351 352 353 354 355
    
    Args:
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
356 357
        fill_value(bool|float16|float32|float64|int32|int64|Variable): The constant value
            used to initialize the Tensor to be created. If fill_value is an Variable, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
358 359 360 361 362 363
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created tensor is `float32`
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
364 365 366 367 368 369 370
    Returns:
        Variable: Tensor which is created according to shape and dtype.

    Raises:
        TypeError: The `dtype` must be one of None, bool, float16, float32, float64, int32 and int64.
        TypeError: The `shape` must be one of Variable, list tuple.
    
W
wangchaochaohu 已提交
371 372 373
    Examples:
        .. code-block:: python

374
          import paddle
W
wangchaochaohu 已提交
375

376
          paddle.enable_imperative()  # Now we are in imperative mode
377
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') # data1=[[0],[0]]
W
wangchaochaohu 已提交
378 379

          # attr shape is a list which contains Variable Tensor.
380
          positive_2 = paddle.fill_constant([1], "int32", 2)
381
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5) # data3=[1.5, 1.5]
W
wangchaochaohu 已提交
382 383

          # attr shape is an Variable Tensor.
384
          shape = paddle.fill_constant([2], "int32", 2) # shape=[2,2]
385 386 387
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) # data4=[[True,True],[True,True]]
          
          # attr value is an Variable Tensor.
388
          val = paddle.fill_constant([1], "float32", 2.0) # val=[2.0]
389
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32') #data5=[[2.0],[2.0]]
W
wangchaochaohu 已提交
390 391 392 393 394 395 396
    """

    helper = LayerHelper("full", **locals())

    if dtype is None:
        dtype = 'float32'

397
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
398 399


400
def arange(start=0, end=None, step=1, dtype=None, name=None):
401
    """
402 403
	:alias_main: paddle.arange
	:alias: paddle.arange,paddle.tensor.arange,paddle.tensor.creation.arange
S
swtkiwi 已提交
404

405 406
    Return evenly spaced values within a given interval.

407 408 409 410 411
    Values are generated into the half-open interval [start, stop) with the step.
    (the interval including start but excluding stop).

    If dtype is float32 or float64, we advise adding a small epsilon to end to
    avoid floating point rounding errors when comparing against end.
412 413

    Parameters:
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
        start(float|int|Variable): Start of interval. The interval includes
            this value. If end is None, the half-open interval is [0, start).
            If start is Variable, it is a 1-D Tensor with shape [1], and it's
            data type should be one of int32, int64, float32, float64. Default
            is 0.
        end(float|int|Variable, optional): End of interval. The interval does
            not include this value. When end is Variable, it is a 1-D Tensor
            with shape [1], and it's data type should be one of int32, int64,
            float32, float64. If end is None, the half-open interval is [0, start).
            Default is None.
        step(float|int|Variable, optional): Spacing between values. For any
            out, this is the istance between two adjacent values, out[i+1] - out[i].
            When end is Variable, it is a 1-D Tensor with shape [1], and it's
            data type should be one of int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output tensor, can be float32, float64, int32, int64. If dtype
            is `None` , the data type of out tensor is `int64` . Defaule is None
        name(str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
            Default is None.

    Returns: a 1-D Tensor which is evenly spaced values within a given interval.
        Its data type is set by dtype.
437 438 439
    
    Return type: Variable

440 441 442
    Raises:
        TypeError: If dtype is not float32, float64, int32 or int64.

443 444 445 446
    examples:

        .. code-block:: python

447 448
        import paddle
        import numpy as np
449

450
        paddle.enable_imperative()
451

452 453
        out1 = paddle.arange(5)
        # [0, 1, 2, 3, 4]
454

455 456
        out2 = paddle.arange(3, 9, 2.0)
        # [3, 5, 7]
457

458 459 460
        # use 4.999 instead of 5.0 to avoid floating point rounding errors
        out3 = paddle.arange(4.999, dtype='float32')
        # [0., 1., 2., 3., 4.]
461

462 463 464 465 466 467 468 469 470 471
        start_var = paddle.imperative.to_variable(np.array([3]))
        out4 = paddle.arange(start_var, 7)
        # [3, 4, 5, 6]
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
472

473
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
    x = helper.kwargs.get('input', None)

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
        raise ValueError("input shape in {} must be at least 2-D".format(
            op_type))
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


def tril(input, diagonal=0, name=None):
    """
513 514
	:alias_main: paddle.tril
	:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
S
swtkiwi 已提交
515

W
WuHaobo 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
    of matrices :attr:`input`, the other elements of the result tensor are set 
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.tensor as tensor
            import paddle.fluid as fluid

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            tril = tensor.tril(x)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
            tril = tensor.tril(x, diagonal=2)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
            tril = tensor.tril(x, diagonal=-1)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

580 581 582 583
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
        return op(input, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
584 585 586 587 588 589

    return _tril_triu_op(LayerHelper('tril', **locals()))


def triu(input, diagonal=0, name=None):
    """
590 591
	:alias_main: paddle.triu
	:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
S
swtkiwi 已提交
592

W
WuHaobo 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
    :attr:`input`, the other elements of the result tensor are set to 0.
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            import paddle.tensor as tensor

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            triu = tensor.triu(x)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
            triu = tensor.triu(x, diagonal=2)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
            triu = tensor.triu(x, diagonal=-1)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
658 659 660
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
        return op(input, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
661 662

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
663 664


665
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
666
    """
667 668
	:alias_main: paddle.meshgrid
	:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
S
swtkiwi 已提交
669

670
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
671 672 673
    vector, and creates N-dimensional grids.
    
    Args:
674
        *args(Variable|list of Variable) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
675
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
676 677
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
         Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk)

    Examples:
      .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np

          x = fluid.data(name='x', shape=[100], dtype='int32')
          y = fluid.data(name='y', shape=[200], dtype='int32')

          input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

          exe = fluid.Executor(place=fluid.CPUPlace())
697
          grid_x, grid_y = paddle.tensor.meshgrid(x, y)
S
suytingwan 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711
          res_1, res_2 = exe.run(fluid.default_main_program(),
                                 feed={'x': input_1,
                                       'y': input_2},
                                 fetch_list=[grid_x, grid_y])
     
          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

      .. code-block:: python

          #example 2: in dygraph mode

          import paddle
          import numpy as np
712 713
          
          paddle.enable_imperative()
S
suytingwan 已提交
714 715 716

          input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_4 = np.random.randint(0, 100, [200, ]).astype('int32')
717 718 719
          tensor_3 = paddle.imperative.to_variable(input_3)
          tensor_4 = paddle.imperative.to_variable(input_4)
          grid_x, grid_y = paddle.tensor.meshgrid(tensor_3, tensor_4)
S
suytingwan 已提交
720 721 722 723 724 725

          #the shape of grid_x is (100, 200)
          #the shape of grid_y is (100, 200)

    """

726 727
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
728
    if in_dygraph_mode():
729 730
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
731 732
        return out

733
    name = kwargs.get("name", None)
S
suytingwan 已提交
734 735
    helper = LayerHelper('meshgrid', **locals())

736 737
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
738

739
    for id, input_ in enumerate(args):
S
suytingwan 已提交
740 741 742 743
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

744
    num = len(args)
S
suytingwan 已提交
745
    out = [
746
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
747 748
        for i in range(num)
    ]
749 750
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
751 752

    return out