creation.py 29.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
L
Li Fuchen 已提交
16
from ..fluid.framework import Variable
P
Pei Yang 已提交
17 18 19 20 21 22
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..fluid.layers import fill_constant
23
from paddle.common_ops_import import *
24
import paddle
W
wangchaochaohu 已提交
25

26
# TODO: define functions to get create a tensor  
27 28 29 30
from ..fluid.layers import crop_tensor  #DEFINE_ALIAS
from ..fluid.layers import diag  #DEFINE_ALIAS
from ..fluid.layers import eye  #DEFINE_ALIAS
from ..fluid.layers import fill_constant  #DEFINE_ALIAS
31
from ..fluid.layers import create_tensor  #DEFINE_ALIAS
32
from ..fluid.layers import linspace  #DEFINE_ALIAS
33

W
wangchaochaohu 已提交
34
__all__ = [
35
    'create_tensor',
36 37 38 39 40 41 42
    #       'create_lod_tensor',
    #       'create_random_int_lodtensor',
    'crop_tensor',
    'diag',
    'eye',
    'fill_constant',
    #       'get_tensor_from_selected_rows',
43
    'linspace',
44 45 46 47
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
48
    'arange',
49
    'eye',
W
wangchaochaohu 已提交
50
    'full',
P
Pei Yang 已提交
51
    'full_like',
W
WuHaobo 已提交
52 53
    'triu',
    'tril',
54
    'meshgrid'
W
wangchaochaohu 已提交
55 56 57
]


58
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
59
    """
60 61
	:alias_main: paddle.full_like
	:alias: paddle.full_like,paddle.tensor.full_like,paddle.tensor.creation.full_like
S
swtkiwi 已提交
62

P
Pei Yang 已提交
63 64 65
    **full_like**
    This function creates a tensor filled with `fill_value` which has identical shape and dtype 
    with `input`.
66

P
Pei Yang 已提交
67
    Args:
68
        x(Variable): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
69
        fill_value(bool|float|int|Variable): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
70 71 72
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
73 74
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
75
    Returns:
76 77
        out(Variable): The Tensor variable storing the output.
    
P
Pei Yang 已提交
78 79
    Examples:
        .. code-block:: python
80

P
Pei Yang 已提交
81 82
          import paddle
          import numpy as np
83 84 85
          
          paddle.enable_imperative()  # Now we are in imperative mode 
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
86
          output = paddle.full_like(input, 2.0)
87
          #output result : [array([[2., 2., 2.], [2., 2., 2.]], dtype=float32)]
P
Pei Yang 已提交
88 89 90
    """

    if dtype is None:
91
        dtype = x.dtype
92
    else:
93 94 95 96 97
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
98

99 100 101
    helper = LayerHelper("full_like", **locals())
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
102
                'full_like/zeros_like')
103
    out = helper.create_variable_for_type_inference(dtype=dtype)
104

P
Pei Yang 已提交
105 106
    helper.append_op(
        type='fill_any_like',
107
        inputs={'X': [x]},
108
        attrs={'value': fill_value,
109
               "dtype": dtype},
P
Pei Yang 已提交
110
        outputs={'Out': [out]})
111
    out.stop_gradient = True
P
Pei Yang 已提交
112 113 114
    return out


115 116
def ones(shape, dtype=None, out=None, device=None):
    """
117 118
	:alias_main: paddle.ones
	:alias: paddle.ones,paddle.tensor.ones,paddle.tensor.creation.ones
S
swtkiwi 已提交
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
        shape(tuple|list): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        device(str, optional): Which device to run the operator. The :attr:`device` must be
            None,'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in 
            the paddle program. Default value is False.

    Returns:
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.

    Examples:
        .. code-block:: python

          import paddle
          data = paddle.ones(shape=[3, 2], dtype='float32') # [[1., 1.], [1., 1.], [1., 1.]]
141
          data = paddle.ones(shape=[2, 2], dtype='float32', device='cpu') # [[1., 1.], [1., 1.]]
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    """
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')

    if device is not None:
        if device not in ['cpu', 'gpu']:
            raise ValueError(
                "The value of 'device' in zeros_op must be cpu or gpu, but received %s."
                % (device))
        with fluid.device_guard(device):
            return fill_constant(value=1.0, shape=shape, dtype=dtype, out=out)
    return fill_constant(value=1.0, shape=shape, dtype=dtype, out=out)


def ones_like(input, dtype=None, device=None, name=None):
    """
159 160
	:alias_main: paddle.ones_like
	:alias: paddle.ones_like,paddle.tensor.ones_like,paddle.tensor.creation.ones_like
S
swtkiwi 已提交
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    This function creates a ones tensor which has identical shape and dtype 
    with `input`.

    Args:
        input(Variable): The input tensor which specifies shape and dtype.The dtype of input can be 
            float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set bool, float32, float64, int32, int64. 
            The default value is None, the dtype is the same as input.
        device(str, optional): Which device to run the operator. The :attr:`device` must be
            None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in 
            the paddle program. Default value is None.
        name(str, optional): The name of output variable, normally there is no need for user to set this this property. 
            Default value is None, the framework set the name of output variable.  
    Returns:
        out(Variable): The tensor variable storing the output.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.fluid as fluid

184
          x = fluid.data(name='x', dtype='float32', shape=[3])
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
          data = paddle.ones_like(x) # data=[1.0, 1.0, 1.0]
          data1 = paddle.ones_like(input=x, device="gpu") data1=[1.0, 1.0. 1.0]

    """

    helper = LayerHelper("zeros_like", **locals())

    attrs = {"value": 1.0}
    var_dtype = None
    if dtype is not None:
        check_dtype(
            dtype, 'create data type',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'zeros_like')
        var_dtype = convert_np_dtype_to_dtype_(dtype)
        attrs["dtype"] = var_dtype
    else:
        var_dtype = input.dtype

    out = helper.create_variable_for_type_inference(dtype=var_dtype)

    if device is not None:
        if device not in ['cpu', 'gpu']:
            raise ValueError(
                "The value of 'device' in zeros_op must be cpu or gpu, but received %s."
                % (device))
        with fluid.device_guard(device):
            helper.append_op(
                type='fill_any_like',
                inputs={'X': [input]},
                attrs=attrs,
                outputs={'Out': [out]})
            return out
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [input]},
        attrs=attrs,
        outputs={'Out': [out]})
    out.stop_gradient = True
    return out


227
def zeros(shape, dtype=None, name=None):
228
    """
229 230
	:alias_main: paddle.zeros
	:alias: paddle.zeros,paddle.tensor.zeros,paddle.tensor.creation.zeros
S
swtkiwi 已提交
231

232 233 234 235
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
        shape(tuple|list): Shape of output tensor.
236 237 238 239
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
240 241 242 243 244 245 246 247

    Returns:
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.

    Examples:
        .. code-block:: python

          import paddle
248 249
          
          paddle.enable_imperative()  # Now we are in imperative mode
250
          data = paddle.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
251
          data = paddle.zeros(shape=[2, 2], dtype='int32', name='zeros') # [[0, 0], [0, 0]]
252
    """
253 254 255
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
256 257


258
def zeros_like(x, dtype=None, name=None):
259
    """
260
	:alias_main: paddle.zeros_like
261
	:alias: paddle.zeros_like, paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
S
swtkiwi 已提交
262

263 264 265 266
    This function creates a zeros tensor which has identical shape and dtype 
    with `input`.

    Args:
267 268 269 270 271 272 273 274
        x(Variable): The input tensor which specifies shape and dtype. The
            dtype of input can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can
            be set bool, float16, float32, float64, int32, int64. The default
            value is None, the dtype is the same as input.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
275 276 277 278

    Returns:
        out(Variable): The tensor variable storing the output.

279 280 281
    Raise:
        TypeError: If dtype is not bool, float16, float32, float64, int32 or int64.

282 283 284
    Examples:
        .. code-block:: python

285 286
        import paddle
        import numpy as np
287

288
        paddle.enable_imperative()
289

290 291 292
        x = paddle.imperative.to_variable(np.array([1,2,3], dtype='float32'))
        out1 = paddle.zeros_like(x) # [1.0, 1.0, 1.0]
        out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
293

294 295
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
296 297


298 299 300 301 302 303 304 305
def eye(num_rows,
        num_columns=None,
        out=None,
        dtype='float32',
        stop_gradient=True,
        name=None):
    """
    **eye**
306 307
    This function constructs an identity tensor.

308 309 310 311 312 313 314 315 316 317 318 319
    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int, optional): the number of columns in each batch tensor.
                          If None, default: num_rows.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        dtype(string, optional): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
        stop_gradient(bool, optional): Whether stop calculating gradients. Default:True.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
320

321 322
    Returns:
        Variable: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
323

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    Examples:
        .. code-block:: python
          import paddle
          data = paddle.eye(3, dtype='int32')
          # [[1, 0, 0]
          #  [0, 1, 0]
          #  [0, 0, 1]]
          data = paddle.eye(2, 3, dtype='int32')
          # [[1, 0, 0]
          #  [0, 1, 0]]
    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = stop_gradient
    return out


361
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
362
    """
363 364
	:alias_main: paddle.full
	:alias: paddle.full,paddle.tensor.full,paddle.tensor.creation.full
S
swtkiwi 已提交
365

366
    This Op return a Tensor with the `fill_value` which size is same as `shape`
W
wangchaochaohu 已提交
367 368 369 370 371 372
    
    Args:
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
373 374
        fill_value(bool|float16|float32|float64|int32|int64|Variable): The constant value
            used to initialize the Tensor to be created. If fill_value is an Variable, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
375 376 377 378 379 380
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created tensor is `float32`
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
381 382 383 384 385 386 387
    Returns:
        Variable: Tensor which is created according to shape and dtype.

    Raises:
        TypeError: The `dtype` must be one of None, bool, float16, float32, float64, int32 and int64.
        TypeError: The `shape` must be one of Variable, list tuple.
    
W
wangchaochaohu 已提交
388 389 390
    Examples:
        .. code-block:: python

391
          import paddle
W
wangchaochaohu 已提交
392

393
          paddle.enable_imperative()  # Now we are in imperative mode
394
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') # data1=[[0],[0]]
W
wangchaochaohu 已提交
395 396

          # attr shape is a list which contains Variable Tensor.
397
          positive_2 = paddle.fill_constant([1], "int32", 2)
398
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5) # data3=[1.5, 1.5]
W
wangchaochaohu 已提交
399 400

          # attr shape is an Variable Tensor.
401
          shape = paddle.fill_constant([2], "int32", 2) # shape=[2,2]
402 403 404
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) # data4=[[True,True],[True,True]]
          
          # attr value is an Variable Tensor.
405
          val = paddle.fill_constant([1], "float32", 2.0) # val=[2.0]
406
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32') #data5=[[2.0],[2.0]]
W
wangchaochaohu 已提交
407 408 409 410 411 412 413
    """

    helper = LayerHelper("full", **locals())

    if dtype is None:
        dtype = 'float32'

414
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
415 416


417
def arange(start=0, end=None, step=1, dtype=None, name=None):
418
    """
419 420
	:alias_main: paddle.arange
	:alias: paddle.arange,paddle.tensor.arange,paddle.tensor.creation.arange
S
swtkiwi 已提交
421

422 423
    Return evenly spaced values within a given interval.

424 425 426 427 428
    Values are generated into the half-open interval [start, stop) with the step.
    (the interval including start but excluding stop).

    If dtype is float32 or float64, we advise adding a small epsilon to end to
    avoid floating point rounding errors when comparing against end.
429 430

    Parameters:
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        start(float|int|Variable): Start of interval. The interval includes
            this value. If end is None, the half-open interval is [0, start).
            If start is Variable, it is a 1-D Tensor with shape [1], and it's
            data type should be one of int32, int64, float32, float64. Default
            is 0.
        end(float|int|Variable, optional): End of interval. The interval does
            not include this value. When end is Variable, it is a 1-D Tensor
            with shape [1], and it's data type should be one of int32, int64,
            float32, float64. If end is None, the half-open interval is [0, start).
            Default is None.
        step(float|int|Variable, optional): Spacing between values. For any
            out, this is the istance between two adjacent values, out[i+1] - out[i].
            When end is Variable, it is a 1-D Tensor with shape [1], and it's
            data type should be one of int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output tensor, can be float32, float64, int32, int64. If dtype
            is `None` , the data type of out tensor is `int64` . Defaule is None
        name(str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
            Default is None.

    Returns: a 1-D Tensor which is evenly spaced values within a given interval.
        Its data type is set by dtype.
454 455 456
    
    Return type: Variable

457 458 459
    Raises:
        TypeError: If dtype is not float32, float64, int32 or int64.

460 461 462 463
    examples:

        .. code-block:: python

464 465
        import paddle
        import numpy as np
466

467
        paddle.enable_imperative()
468

469 470
        out1 = paddle.arange(5)
        # [0, 1, 2, 3, 4]
471

472 473
        out2 = paddle.arange(3, 9, 2.0)
        # [3, 5, 7]
474

475 476 477
        # use 4.999 instead of 5.0 to avoid floating point rounding errors
        out3 = paddle.arange(4.999, dtype='float32')
        # [0., 1., 2., 3., 4.]
478

479 480 481 482 483 484 485 486 487 488
        start_var = paddle.imperative.to_variable(np.array([3]))
        out4 = paddle.arange(start_var, 7)
        # [3, 4, 5, 6]
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
489

490
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
    x = helper.kwargs.get('input', None)

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
        raise ValueError("input shape in {} must be at least 2-D".format(
            op_type))
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


def tril(input, diagonal=0, name=None):
    """
530 531
	:alias_main: paddle.tril
	:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
S
swtkiwi 已提交
532

W
WuHaobo 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
    of matrices :attr:`input`, the other elements of the result tensor are set 
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.tensor as tensor
            import paddle.fluid as fluid

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            tril = tensor.tril(x)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
            tril = tensor.tril(x, diagonal=2)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
            tril = tensor.tril(x, diagonal=-1)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

597 598 599 600
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
        return op(input, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
601 602 603 604 605 606

    return _tril_triu_op(LayerHelper('tril', **locals()))


def triu(input, diagonal=0, name=None):
    """
607 608
	:alias_main: paddle.triu
	:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
S
swtkiwi 已提交
609

W
WuHaobo 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
    :attr:`input`, the other elements of the result tensor are set to 0.
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            import paddle.tensor as tensor

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            triu = tensor.triu(x)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
            triu = tensor.triu(x, diagonal=2)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
            triu = tensor.triu(x, diagonal=-1)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
675 676 677
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
        return op(input, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
678 679

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
680 681


682
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
683
    """
684 685
	:alias_main: paddle.meshgrid
	:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
S
swtkiwi 已提交
686

687
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
688 689 690
    vector, and creates N-dimensional grids.
    
    Args:
691
        *args(Variable|list of Variable) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
692
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
693 694
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
         Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk)

    Examples:
      .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np

          x = fluid.data(name='x', shape=[100], dtype='int32')
          y = fluid.data(name='y', shape=[200], dtype='int32')

          input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

          exe = fluid.Executor(place=fluid.CPUPlace())
714
          grid_x, grid_y = paddle.tensor.meshgrid(x, y)
S
suytingwan 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728
          res_1, res_2 = exe.run(fluid.default_main_program(),
                                 feed={'x': input_1,
                                       'y': input_2},
                                 fetch_list=[grid_x, grid_y])
     
          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

      .. code-block:: python

          #example 2: in dygraph mode

          import paddle
          import numpy as np
729 730
          
          paddle.enable_imperative()
S
suytingwan 已提交
731 732 733

          input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_4 = np.random.randint(0, 100, [200, ]).astype('int32')
734 735 736
          tensor_3 = paddle.imperative.to_variable(input_3)
          tensor_4 = paddle.imperative.to_variable(input_4)
          grid_x, grid_y = paddle.tensor.meshgrid(tensor_3, tensor_4)
S
suytingwan 已提交
737 738 739 740 741 742

          #the shape of grid_x is (100, 200)
          #the shape of grid_y is (100, 200)

    """

743 744
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
745
    if in_dygraph_mode():
746 747
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
748 749
        return out

750
    name = kwargs.get("name", None)
S
suytingwan 已提交
751 752
    helper = LayerHelper('meshgrid', **locals())

753 754
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
755

756
    for id, input_ in enumerate(args):
S
suytingwan 已提交
757 758 759 760
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

761
    num = len(args)
S
suytingwan 已提交
762
    out = [
763
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
764 765
        for i in range(num)
    ]
766 767
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
768 769

    return out