creation.py 46.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16
import numpy as np
17 18
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
19

20
from ..fluid.layers import tensor
L
Li Fuchen 已提交
21
from ..fluid.framework import Variable
22
from ..fluid.framework import unique_name
23
from ..fluid.framework import _current_expected_place, _get_paddle_place
24
from ..fluid.framework import dygraph_only
P
Pei Yang 已提交
25 26 27 28 29
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
30
# TODO: define functions to get create a tensor  
31
from ..fluid.layers import linspace  # noqa: F401
32
import paddle
W
wanghuancoder 已提交
33
from paddle import _C_ops
34

35 36
__all__ = []

W
wangchaochaohu 已提交
37

38 39
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
40
    r"""
C
chentianyu03 已提交
41 42
    Constructs a ``paddle.Tensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.
43

44 45
    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.
46 47

    Args:
C
chentianyu03 已提交
48 49
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
50
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
C
chentianyu03 已提交
51 52
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
53
            except for python float number which gets dtype from ``get_default_type`` .
54 55 56
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
57 58 59
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
C
chentianyu03 已提交
60
        Tensor: A Tensor constructed from ``data`` .
61 62

    Raises:
C
chentianyu03 已提交
63
        TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor
64 65
        ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
66
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. 
67 68 69 70 71 72 73 74 75 76 77

    Examples:

    .. code-block:: python

        import paddle
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
78
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
79
        #        [1])
80

81 82 83
        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
84
        #        [1])
85

86 87 88
        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])        
89

90 91
        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
92 93
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])
94

C
chentianyu03 已提交
95
        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
96
        # <class 'paddle.Tensor'>
97 98

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
99
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
C
chentianyu03 已提交
100 101
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
102
    """
103
    place = _get_paddle_place(place)
104 105
    if place is None:
        place = _current_expected_place()
106 107
    elif not isinstance(place, (core.Place, core.CPUPlace, core.CUDAPinnedPlace,
                                core.CUDAPlace, core.NPUPlace)):
108
        raise ValueError(
109
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace, paddle.NPUPlace"
110 111 112 113 114 115 116 117 118
        )

    #Todo(zhouwei): Support allocate tensor on any other specified card
    if isinstance(place, core.CUDAPlace) and isinstance(
            _current_expected_place(), core.CUDAPlace) and place._get_device_id(
            ) != _current_expected_place()._get_device_id():
        place = _current_expected_place()

    if not isinstance(data, np.ndarray):
119

120
        def _handle_dtype(data, dtype):
121 122 123 124 125
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

126 127 128 129 130 131 132 133 134 135
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
        elif isinstance(data, paddle.Tensor):
136
            data = data._copy_to(place, False)
137
            data = _handle_dtype(data, dtype)
138
            data.stop_gradient = stop_gradient
139
            return data
140 141 142 143
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
            # Note(zhouwei25): should't expose it to users, just for internal use.
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
144
            data = paddle.Tensor(data)
145 146 147 148
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
149
            return data
150 151
        else:
            raise TypeError(
C
chentianyu03 已提交
152
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor".
153
                format(type(data)))
154 155 156 157 158 159 160 161 162 163 164
        if not dtype and data.dtype in [
                'float16', 'float32', 'float64', 'complex64', 'complex128'
        ]:
            default_type = paddle.get_default_dtype()
            if np.iscomplexobj(data):
                default_type = 'complex64' if default_type in [
                    'float16', 'float32'
                ] else 'complex128'
            data = data.astype(default_type)

    if dtype and convert_dtype(dtype) != data.dtype:
165
        data = data.astype(convert_dtype(dtype))
166

C
chentianyu03 已提交
167 168 169 170 171 172
    return paddle.Tensor(
        value=data,
        place=place,
        persistable=False,
        zero_copy=False,
        stop_gradient=stop_gradient)
173 174


175
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
176
    """
S
swtkiwi 已提交
177

178 179
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
180

P
Pei Yang 已提交
181
    Args:
182 183
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
184
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
185 186
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
187 188
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
189
    Returns:
190
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
191
    
P
Pei Yang 已提交
192 193
    Examples:
        .. code-block:: python
194

P
Pei Yang 已提交
195 196
          import paddle
          import numpy as np
197 198
          
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
199
          output = paddle.full_like(input, 2.0)
200 201
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
202 203 204
    """

    if dtype is None:
205
        dtype = x.dtype
206
    else:
207 208 209 210
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
W
wanghuancoder 已提交
211
        return _C_ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
212

213
    helper = LayerHelper("full_like", **locals())
214 215 216
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'full_like')
217 218
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
219
                'full_like/zeros_like/ones_like')
220
    out = helper.create_variable_for_type_inference(dtype=dtype)
221

P
Pei Yang 已提交
222 223
    helper.append_op(
        type='fill_any_like',
224
        inputs={'X': [x]},
225
        attrs={'value': fill_value,
226
               "dtype": dtype},
P
Pei Yang 已提交
227
        outputs={'Out': [out]})
228
    out.stop_gradient = True
P
Pei Yang 已提交
229 230 231
    return out


232
def ones(shape, dtype=None, name=None):
233
    """
S
swtkiwi 已提交
234

235 236 237
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
238
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
239
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
240 241 242
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
243
    Returns:
244
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
245 246 247 248

    Examples:
        .. code-block:: python

249 250
          import paddle 
          
251
          # default dtype for ones OP
252 253 254 255 256 257 258 259 260
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
261
          # shape is a Tensor
262
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
263 264 265
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
266
    """
267 268 269
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
270 271


272
def ones_like(x, dtype=None, name=None):
273
    """
274 275
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
276 277

    Args:
278 279 280 281 282 283 284 285 286 287
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

288
    Returns:
289 290 291 292 293
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
Z
zhupengyang 已提交
294
        float64, int32 or int64.
295 296 297 298

    Examples:
        .. code-block:: python

299
            import paddle
300

301
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
302 303
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
304

305 306
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
307 308


309
def zeros(shape, dtype=None, name=None):
310 311 312 313
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
314
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
315
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
316 317 318
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
319 320

    Returns:
321
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
322 323 324 325 326

    Examples:
        .. code-block:: python

          import paddle
327
          
328 329 330 331 332 333 334 335 336
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
337
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
338
          data3 = paddle.zeros(shape=shape, dtype='int32') 
339 340
          # [[0 0]
          #  [0 0]]
341
    """
342 343 344
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
345 346


347
def zeros_like(x, dtype=None, name=None):
348
    """
349 350
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
351 352

    Args:
353 354 355 356 357 358
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
359 360 361
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
362 363

    Returns:
364 365
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
366

367
    Raise:
368
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
Z
zhupengyang 已提交
369
        float64, int32 or int64.
370

371 372 373
    Examples:
        .. code-block:: python

374
            import paddle
375

Z
zhupengyang 已提交
376
            x = paddle.to_tensor([1, 2, 3])
377 378
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
379

380 381
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
382 383


384
def eye(num_rows, num_columns=None, dtype=None, name=None):
385
    """
386
    
387
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
388

389
    Args:
390 391
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
392
            If None, default: num_rows.
W
wangchaochaohu 已提交
393
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
394 395
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
396 397
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
398

399
    Returns:
400
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
401

402 403
    Examples:
        .. code-block:: python
404
          
405
          import paddle
406

407
          data = paddle.eye(3, dtype='int32')
408 409 410
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
411
          data = paddle.eye(2, 3, dtype='int32')
412 413
          # [[1 0 0]
          #  [0 1 0]]
414 415
    """

416 417 418
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
419
        num_columns = num_rows
420 421 422 423 424
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
425 426


427
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
428
    """
S
swtkiwi 已提交
429

430
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
431 432
    
    Args:
433
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
434 435
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
436 437 438
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
439
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
440
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
441
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
442 443 444
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
445
    Returns:
446
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
447

W
wangchaochaohu 已提交
448 449 450
    Examples:
        .. code-block:: python

451
          import paddle
W
wangchaochaohu 已提交
452

453 454 455
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
456

457
          # attr shape is a list which contains Tensor.
458
          positive_2 = paddle.full([1], 2, "int32")
459 460
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
461

462
          # attr shape is a Tensor.
463
          shape = paddle.full([2], 2, "int32")
464 465 466
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
467
          
468
          # attr fill_value is a Tensor.
469
          val = paddle.full([1], 2.0, "float32")
470 471 472
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
473 474 475 476 477
    """

    if dtype is None:
        dtype = 'float32'

478
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
479 480


481
def arange(start=0, end=None, step=1, dtype=None, name=None):
482
    """
483
    This OP returns a 1-D Tensor with spaced values within a given interval.
484

485 486
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
487

488 489
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
490 491

    Parameters:
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
510

511 512
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
513 514
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
515

516
    Raises:
517
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
518

Z
zhupengyang 已提交
519
    Examples:
520 521
        .. code-block:: python

Z
zhupengyang 已提交
522
            import paddle
523

Z
zhupengyang 已提交
524 525
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
526

Z
zhupengyang 已提交
527 528
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
529

Z
zhupengyang 已提交
530 531 532
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
533

Z
zhupengyang 已提交
534 535 536
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
537 538 539 540 541 542 543
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
544

545
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
546 547 548 549 550 551


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
552
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
553 554

    assert x is not None, 'x cannot be None in {}'.format(op_type)
555 556
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
W
WuHaobo 已提交
557
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
558
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


Y
yaoxuefeng 已提交
582
def tril(x, diagonal=0, name=None):
583
    r"""
W
WuHaobo 已提交
584
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
585
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
586 587 588 589
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
590
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
591
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
592 593 594 595 596 597 598 599 600 601 602
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
603
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
604
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
605 606 607

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
608
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
609 610 611 612 613

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
614
            import paddle
W
WuHaobo 已提交
615 616 617 618 619 620

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

Y
yaoxuefeng 已提交
621

622
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
623 624
            
            tril1 = paddle.tensor.tril(x)
W
WuHaobo 已提交
625 626 627 628 629
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
630
            tril2 = paddle.tensor.tril(x, diagonal=2)
W
WuHaobo 已提交
631 632 633 634 635
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
636
            tril3 = paddle.tensor.tril(x, diagonal=-1)
W
WuHaobo 已提交
637 638 639 640
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

641 642
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
643
        op = getattr(_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
644
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
645 646 647 648

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
649
def triu(x, diagonal=0, name=None):
650
    r"""
W
WuHaobo 已提交
651
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
652
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
653 654 655 656
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
657
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
658 659 660 661 662 663 664 665 666 667 668 669
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
670
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
671
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
672 673 674

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
675
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
676 677 678 679 680

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
681
            import paddle
W
WuHaobo 已提交
682 683 684 685 686

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
687

W
WuHaobo 已提交
688 689

            # example 1, default diagonal
690
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
691
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
692 693 694 695 696
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
697
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
698 699 700 701 702
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
703
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
704 705 706 707 708
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
709
    if in_dygraph_mode():
W
wanghuancoder 已提交
710
        op = getattr(_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
711
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
712 713

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
714 715


716
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
717
    """
718
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
719 720 721
    vector, and creates N-dimensional grids.
    
    Args:
Y
yaoxuefeng 已提交
722
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
723
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
724 725
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
726 727 728
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
Y
yaoxuefeng 已提交
729
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
730 731 732 733 734 735

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
736 737 738 739
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
740

Y
yaoxuefeng 已提交
741 742
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
743 744 745 746 747 748

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

749 750
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
751
    if in_dygraph_mode():
752
        num = len(args)
W
wanghuancoder 已提交
753
        out = _C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
754 755
        return out

756
    name = kwargs.get("name", None)
S
suytingwan 已提交
757 758
    helper = LayerHelper('meshgrid', **locals())

759 760
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
761

762
    for id, input_ in enumerate(args):
S
suytingwan 已提交
763 764 765 766
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

767
    num = len(args)
S
suytingwan 已提交
768
    out = [
769
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
770 771
        for i in range(num)
    ]
772 773
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
774 775

    return out
776 777


L
Li Min 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
def diagflat(x, offset=0, name=None):
    """
    If ``x`` is a vector (1-D tensor), a 2-D square tensor whth the elements of ``x`` as the diagonal is returned.

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diagflat(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diagflat(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diagflat(x, offset=-1)
          print(y.numpy())
          # [[0 0 0 0]
          #  [1 0 0 0]
          #  [0 2 0 0]
          #  [0 0 3 0]]
        
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([[1, 2], [3, 4]])
          y = paddle.diagflat(x)
          print(y.numpy())
          # [[1 0 0 0]
          #  [0 2 0 0]
          #  [0 0 3 0]
          #  [0 0 0 4]]

          y = paddle.diagflat(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0 0]
          #  [0 0 2 0 0]
          #  [0 0 0 3 0]
          #  [0 0 0 0 4]
          #  [0 0 0 0 0]]

          y = paddle.diagflat(x, offset=-1)
          print(y.numpy())
          # [[0 0 0 0 0]
          #  [1 0 0 0 0]
          #  [0 2 0 0 0]
          #  [0 0 3 0 0]
          #  [0 0 0 4 0]]
    """
    padding_value = 0
    if in_dygraph_mode():
        if len(x.shape) == 1:
W
wanghuancoder 已提交
858 859
            return _C_ops.diag_v2(x, "offset", offset, "padding_value",
                                  padding_value)
L
Li Min 已提交
860
        else:
W
wanghuancoder 已提交
861 862 863 864
            y, _ = _C_ops.flatten_contiguous_range(x, "start_axis", 0,
                                                   "stop_axis", -1)
            return _C_ops.diag_v2(y, "offset", offset, "padding_value",
                                  padding_value)
L
Li Min 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

    check_type(x, 'x', (Variable), 'diagflat')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diagflat')
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out2},
            attrs={'offset': offset,
                   'padding_value': padding_value})
    else:
        helper.append_op(
            type='flatten_contiguous_range',
            inputs={'X': x},
            outputs={'Out': out1,
                     'XShape': out1_shape},
            attrs={'start_axis': 0,
                   'stop_axis': -1})
        out1.stop_gradient = True

        helper.append_op(
            type='diag_v2',
            inputs={'X': out1},
            outputs={'Out': out2},
            attrs={'offset': offset,
                   'padding_value': padding_value})
    out2.stop_gradient = True
    return out2


903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
def diag(x, offset=0, padding_value=0, name=None):
    """
    If ``x`` is a vector (1-D tensor), a 2-D square tensor whth the elements of ``x`` as the diagonal is returned.

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diag(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diag(x, padding_value=6)
          print(y.numpy())
          # [[1 6 6]
          #  [6 2 6]
          #  [6 6 3]]

        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
          y = paddle.diag(x)
          print(y.numpy())
          # [1 5]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [2 6]

          y = paddle.diag(x, offset=-1)
          print(y.numpy())
          # [4]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
971 972
        return _C_ops.diag_v2(x, "offset", offset, "padding_value",
                              padding_value)
973 974 975 976

    check_type(x, 'x', (Variable), 'diag_v2')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diag_v2')
977 978 979 980 981 982 983
    check_type(offset, 'offset', (int), 'diag_v2')
    check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
    if len(x.shape) != 1 and len(x.shape) != 2:
        raise ValueError(
            "The dimension of input x must be either 1 or 2, but received {}".
            format(len(x.shape)))

984 985 986 987 988 989 990 991 992 993 994 995 996
    helper = LayerHelper("diag_v2", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diag_v2',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'offset': offset,
               'padding_value': padding_value})

    out.stop_gradient = True
    return out
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052


def empty(shape, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which size is same as ``shape``.
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          # example 1: argument ``shape`` is a list which doesn't contain Tensor.
          data1 = paddle.empty(shape=[2,3], dtype='float32')
          #[[4.3612203e+27 1.8176809e+31 1.3555911e-19]     # uninitialized
          # [1.1699684e-19 1.3563156e-19 3.6408321e-11]]    # uninitialized

          # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
          shape_data = np.array([2, 3]).astype('int32')
          shape = paddle.to_tensor(shape_data)
          data2 = paddle.empty(shape=shape, dtype='float32')
          #[[1.7192326e-37 4.8125365e-38 1.9866003e-36]     # uninitialized
          # [1.3284029e-40 7.1117408e-37 2.5353012e+30]]    # uninitialized

          # example 3: argument ``shape`` is a list which contains Tensor.
          dim2_data = np.array([3]).astype('int32')
          dim2 = paddle.to_tensor(dim2_data)
          data3 = paddle.empty(shape=[2, dim2], dtype='float32')
          #[[1.1024214e+24 7.0379409e+22 6.5737699e-34]     # uninitialized
          # [7.5563101e+31 7.7130405e+31 2.8020654e+20]]    # uninitialized
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
1053 1054
        out = _C_ops.empty('shape', shape, 'dtype',
                           convert_np_dtype_to_dtype_(dtype))
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty')

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119


def empty_like(x, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
    
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
W
wanghuancoder 已提交
1120 1121
        out = _C_ops.empty('shape', x.shape, 'dtype',
                           convert_np_dtype_to_dtype_(dtype))
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like')

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
1149 1150 1151 1152 1153 1154 1155 1156 1157


def assign(x, output=None):
    """
 
 
    The OP copies the :attr:`x` to the :attr:`output`.
 
    Parameters:
1158 1159 1160 1161
        x (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
 
    Returns:
        Tensor: A tensor with the same shape, data type and value as :attr:`x`.
 
    Examples:
        .. code-block:: python
 
          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
1182
    check_type(x, 'x', (Variable, np.ndarray, list, tuple, float, int, bool),
1183
               'assign')
1184
    return tensor.assign(x, output)
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245


#NOTE(zhiqiu): not public 
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
        check_dtype(input.dtype, 'input', [
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
        ], 'memcpy', '(When the type of input in memcpy is Variable.)')
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs)
    return output