creation.py 40.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16 17
import numpy as np

L
Li Fuchen 已提交
18
from ..fluid.framework import Variable
19 20 21
from ..fluid.framework import unique_name
from ..fluid.framework import _current_expected_place
from ..fluid.framework import dygraph_only
P
Pei Yang 已提交
22 23 24 25 26
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
27
from paddle.common_ops_import import *
W
wangchaochaohu 已提交
28

29
# TODO: define functions to get create a tensor  
30
from ..fluid.layers import linspace  #DEFINE_ALIAS
31
import paddle
32

W
wangchaochaohu 已提交
33
__all__ = [
34
    'to_tensor',
35 36
    'diag',
    #       'get_tensor_from_selected_rows',
37
    'linspace',
38 39 40 41
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
42
    'arange',
43
    'eye',
W
wangchaochaohu 已提交
44
    'full',
P
Pei Yang 已提交
45
    'full_like',
46
    'empty',
47
    'empty_like',
W
WuHaobo 已提交
48 49
    'triu',
    'tril',
50
    'meshgrid'
W
wangchaochaohu 已提交
51 52 53
]


54 55 56 57 58 59 60 61
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    """
    Constructs a ``paddle.Tensor`` or ``paddle.ComplexTensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.

    If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy 
    will be performed and return origin tensor, otherwise a new tensor will be constructed
L
Leo Chen 已提交
62
    and returned. 
63 64 65 66 67 68 69

    The ``ComplexTensor`` is a unique type of paddle. If x is ``ComplexTensor``, then 
    ``x.real`` is the real part, and ``x.imag`` is the imaginary part.

    Args:
        data(scalar|tuple|list|ndarray|Tensor|ComplexTensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.
70
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
71
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8'. And
72 73
            'complex64' , 'complex128' only for ComplexTensor. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
74 75 76 77 78
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place.
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
79
        Tensor: A Tensor or ComplexTensor constructed from ``data`` .
80 81 82 83 84

    Raises:
        TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor, paddle.ComplexTensor
        ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
85
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace
86 87 88 89 90 91 92

    Examples:

    .. code-block:: python

        import paddle
        import numpy as np
93
        paddle.disable_static()
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor: generated_tensor_0
        # - place: CUDAPlace(0)   # allocate on global default place CPU:0
        # - shape: [1]
        # - layout: NCHW
        # - dtype: int64_t
        # - data: [1]

        x = paddle.to_tensor(1)
        paddle.to_tensor(x, dtype='int32', place=paddle.CPUPlace()) # A new tensor will be constructed due to different dtype or place
        # Tensor: generated_tensor_01
        # - place: CPUPlace
        # - shape: [1]
        # - layout: NCHW
        # - dtype: int
        # - data: [1]

        paddle.to_tensor((1.1, 2.2), place=paddle.CUDAPinnedPlace())
        # Tensor: generated_tensor_1
        #   - place: CUDAPinnedPlace
        #   - shape: [2]
        #   - layout: NCHW
        #   - dtype: double
        #   - data: [1.1 2.2]

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CUDAPlace(0), stop_gradient=False)
        # Tensor: generated_tensor_2
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: double
        #   - data: [0.1 0.2 0.3 0.4]

131
        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]]), dtype='complex64')
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        # <class 'paddle.ComplexTensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # ComplexTensor[real]: generated_tensor_0.real
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: float
        #   - data: [1 2 3 4]
        # ComplexTensor[imag]: generated_tensor_0.imag
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: float
        #   - data: [1 0 2 0]
    """

    if place is None:
        place = _current_expected_place()
    elif not isinstance(place,
                        (core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)):
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )

    #Todo(zhouwei): Support allocate tensor on any other specified card
    if isinstance(place, core.CUDAPlace) and isinstance(
            _current_expected_place(), core.CUDAPlace) and place._get_device_id(
            ) != _current_expected_place()._get_device_id():
        place = _current_expected_place()

    if not isinstance(data, np.ndarray):
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
        elif isinstance(data, paddle.Tensor):
            data.stop_gradient = stop_gradient
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data
        elif isinstance(data, paddle.ComplexTensor):
            return data
        else:
            raise TypeError(
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor|paddle.ComplexTensor".
                format(type(data)))
187 188 189 190 191 192 193 194 195 196 197 198
        if not dtype and data.dtype in [
                'float16', 'float32', 'float64', 'complex64', 'complex128'
        ]:
            default_type = paddle.get_default_dtype()
            if np.iscomplexobj(data):
                default_type = 'complex64' if default_type in [
                    'float16', 'float32'
                ] else 'complex128'
            data = data.astype(default_type)

    if dtype and convert_dtype(dtype) != data.dtype:
        data = data.astype(dtype)
199 200

    if not np.iscomplexobj(data):
201
        if dtype and convert_dtype(dtype) != data.dtype:
202
            data = data.astype(dtype)
203 204 205 206
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
L
Leo Chen 已提交
207
            zero_copy=False,
208 209 210 211 212 213
            stop_gradient=stop_gradient)
    else:
        name = unique_name.generate('generated_tensor')
        real_tensor = paddle.Tensor(
            value=data.real,
            place=place,
L
Leo Chen 已提交
214
            zero_copy=False,
215 216 217 218 219
            name=name + ".real",
            stop_gradient=stop_gradient)
        imag_tensor = paddle.Tensor(
            value=data.imag,
            place=place,
L
Leo Chen 已提交
220
            zero_copy=False,
221 222 223 224 225
            name=name + ".imag",
            stop_gradient=stop_gradient)
        return paddle.ComplexTensor(real_tensor, imag_tensor)


226
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
227
    """
S
swtkiwi 已提交
228

229 230
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
231

P
Pei Yang 已提交
232
    Args:
233 234
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
235
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
236 237
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
238 239
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
240
    Returns:
241
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
242
    
P
Pei Yang 已提交
243 244
    Examples:
        .. code-block:: python
245

P
Pei Yang 已提交
246 247
          import paddle
          import numpy as np
248
          
249
          paddle.disable_static()  # Now we are in imperative mode 
250
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
251
          output = paddle.full_like(input, 2.0)
252 253
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
254 255 256
    """

    if dtype is None:
257
        dtype = x.dtype
258
    else:
259 260 261 262 263
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
264

265
    helper = LayerHelper("full_like", **locals())
266 267 268
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'full_like')
269 270
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
271
                'full_like/zeros_like/ones_like')
272
    out = helper.create_variable_for_type_inference(dtype=dtype)
273

P
Pei Yang 已提交
274 275
    helper.append_op(
        type='fill_any_like',
276
        inputs={'X': [x]},
277
        attrs={'value': fill_value,
278
               "dtype": dtype},
P
Pei Yang 已提交
279
        outputs={'Out': [out]})
280
    out.stop_gradient = True
P
Pei Yang 已提交
281 282 283
    return out


284
def ones(shape, dtype=None, name=None):
285
    """
S
swtkiwi 已提交
286

287 288 289
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
290
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
291
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
292 293 294
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
295
    Returns:
296
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
297 298 299 300

    Examples:
        .. code-block:: python

301
          import paddle 
302
          paddle.disable_static()
303
          
304
          # default dtype for ones OP
305 306 307 308 309 310 311 312 313
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
314
          # shape is a Tensor
315
          shape = paddle.fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
316 317 318
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
319
    """
320 321 322
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
323 324


325
def ones_like(x, dtype=None, name=None):
326
    """
327
	:alias_main: paddle.ones_like
328
	:alias: paddle.tensor.ones_like, paddle.tensor.creation.ones_like
S
swtkiwi 已提交
329

330 331
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
332 333

    Args:
334 335 336 337 338 339 340 341 342 343
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

344
    Returns:
345 346 347 348 349 350
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
351 352 353 354

    Examples:
        .. code-block:: python

355
            import paddle
356

357
            paddle.disable_static()
358

359
            x = paddle.to_tensor([1,2,3])
360 361
            out1 = paddle.zeros_like(x) # [1., 1., 1.]
            out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
362

363 364
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
365 366


367
def zeros(shape, dtype=None, name=None):
368 369 370 371
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
372
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
373
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
374 375 376
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
377 378

    Returns:
379
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
380 381 382 383 384

    Examples:
        .. code-block:: python

          import paddle
385
          
386
          paddle.disable_static()  # Now we are in imperative mode
387 388 389 390 391 392 393 394 395
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
396
          shape = paddle.fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
397
          data3 = paddle.zeros(shape=shape, dtype='int32') 
398 399
          # [[0 0]
          #  [0 0]]
400
    """
401 402 403
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
404 405


406
def zeros_like(x, dtype=None, name=None):
407
    """
408
	:alias_main: paddle.zeros_like
409
	:alias: paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
S
swtkiwi 已提交
410

411 412
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
413 414

    Args:
415 416 417 418 419 420
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
421 422 423
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
424 425

    Returns:
426 427
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
428

429
    Raise:
430 431
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
432

433 434 435
    Examples:
        .. code-block:: python

436
            import paddle
437

438
            paddle.disable_static()
439

440
            x = paddle.to_tensor([1,2,3])
441 442
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
443

444 445
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
446 447


448
def eye(num_rows, num_columns=None, dtype=None, name=None):
449
    """
450
    
451
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
452

453
    Args:
454 455
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
456
            If None, default: num_rows.
W
wangchaochaohu 已提交
457
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
458 459
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
460 461
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
462

463
    Returns:
464
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
465

466 467
    Examples:
        .. code-block:: python
468
          
469
          import paddle
470

471
          paddle.disable_static()  # Now we are in imperative mode
472
          data = paddle.eye(3, dtype='int32')
473 474 475
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
476
          data = paddle.eye(2, 3, dtype='int32')
477 478
          # [[1 0 0]
          #  [0 1 0]]
479 480
    """

481 482 483
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
484
        num_columns = num_rows
485 486 487 488 489
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
490 491


492
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
493
    """
S
swtkiwi 已提交
494

495
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
496 497
    
    Args:
498
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
499 500
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
501 502 503
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
504
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
505
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
506
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
507 508 509
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
510
    Returns:
511
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
512

W
wangchaochaohu 已提交
513 514 515
    Examples:
        .. code-block:: python

516
          import paddle
W
wangchaochaohu 已提交
517

518
          paddle.disable_static()  # Now we are in imperative mode
519 520 521
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
522

523
          # attr shape is a list which contains Tensor.
524
          positive_2 = paddle.fluid.layers.fill_constant([1], "int32", 2)
525 526
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
527

528
          # attr shape is a Tensor.
529
          shape = paddle.fluid.layers.fill_constant([2], "int32", 2)
530 531 532
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
533
          
534
          # attr fill_value is a Tensor.
535
          val = paddle.fluid.layers.fill_constant([1], "float32", 2.0)
536 537 538
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
539 540 541 542 543
    """

    if dtype is None:
        dtype = 'float32'

544
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
545 546


547
def arange(start=0, end=None, step=1, dtype=None, name=None):
548
    """
549
	:alias_main: paddle.arange
550
	:alias: paddle.tensor.arange, paddle.tensor.creation.arange
S
swtkiwi 已提交
551

552
    This OP returns a 1-D Tensor with spaced values within a given interval.
553

554 555
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
556

557 558
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
559 560

    Parameters:
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
579

580 581 582 583
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.
584

585
    Raises:
586
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
587

588 589 590 591
    examples:

        .. code-block:: python

592
        import paddle
593

594
        paddle.disable_static()
595

596 597
        out1 = paddle.arange(5)
        # [0, 1, 2, 3, 4]
598

599 600
        out2 = paddle.arange(3, 9, 2.0)
        # [3, 5, 7]
601

602 603 604
        # use 4.999 instead of 5.0 to avoid floating point rounding errors
        out3 = paddle.arange(4.999, dtype='float32')
        # [0., 1., 2., 3., 4.]
605

606
        start_var = paddle.to_tensor([3])
607 608 609 610 611 612 613 614 615
        out4 = paddle.arange(start_var, 7)
        # [3, 4, 5, 6]
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
616

617
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
618 619 620 621 622 623


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
624
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
625 626 627 628 629

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
630
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


Y
yaoxuefeng 已提交
654
def tril(x, diagonal=0, name=None):
W
WuHaobo 已提交
655
    """
656 657
	:alias_main: paddle.tril
	:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
S
swtkiwi 已提交
658

W
WuHaobo 已提交
659
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
660
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
661 662 663 664
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
665
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
666 667 668 669 670 671 672 673 674 675 676 677
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
678 679
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
680 681 682

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
683
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
684 685 686 687 688

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
689
            import paddle
W
WuHaobo 已提交
690 691 692 693 694 695

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

696
            paddle.disable_static()
Y
yaoxuefeng 已提交
697

698
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
699 700
            
            tril1 = paddle.tensor.tril(x)
W
WuHaobo 已提交
701 702 703 704 705
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
706
            tril2 = paddle.tensor.tril(x, diagonal=2)
W
WuHaobo 已提交
707 708 709 710 711
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
712
            tril3 = paddle.tensor.tril(x, diagonal=-1)
W
WuHaobo 已提交
713 714 715 716
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

717 718 719
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
720
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
721 722 723 724

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
725
def triu(x, diagonal=0, name=None):
W
WuHaobo 已提交
726
    """
727 728
	:alias_main: paddle.triu
	:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
S
swtkiwi 已提交
729

W
WuHaobo 已提交
730
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
731
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
732 733 734 735
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
736
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
737 738 739 740 741 742 743 744 745 746 747 748
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
749 750
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
751 752 753

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
754
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
755 756 757 758 759

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
760
            import paddle
W
WuHaobo 已提交
761 762 763 764 765

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
766

767
            paddle.disable_static()
W
WuHaobo 已提交
768 769

            # example 1, default diagonal
770
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
771
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
772 773 774 775 776
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
777
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
778 779 780 781 782
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
783
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
784 785 786 787 788
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
789 790
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
791
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
792 793

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
794 795


796
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
797
    """
798 799
	:alias_main: paddle.meshgrid
	:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
S
swtkiwi 已提交
800

801
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
802 803 804
    vector, and creates N-dimensional grids.
    
    Args:
Y
yaoxuefeng 已提交
805
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
806
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
807 808
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
809 810 811
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
Y
yaoxuefeng 已提交
812
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
813 814 815 816 817 818

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
819 820 821 822
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
823

Y
yaoxuefeng 已提交
824 825
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
826 827 828 829 830 831

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

832 833
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
834
    if in_dygraph_mode():
835 836
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
837 838
        return out

839
    name = kwargs.get("name", None)
S
suytingwan 已提交
840 841
    helper = LayerHelper('meshgrid', **locals())

842 843
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
844

845
    for id, input_ in enumerate(args):
S
suytingwan 已提交
846 847 848 849
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

850
    num = len(args)
S
suytingwan 已提交
851
    out = [
852
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
853 854
        for i in range(num)
    ]
855 856
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
857 858

    return out
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934


def diag(x, offset=0, padding_value=0, name=None):
    """
    If ``x`` is a vector (1-D tensor), a 2-D square tensor whth the elements of ``x`` as the diagonal is returned.

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diag(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diag(x, padding_value=6)
          print(y.numpy())
          # [[1 6 6]
          #  [6 2 6]
          #  [6 6 3]]

        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
          y = paddle.diag(x)
          print(y.numpy())
          # [1 5]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [2 6]

          y = paddle.diag(x, offset=-1)
          print(y.numpy())
          # [4]
    """
    if in_dygraph_mode():
        return core.ops.diag_v2(x, "offset", offset, "padding_value",
                                padding_value)

    check_type(x, 'x', (Variable), 'diag_v2')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diag_v2')
935 936 937 938 939 940 941
    check_type(offset, 'offset', (int), 'diag_v2')
    check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
    if len(x.shape) != 1 and len(x.shape) != 2:
        raise ValueError(
            "The dimension of input x must be either 1 or 2, but received {}".
            format(len(x.shape)))

942 943 944 945 946 947 948 949 950 951 952 953 954
    helper = LayerHelper("diag_v2", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diag_v2',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'offset': offset,
               'padding_value': padding_value})

    out.stop_gradient = True
    return out
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041


def empty(shape, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which size is same as ``shape``.
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.disable_static()   # Now we are in imperative mode
          paddle.set_device("cpu")  # and use cpu device

          # example 1: argument ``shape`` is a list which doesn't contain Tensor.
          data1 = paddle.empty(shape=[2,3], dtype='float32')
          #[[4.3612203e+27 1.8176809e+31 1.3555911e-19]     # uninitialized
          # [1.1699684e-19 1.3563156e-19 3.6408321e-11]]    # uninitialized

          # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
          shape_data = np.array([2, 3]).astype('int32')
          shape = paddle.to_tensor(shape_data)
          data2 = paddle.empty(shape=shape, dtype='float32')
          #[[1.7192326e-37 4.8125365e-38 1.9866003e-36]     # uninitialized
          # [1.3284029e-40 7.1117408e-37 2.5353012e+30]]    # uninitialized

          # example 3: argument ``shape`` is a list which contains Tensor.
          dim2_data = np.array([3]).astype('int32')
          dim2 = paddle.to_tensor(dim2_data)
          data3 = paddle.empty(shape=[2, dim2], dtype='float32')
          #[[1.1024214e+24 7.0379409e+22 6.5737699e-34]     # uninitialized
          # [7.5563101e+31 7.7130405e+31 2.8020654e+20]]    # uninitialized
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        out = core.ops.empty('shape', shape, 'dtype',
                             convert_np_dtype_to_dtype_(dtype))
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty')

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108


def empty_like(x, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
    
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.disable_static()   # Now we are in imperative mode
          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        out = core.ops.empty('shape', x.shape, 'dtype',
                             convert_np_dtype_to_dtype_(dtype))
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like')

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out