creation.py 34.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16 17
import numpy as np

L
Li Fuchen 已提交
18
from ..fluid.framework import Variable
19 20 21
from ..fluid.framework import unique_name
from ..fluid.framework import _current_expected_place
from ..fluid.framework import dygraph_only
P
Pei Yang 已提交
22 23 24 25 26 27
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..fluid.layers import fill_constant
28
from paddle.common_ops_import import *
W
wangchaochaohu 已提交
29

30
# TODO: define functions to get create a tensor  
31 32 33
from ..fluid.layers import crop_tensor  #DEFINE_ALIAS
from ..fluid.layers import diag  #DEFINE_ALIAS
from ..fluid.layers import fill_constant  #DEFINE_ALIAS
34
from ..fluid.layers import linspace  #DEFINE_ALIAS
35
import paddle
36

W
wangchaochaohu 已提交
37
__all__ = [
38
    'to_tensor',
39 40 41 42
    'crop_tensor',
    'diag',
    'fill_constant',
    #       'get_tensor_from_selected_rows',
43
    'linspace',
44 45 46 47
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
48
    'arange',
49
    'eye',
W
wangchaochaohu 已提交
50
    'full',
P
Pei Yang 已提交
51
    'full_like',
W
WuHaobo 已提交
52 53
    'triu',
    'tril',
54
    'meshgrid'
W
wangchaochaohu 已提交
55 56 57
]


58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    """
    Constructs a ``paddle.Tensor`` or ``paddle.ComplexTensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.

    If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy 
    will be performed and return origin tensor, otherwise a new tensor will be constructed
    and returned. Similarly, if the data is an numpy\.ndarray of with the same ``dtype`` 
    and the current place is cpu, no copy will be performed.

    The ``ComplexTensor`` is a unique type of paddle. If x is ``ComplexTensor``, then 
    ``x.real`` is the real part, and ``x.imag`` is the imaginary part.

    Args:
        data(scalar|tuple|list|ndarray|Tensor|ComplexTensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.
        dtype(str, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8'. And
            'complex64' , 'complex128' only for ComplexTensor.
            Default: None, infers data type from ``data`` .
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place.
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor or ComplexTensor constructed from ``data``.

    Raises:
        TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor, paddle.ComplexTensor
        ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
        ValueError: If ``place`` is not paddle.Place, paddle.CUDAPinnedPlace, paddle.CUDAPlace

    Examples:

    .. code-block:: python

        import paddle
        import numpy as np
        paddle.enable_imperative()
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor: generated_tensor_0
        # - place: CUDAPlace(0)   # allocate on global default place CPU:0
        # - shape: [1]
        # - layout: NCHW
        # - dtype: int64_t
        # - data: [1]

        x = paddle.to_tensor(1)
        paddle.to_tensor(x, dtype='int32', place=paddle.CPUPlace()) # A new tensor will be constructed due to different dtype or place
        # Tensor: generated_tensor_01
        # - place: CPUPlace
        # - shape: [1]
        # - layout: NCHW
        # - dtype: int
        # - data: [1]

        paddle.to_tensor((1.1, 2.2), place=paddle.CUDAPinnedPlace())
        # Tensor: generated_tensor_1
        #   - place: CUDAPinnedPlace
        #   - shape: [2]
        #   - layout: NCHW
        #   - dtype: double
        #   - data: [1.1 2.2]

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CUDAPlace(0), stop_gradient=False)
        # Tensor: generated_tensor_2
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: double
        #   - data: [0.1 0.2 0.3 0.4]

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]]), , dtype='complex64')
        # <class 'paddle.ComplexTensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # ComplexTensor[real]: generated_tensor_0.real
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: float
        #   - data: [1 2 3 4]
        # ComplexTensor[imag]: generated_tensor_0.imag
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: float
        #   - data: [1 0 2 0]
    """

    if place is None:
        place = _current_expected_place()
    elif not isinstance(place,
                        (core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)):
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )

    #Todo(zhouwei): Support allocate tensor on any other specified card
    if isinstance(place, core.CUDAPlace) and isinstance(
            _current_expected_place(), core.CUDAPlace) and place._get_device_id(
            ) != _current_expected_place()._get_device_id():
        place = _current_expected_place()

    if not isinstance(data, np.ndarray):
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
        elif isinstance(data, paddle.Tensor):
            data.stop_gradient = stop_gradient
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data
        elif isinstance(data, paddle.ComplexTensor):
            return data
        else:
            raise TypeError(
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor|paddle.ComplexTensor".
                format(type(data)))

    if dtype:
        dtype = convert_dtype(dtype)
        if dtype != data.dtype:
            data = data.astype(dtype)

    if not np.iscomplexobj(data):
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=True,
            stop_gradient=stop_gradient)
    else:
        name = unique_name.generate('generated_tensor')
        real_tensor = paddle.Tensor(
            value=data.real,
            place=place,
            zero_copy=True,
            name=name + ".real",
            stop_gradient=stop_gradient)
        imag_tensor = paddle.Tensor(
            value=data.imag,
            place=place,
            zero_copy=True,
            name=name + ".imag",
            stop_gradient=stop_gradient)
        return paddle.ComplexTensor(real_tensor, imag_tensor)


222
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
223
    """
224
	:alias_main: paddle.full_like
225
	:alias: paddle.tensor.full_like, paddle.tensor.creation.full_like
S
swtkiwi 已提交
226

227 228
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
229

P
Pei Yang 已提交
230
    Args:
231 232
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
233 234 235
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
236 237
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
238
    Returns:
239
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
240
    
241
    Raises:
242 243
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None.
244
    
P
Pei Yang 已提交
245 246
    Examples:
        .. code-block:: python
247

P
Pei Yang 已提交
248 249
          import paddle
          import numpy as np
250
          
251
          paddle.disable_static()  # Now we are in imperative mode 
252
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
253
          output = paddle.full_like(input, 2.0)
254 255
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
256 257 258
    """

    if dtype is None:
259
        dtype = x.dtype
260
    else:
261 262 263 264 265
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
266

267
    helper = LayerHelper("full_like", **locals())
268 269 270
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'full_like')
271 272
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
273
                'full_like/zeros_like/ones_like')
274
    out = helper.create_variable_for_type_inference(dtype=dtype)
275

P
Pei Yang 已提交
276 277
    helper.append_op(
        type='fill_any_like',
278
        inputs={'X': [x]},
279
        attrs={'value': fill_value,
280
               "dtype": dtype},
P
Pei Yang 已提交
281
        outputs={'Out': [out]})
282
    out.stop_gradient = True
P
Pei Yang 已提交
283 284 285
    return out


286
def ones(shape, dtype=None, name=None):
287
    """
288
	:alias_main: paddle.ones
289
	:alias: paddle.tensor.ones, paddle.tensor.creation.ones
S
swtkiwi 已提交
290

291 292 293
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
294 295
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of output Tensor, it supports
296 297 298
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
299
    Returns:
300
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
301

302
    Raises:
303
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None.
304 305
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
306
    
307 308 309
    Examples:
        .. code-block:: python

310
          import paddle 
311
          paddle.disable_static()
312
          
313
          # default dtype for ones OP
314 315 316 317 318 319 320 321 322
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
323
          # shape is a Tensor
324 325 326 327
          shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
328
    """
329 330 331
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
332 333


334
def ones_like(x, dtype=None, name=None):
335
    """
336
	:alias_main: paddle.ones_like
337
	:alias: paddle.tensor.ones_like, paddle.tensor.creation.ones_like
S
swtkiwi 已提交
338

339 340
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
341 342

    Args:
343 344 345 346 347 348 349 350 351 352
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

353
    Returns:
354 355 356 357 358 359
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
360 361 362 363

    Examples:
        .. code-block:: python

364 365
        import paddle
        import numpy as np
366

367
        paddle.disable_static()
368

369
        x = paddle.to_tensor(np.array([1,2,3], dtype='float32'))
370 371
        out1 = paddle.zeros_like(x) # [1., 1., 1.]
        out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
372

373 374
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
375 376


377
def zeros(shape, dtype=None, name=None):
378
    """
379
	:alias_main: paddle.zeros
380
	:alias: paddle.tensor.zeros, paddle.tensor.creation.zeros
S
swtkiwi 已提交
381

382 383 384
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
385 386
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of output Tensor, it supports
387 388 389
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
390 391

    Returns:
392
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
393

394
    Raises:
395
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None.
396 397 398
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
    
399 400 401 402
    Examples:
        .. code-block:: python

          import paddle
403
          
404
          paddle.disable_static()  # Now we are in imperative mode
405 406 407 408 409 410 411 412 413 414
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
          shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
415
          data3 = paddle.zeros(shape=shape, dtype='int32') 
416 417
          # [[0 0]
          #  [0 0]]
418
    """
419 420 421
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
422 423


424
def zeros_like(x, dtype=None, name=None):
425
    """
426
	:alias_main: paddle.zeros_like
427
	:alias: paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
S
swtkiwi 已提交
428

429 430
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
431 432

    Args:
433 434 435 436 437 438
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
439 440 441
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
442 443

    Returns:
444 445
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
446

447
    Raise:
448 449
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
450

451 452 453
    Examples:
        .. code-block:: python

454 455
        import paddle
        import numpy as np
456

457
        paddle.disable_static()
458

459
        x = paddle.to_tensor(np.array([1,2,3], dtype='float32'))
460 461
        out1 = paddle.zeros_like(x) # [0., 0., 0.]
        out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
462

463 464
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
465 466


467
def eye(num_rows, num_columns=None, dtype=None, name=None):
468
    """
469 470 471
	:alias_main: paddle.eye
	:alias: paddle.tensor.eye, paddle.tensor.creation.eye
    
472
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
473

474
    Args:
475 476
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
477
            If None, default: num_rows.
478
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the returned Tensor.
479 480
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
481 482
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
483

484
    Returns:
485
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
486 487
    
    Raises:
488 489
        TypeError: The ``dtype`` must be one of float16, float32, float64, int32 int64 and None.
        TypeError: The ``num_columns`` must be non-negative int.
490

491 492
    Examples:
        .. code-block:: python
493
          
494
          import paddle
495

496
          paddle.disable_static()  # Now we are in imperative mode
497
          data = paddle.eye(3, dtype='int32')
498 499 500
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
501
          data = paddle.eye(2, 3, dtype='int32')
502 503
          # [[1 0 0]
          #  [0 1 0]]
504 505
    """

506 507 508
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
509
        num_columns = num_rows
510 511 512 513 514
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
515 516


517
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
518
    """
519
	:alias_main: paddle.full
520
	:alias: paddle.tensor.full, paddle.tensor.creation.full
S
swtkiwi 已提交
521

522
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
523 524
    
    Args:
525
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
526 527
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
528 529 530 531
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
532
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
533
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
534 535 536
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
537
    Returns:
538
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
539 540

    Raises:
541 542 543
        TypeError: The ``dtype`` must be one of None, bool, float16, float32, float64, int32 and int64.
        TypeError: The ``shape`` must be one of Tensor, list and tuple. The data type of ``shape`` must
            be int32 or int64 when the it's a Tensor
544
    
W
wangchaochaohu 已提交
545 546 547
    Examples:
        .. code-block:: python

548
          import paddle
W
wangchaochaohu 已提交
549

550
          paddle.disable_static()  # Now we are in imperative mode
551 552 553
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
554

555
          # attr shape is a list which contains Tensor.
556
          positive_2 = paddle.fill_constant([1], "int32", 2)
557 558
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
559

560
          # attr shape is a Tensor.
561 562 563 564
          shape = paddle.fill_constant([2], "int32", 2)
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
565
          
566
          # attr fill_value is a Tensor.
567 568 569 570
          val = paddle.fill_constant([1], "float32", 2.0)
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
571 572 573 574 575
    """

    if dtype is None:
        dtype = 'float32'

576
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
577 578


579
def arange(start=0, end=None, step=1, dtype=None, name=None):
580
    """
581
	:alias_main: paddle.arange
582
	:alias: paddle.tensor.arange, paddle.tensor.creation.arange
S
swtkiwi 已提交
583

584
    This OP returns a 1-D Tensor with spaced values within a given interval.
585

586 587
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
588

589 590
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
591 592

    Parameters:
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
611

612 613 614 615
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.
616

617
    Raises:
618
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
619

620 621 622 623
    examples:

        .. code-block:: python

624 625
        import paddle
        import numpy as np
626

627
        paddle.disable_static()
628

629 630
        out1 = paddle.arange(5)
        # [0, 1, 2, 3, 4]
631

632 633
        out2 = paddle.arange(3, 9, 2.0)
        # [3, 5, 7]
634

635 636 637
        # use 4.999 instead of 5.0 to avoid floating point rounding errors
        out3 = paddle.arange(4.999, dtype='float32')
        # [0., 1., 2., 3., 4.]
638

639
        start_var = paddle.to_tensor(np.array([3]))
640 641 642 643 644 645 646 647 648
        out4 = paddle.arange(start_var, 7)
        # [3, 4, 5, 6]
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
649

650
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
651 652 653 654 655 656


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
657
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
658 659 660 661 662

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
663
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


Y
yaoxuefeng 已提交
687
def tril(x, diagonal=0, name=None):
W
WuHaobo 已提交
688
    """
689 690
	:alias_main: paddle.tril
	:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
S
swtkiwi 已提交
691

W
WuHaobo 已提交
692
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
693
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
694 695 696 697
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
698
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
699 700 701 702 703 704 705 706 707 708 709 710
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
711 712
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
713 714 715

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
716
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
717 718 719 720 721

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
722
            import paddle
W
WuHaobo 已提交
723 724 725 726 727 728

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

729
            paddle.disable_static()
Y
yaoxuefeng 已提交
730

731
            x = paddle.to_variable(data)
Y
yaoxuefeng 已提交
732 733
            
            tril1 = paddle.tensor.tril(x)
W
WuHaobo 已提交
734 735 736 737 738
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
739
            tril2 = paddle.tensor.tril(x, diagonal=2)
W
WuHaobo 已提交
740 741 742 743 744
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
745
            tril3 = paddle.tensor.tril(x, diagonal=-1)
W
WuHaobo 已提交
746 747 748 749
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

750 751 752
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
753
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
754 755 756 757

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
758
def triu(x, diagonal=0, name=None):
W
WuHaobo 已提交
759
    """
760 761
	:alias_main: paddle.triu
	:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
S
swtkiwi 已提交
762

W
WuHaobo 已提交
763
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
764
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
765 766 767 768
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
769
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
770 771 772 773 774 775 776 777 778 779 780 781
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
782 783
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
784 785 786

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
787
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
788 789 790 791 792

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
793
            import paddle
W
WuHaobo 已提交
794 795 796 797 798

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
799

800
            paddle.disable_static()
W
WuHaobo 已提交
801 802

            # example 1, default diagonal
803
            x = paddle.to_variable(data)
Y
yaoxuefeng 已提交
804
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
805 806 807 808 809
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
810
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
811 812 813 814 815
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
816
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
817 818 819 820 821
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
822 823
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
824
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
825 826

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
827 828


829
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
830
    """
831 832
	:alias_main: paddle.meshgrid
	:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
S
swtkiwi 已提交
833

834
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
835 836 837
    vector, and creates N-dimensional grids.
    
    Args:
838
        *args(Variable|list of Variable) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
839
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
840 841
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
         Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk)

    Examples:
      .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np

          x = fluid.data(name='x', shape=[100], dtype='int32')
          y = fluid.data(name='y', shape=[200], dtype='int32')

          input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

          exe = fluid.Executor(place=fluid.CPUPlace())
861
          grid_x, grid_y = paddle.tensor.meshgrid(x, y)
S
suytingwan 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875
          res_1, res_2 = exe.run(fluid.default_main_program(),
                                 feed={'x': input_1,
                                       'y': input_2},
                                 fetch_list=[grid_x, grid_y])
     
          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

      .. code-block:: python

          #example 2: in dygraph mode

          import paddle
          import numpy as np
876
          
877
          paddle.disable_static()
S
suytingwan 已提交
878 879 880

          input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_4 = np.random.randint(0, 100, [200, ]).astype('int32')
881 882
          tensor_3 = paddle.to_tensor(input_3)
          tensor_4 = paddle.to_tensor(input_4)
883
          grid_x, grid_y = paddle.tensor.meshgrid(tensor_3, tensor_4)
S
suytingwan 已提交
884 885 886 887 888 889

          #the shape of grid_x is (100, 200)
          #the shape of grid_y is (100, 200)

    """

890 891
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
892
    if in_dygraph_mode():
893 894
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
895 896
        return out

897
    name = kwargs.get("name", None)
S
suytingwan 已提交
898 899
    helper = LayerHelper('meshgrid', **locals())

900 901
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
902

903
    for id, input_ in enumerate(args):
S
suytingwan 已提交
904 905 906 907
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

908
    num = len(args)
S
suytingwan 已提交
909
    out = [
910
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
911 912
        for i in range(num)
    ]
913 914
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
915 916

    return out