control_flow.py 165.1 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18
from .layer_function_generator import autodoc, templatedoc
19
from .tensor import assign, cast, fill_constant
20
from .. import core
H
hong 已提交
21
from ..framework import Program, Variable, Operator, _non_static_mode, static_only, _in_legacy_dygraph, in_dygraph_mode
22
from ..layer_helper import LayerHelper, unique_name
M
minqiyang 已提交
23
from .nn import logical_and, logical_not, logical_or
24
from .utils import assert_same_structure, map_structure, hold_mutable_vars, copy_mutable_vars, padding_to_same_structure, is_sequence, pack_sequence_as, flatten, to_sequence
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
L
liym27 已提交
28
from functools import reduce, partial
29
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
30 31
from ... import compat as cpt
from ..backward import _infer_var_data_type_shape_
W
wanghuancoder 已提交
32
from paddle import _C_ops
D
dzhwinter 已提交
33

Q
QI JUN 已提交
34
__all__ = [
W
Wu Yi 已提交
35
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
36
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
37
    'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN',
H
Huihuang Zheng 已提交
38 39
    'reorder_lod_tensor_by_rank', 'Print', 'Assert', 'is_empty', 'case',
    'switch_case', 'while_loop'
D
dzhwinter 已提交
40 41
]

Y
Yu Yang 已提交
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
def select_output(input, outputs, mask):
    """
    **select_output**    
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
60 61 62 63
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

64 65 66 67 68 69
    helper.append_op(type='select_output',
                     inputs={
                         'X': input,
                         'Mask': mask
                     },
                     outputs={'Out': outputs})
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    return outputs


def select_input(inputs, mask):
    """
    **select_input**
    
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
89 90 91 92 93 94
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

    input_dtype = inputs[0].dtype
    input_shape = inputs[0].shape
    input_type = inputs[0].type
95

96 97 98 99 100 101 102 103 104
    out = helper.create_variable(dtype=input_dtype,
                                 shape=input_shape,
                                 type=input_type)
    helper.append_op(type='select_input',
                     inputs={
                         'X': inputs,
                         'Mask': mask
                     },
                     outputs={'Out': out})
105 106 107
    return out


108 109
def select_input_with_buildin_type(inputs, mask):
    from paddle.fluid.dygraph.dygraph_to_static.variable_trans_func import to_static_variable
110
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar, create_undefined_var_like
111 112 113
    support_ret_buildin_type = (bool, float, six.integer_types)
    false_var, true_var = inputs

114 115 116 117 118 119
    if isinstance(false_var, UndefinedVar) and isinstance(
            true_var, UndefinedVar):
        """ None -> UndefinedVar, so the real value is a [None, UndefinedVar] or [None, None], we just return None.
        """
        return None

120 121 122
    if isinstance(false_var, Variable) and isinstance(true_var, Variable):
        return select_input(inputs, mask)

123 124
    elif (isinstance(false_var, (support_ret_buildin_type))
          and isinstance(false_var, type(true_var))):
125 126 127 128
        if false_var == true_var:
            return false_var
        else:
            inputs = [
129 130
                to_static_variable(false_var),
                to_static_variable(true_var)
131 132
            ]
    # Deal with the situations like this: false_var is int and true_var is Variable
133 134 135 136
    elif ((isinstance(false_var, support_ret_buildin_type)
           and isinstance(true_var, Variable))
          or (isinstance(true_var, support_ret_buildin_type)
              and isinstance(false_var, Variable))):
137 138 139 140 141
        inputs = [to_static_variable(false_var), to_static_variable(true_var)]
        warnings.warn(
            "Return results from different branches in cond are not same type: "
            "false_var returned by fasle_fn is '{}' and true_var of true_fn is "
            "'{}'".format(type(false_var), type(true_var)))
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    elif ((isinstance(false_var, UndefinedVar)
           and isinstance(true_var, (Variable, ) + support_ret_buildin_type))
          or (isinstance(true_var, UndefinedVar)
              and isinstance(false_var,
                             (Variable, ) + support_ret_buildin_type))):

        def create_var_if_not_undefined_var(a):
            if isinstance(a, UndefinedVar): return a
            return to_static_variable(a)

        def create_like_if_undefined_var(a, b):
            if isinstance(a, UndefinedVar): return create_undefined_var_like(b)
            return a

        # TODO(xiongkun): add warning here.
        true_var, false_var = create_var_if_not_undefined_var(
            true_var), create_var_if_not_undefined_var(false_var)
        inputs = [
            create_like_if_undefined_var(false_var, true_var),
            create_like_if_undefined_var(true_var, false_var)
        ]
163 164 165 166 167 168 169 170 171
    else:
        raise TypeError(
            "Unsupported return type of true_fn and false_fn in cond: false_var "
            "returned by fasle_fn is '{}' and true_var of true_fn is '{}'".
            format(type(false_var), type(true_var)))

    return select_input(inputs, mask)


172
def split_lod_tensor(input, mask, level=0):
173 174 175 176
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
177 178
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
179 180

    Args:
181
        input(Variable|tuple|list|None): The input tensor that contains complete
182
                                lod information needed to construct the output.
183
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
184
        level(int): The specific lod level to split.
185 186

    Returns:
Q
qiaolongfei 已提交
187 188 189 190
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
191 192 193 194

    Examples:
        .. code-block:: python

195
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
196
          x = fluid.layers.data(name='x', shape=[1])
197 198
          x.persistable = True

Q
qiaolongfei 已提交
199
          y = fluid.layers.data(name='y', shape=[1])
200 201
          y.persistable = True

Q
qiaolongfei 已提交
202
          out_true, out_false = fluid.layers.split_lod_tensor(
203
                input=x, mask=y, level=level)
204

205
    """
206 207 208 209
    check_type(input, 'input', (Variable, list, tuple, type(None)),
               'fluid.layers.split_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
210
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
211 212
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
213 214 215 216 217 218 219 220 221 222
    helper.append_op(type='split_lod_tensor',
                     inputs={
                         'X': input,
                         'Mask': mask,
                     },
                     outputs={
                         'OutTrue': out_true,
                         'OutFalse': out_false
                     },
                     attrs={'level': level})
223 224 225
    return out_true, out_false


226
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
227 228 229 230 231
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
232 233 234
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
235 236

    Args:
237 238 239
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
240
                            lod information needed to construct the output.
241
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
242
        level(int): The specific lod level to merge.
243 244 245 246 247 248 249

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

250
          import paddle.fluid as fluid
251 252 253 254 255 256 257 258 259 260 261 262
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
263
    helper = LayerHelper('merge_lod_tensor', **locals())
264 265 266 267 268 269 270
    check_type(x, 'x', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
    check_type(in_true, 'in_true', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(in_false, 'in_false', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
X
Xin Pan 已提交
271
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
272 273 274 275 276 277 278 279 280
    helper.append_op(type='merge_lod_tensor',
                     inputs={
                         'X': x,
                         'Mask': mask,
                         'InTrue': in_true,
                         'InFalse': in_false
                     },
                     outputs={'Out': out},
                     attrs={'level': level})
281 282 283
    return out


284
@static_only
Y
Yan Chunwei 已提交
285 286 287
def Print(input,
          first_n=-1,
          message=None,
288
          summarize=20,
Y
Yan Chunwei 已提交
289 290 291
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
292
          print_tensor_layout=True,
Y
yangyaming 已提交
293 294
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
295
    '''
296 297
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
298 299 300 301 302 303 304 305 306
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
307
        input (Variable): A Tensor to print.
308
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
309
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
310 311
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
312 313 314
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
315
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
316
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
317
        print_phase (str): Which phase to displace, including 'forward',
318 319 320
                'backward' and 'both'. Default: 'both'. If set to 'backward', will 
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
321 322

    Returns:
323
        Variable: Output tensor.
Y
Yan Chunwei 已提交
324

325 326 327 328
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
329

Y
Yan Chunwei 已提交
330 331
    Examples:
        .. code-block:: python
332
           
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
           import paddle

           paddle.enable_static()
        
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
351
    '''
352 353 354
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64', 'bool'],
                             'fluid.layers.Print')
355

356 357
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
358 359 360 361 362 363 364 365 366 367 368 369 370 371
    helper.append_op(type='print',
                     inputs={'In': input},
                     outputs={'Out': output},
                     attrs={
                         'first_n': first_n,
                         'summarize': summarize,
                         'message': message or "",
                         'print_tensor_name': print_tensor_name,
                         'print_tensor_type': print_tensor_type,
                         'print_tensor_shape': print_tensor_shape,
                         'print_tensor_layout': print_tensor_layout,
                         'print_tensor_lod': print_tensor_lod,
                         'print_phase': print_phase.upper()
                     })
372
    return output
Y
Yan Chunwei 已提交
373 374


H
Huihuang Zheng 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

438 439 440 441 442 443
    op = helper.append_op(type="assert",
                          inputs={
                              "Cond": cond,
                              "Data": [] if data is None else list(data)
                          },
                          attrs={"summarize": summarize})
H
Huihuang Zheng 已提交
444 445 446 447

    return op


Y
Yu Yang 已提交
448 449
class BlockGuard(object):
    """
450 451 452 453
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
454 455
    """

456 457
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
458
            raise TypeError("BlockGuard takes a program")
459
        self.main_program = main_program
Y
Yu Yang 已提交
460 461

    def __enter__(self):
W
Wu Yi 已提交
462
        self.main_program._create_block()
Y
Yu Yang 已提交
463 464

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
465
        self.main_program._rollback()
Y
Yu Yang 已提交
466 467 468 469 470
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
471 472 473 474 475
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
476 477
    """

Y
Yu Yang 已提交
478
    def __init__(self, rnn):
X
Xin Pan 已提交
479
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
480
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
481
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
482 483 484 485
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
486
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
487 488

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
489 490
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
491
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
492
        self.rnn._complete_op()
493 494
        return super(BlockGuardWithCompletion,
                     self).__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
495 496 497 498


class StaticRNNMemoryLink(object):
    """
499 500 501 502
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
503 504 505 506 507 508 509 510 511


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
512 513 514 515 516 517 518 519 520
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
521
    """
522 523
    :api_attr: Static Graph

524 525
    StaticRNN class.

526 527 528 529 530 531 532
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
533 534

    Examples:
535 536 537 538 539 540
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
541 542
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
543 544 545 546 547
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
548
            # transform batch size to dim 1
549 550 551 552
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
553
                # mark created x_emb as input, each step process a word
554
                word = rnn.step_input(x_emb)
555
                # create prev memory parameter, batch size comes from word
556 557
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
558 559 560
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
                # mark hidden as output 
561
                rnn.step_output(hidden)
562
            # get StaticrNN final output
563
            result = rnn()
C
chengduo 已提交
564

565
    """
Y
Yu Yang 已提交
566 567 568 569
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

570
    def __init__(self, name=None):
571
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
572
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
573 574 575 576 577 578 579 580
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
581
        """
582 583
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
584
        """
Y
Yang Yang 已提交
585
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
586 587 588 589 590

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

591 592 593 594 595 596 597
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
598
        """
C
chengduo 已提交
599 600 601
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
602 603
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
604

605
        Args:
606
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
607 608
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
609 610 611 612 613 614 615
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
616 617

        Returns:
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)


        Examples 2:
649 650
            .. code-block:: python

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers
            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
            	boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
            		# mark created x_emb as input, each step process a word
            		word = rnn.step_input(x_emb)
            		# init memory
            		prev = rnn.memory(init=boot_memory)
            		hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
            		# update hidden with prev
            		rnn.update_memory(prev, hidden)

674
        """
Y
Yu Yang 已提交
675
        self._assert_in_rnn_block_('memory')
676 677 678 679 680 681
        check_type(init, "init", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(shape, "shape", (list, tuple, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(batch_ref, "batch_ref", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
Y
Yu Yang 已提交
682
        if init is None:
683
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
684
                raise ValueError(
685
                    "if init is None, memory at least need shape and batch_ref")
686
            parent_block = self._parent_block()
687
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
688
                [self.helper.name, "memory_boot"]))
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
            boot_var = parent_block.create_var(name=var_name,
                                               shape=shape,
                                               dtype=batch_ref.dtype,
                                               persistable=False)

            parent_block.append_op(type="fill_constant_batch_size_like",
                                   inputs={'Input': [batch_ref]},
                                   outputs={'Out': [boot_var]},
                                   attrs={
                                       'value': init_value,
                                       'shape': boot_var.shape,
                                       'dtype': boot_var.dtype,
                                       'input_dim_idx': ref_batch_dim_idx,
                                       'output_dim_idx': init_batch_dim_idx
                                   })
Y
Yu Yang 已提交
704 705 706 707

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
708 709
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
710
                dtype=init.dtype,
Y
Yu Yang 已提交
711
                shape=init.shape)
712 713
            self.memories[pre_mem.name] = StaticRNNMemoryLink(init=init,
                                                              pre_mem=pre_mem)
Y
Yu Yang 已提交
714 715 716
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
717 718 719 720 721 722 723 724
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)

C
chengduo 已提交
754
        """
Y
Yu Yang 已提交
755
        self._assert_in_rnn_block_('step_input')
756
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
757
        if self.seq_len is None:
Y
Yu Yang 已提交
758
            self.seq_len = x.shape[0]
759
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
760 761
            raise ValueError("Static RNN only take fix seq_len input")

762 763 764 765
        ipt = self.helper.create_variable(name=x.name,
                                          dtype=x.dtype,
                                          shape=list(x.shape[1:]),
                                          type=x.type)
Y
Yu Yang 已提交
766 767 768 769
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
770 771 772 773 774 775 776 777
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
               		dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
               		word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	rnn.step_output(hidden)

            	result = rnn()

C
chengduo 已提交
809
        """
Y
Yu Yang 已提交
810
        self._assert_in_rnn_block_('step_output')
811
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
812

X
Xin Pan 已提交
813
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
814 815 816 817
        self.helper.append_op(type='rnn_memory_helper',
                              inputs={'X': [o]},
                              outputs={'Out': tmp_o},
                              attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
818

819 820 821 822
        out_var = self._parent_block().create_var(name=tmp_o.name,
                                                  shape=[self.seq_len] +
                                                  list(tmp_o.shape),
                                                  dtype=tmp_o.dtype)
Y
Yu Yang 已提交
823 824 825 826

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
827 828 829 830
        """
        Mark the StaticRNN output variables.

        Args:
831
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
832 833 834

        Returns:
            None
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	# mark each step's hidden and word as output
                	rnn.output(hidden, word)

            	result = rnn()
C
chengduo 已提交
866
        """
Y
Yu Yang 已提交
867 868 869 870
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
871
        """
872
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
873 874 875

        Args:
            mem(Variable): the memory variable.
876
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
877
                           var and mem should have same dims and data type.
C
chengduo 已提交
878 879 880

        Returns:
            None
881

C
chengduo 已提交
882
        """
883 884
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
885 886
        self.memories[mem.name].mem = var

887
    def _parent_block(self):
888
        prog = self.helper.main_program
Y
Yu Yang 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

904
    def _complete_op(self):
905 906
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
907
        parent_block = self._parent_block()
Y
Yu Yang 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
922 923 924
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
925 926 927 928 929 930 931 932
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

933 934 935
        parameters = [
            parent_block._find_var_recursive(name) for name in set(params)
        ]
Y
Yu Yang 已提交
936 937 938 939 940 941 942

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
943
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
944 945 946
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
947
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
948 949
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
950 951
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
952 953
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
954 955
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
956 957 958 959
            rnn_block.append_op(type='rnn_memory_helper',
                                inputs={'X': [mem_var]},
                                outputs={'Out': [new_mem]},
                                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
960 961 962

            memories.append(new_mem.name)

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
        parent_block.append_op(type='recurrent',
                               inputs={
                                   'inputs': inlinks,
                                   'initial_states': boot_memories,
                                   'parameters': parameters
                               },
                               outputs={
                                   'outputs': outlinks,
                                   'step_scopes': [step_scope]
                               },
                               attrs={
                                   'has_states': len(pre_memories) > 0,
                                   'ex_states': pre_memories,
                                   'states': memories,
                                   'sub_block': rnn_block
                               })
Y
Yu Yang 已提交
979 980


Y
Yang Yang(Tony) 已提交
981
class WhileGuard(BlockGuard):
982

Y
Yang Yang(Tony) 已提交
983 984 985 986 987 988 989 990 991 992 993 994 995 996
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
997
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
998 999 1000
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
def get_inputs_outputs_in_block(current_block, inner_inputs, inner_outputs,
                                helper):
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    def is_ignore_vars(op, var_name):
        # NOTE(dev): There are some persistable var created in some non-standard API
        # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in
        # Input and Output. This var shall not be considered as a loop_var in
        # control_flow.
        IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]}
        if op.type in IGNORE_VAR_NAMES:
            var_names = IGNORE_VAR_NAMES[op.type]
            for name in var_names:
                if name in var_name:
                    return True
        return False

1024 1025 1026 1027 1028 1029 1030 1031
    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
1032 1033
                if in_var_name not in inner_outputs and not is_ignore_vars(
                        op, in_var_name):
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
        if not parent_block_var and current_block_var and \
                current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


Y
Yang Yang(Tony) 已提交
1058
class While(object):
X
Xin Pan 已提交
1059
    """
1060 1061
    :api_attr: Static Graph
    
1062
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
1063

1064 1065 1066 1067
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

1068 1069 1070 1071 1072 1073
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
1074
    Args:
1075
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
1076
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
1077
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1078

1079
    Examples 1:
X
Xin Pan 已提交
1080
          .. code-block:: python
1081 1082
            
            import paddle.fluid as fluid
1083 1084 1085 1086 1087
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1088

1089
            cond = fluid.layers.less_than(x=i, y=loop_len)
1090
            while_op = fluid.layers.While(cond=cond)
1091
            with while_op.block():
1092
                i = fluid.layers.increment(x=i, value=1, in_place=True)
1093
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)
1094 1095 1096 1097 1098

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = fluid.layers.less_than(x=i, y=loop_len)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1128 1129
    """

Y
Yang Yang(Tony) 已提交
1130 1131 1132 1133
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1134
    def __init__(self, cond, is_test=False, name=None):
1135
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1136
        self.status = While.BEFORE_WHILE_BLOCK
1137
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1138
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1139
            raise TypeError(
1140
                "condition expected shape as [1], but given shape as {0}.".
1141
                format(list(cond.shape)))
Y
Yang Yang(Tony) 已提交
1142
        self.cond_var = cond
C
chengduo 已提交
1143
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1144 1145 1146 1147

    def block(self):
        return WhileGuard(self)

1148
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1149 1150
        main_program = self.helper.main_program
        while_block = main_program.current_block()
1151 1152
        parent_block = main_program.block(
            main_program.current_block().parent_idx)
Y
Yang Yang(Tony) 已提交
1153 1154 1155

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1156 1157
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
            while_block, x_name_list, inner_outputs, self.helper)
Y
Yang Yang(Tony) 已提交
1158 1159 1160

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1161 1162 1163
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1164 1165 1166 1167 1168 1169 1170

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
1171 1172
                'X':
                [parent_block._var_recursive(x_name) for x_name in x_name_list],
Y
Yang Yang(Tony) 已提交
1173 1174
                'Condition': [self.cond_var]
            },
1175 1176 1177 1178 1179 1180 1181 1182
            outputs={
                'Out': out_vars,
                'StepScopes': [step_scope]
            },
            attrs={
                'sub_block': while_block,
                "is_test": self.is_test
            })
Y
Yang Yang(Tony) 已提交
1183 1184


1185
def assign_skip_lod_tensor_array(input, output):
1186
    """
1187
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1188
    """
1189 1190 1191 1192 1193
    if not isinstance(input, (Variable, core.VarBase)):
        if isinstance(output, Variable):
            assign(input, output)
        else:
            output = input
1194 1195
        return

1196 1197
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
1198 1199
        parent_block = main_program.block(
            main_program.current_block().parent_idx)
1200 1201 1202 1203
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
        assign(input, output)
1204 1205


G
guofei 已提交
1206
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1207
    """
1208 1209
    :api_attr: Static Graph

G
guofei 已提交
1210 1211
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1212 1213 1214 1215
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1216
    Args:
1217 1218 1219 1220 1221
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
	    as many arguments as ``loop_vars`` .
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1222
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1223 1224
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1225

G
guofei 已提交
1226
    Returns:
C
Chen Long 已提交
1227
        A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1228 1229 1230 1231

    Examples:
        .. code-block:: python

1232 1233 1234
            import paddle
            paddle.enable_static()

1235 1236
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1237

1238 1239 1240
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1241

C
Chen Long 已提交
1242 1243 1244 1245 1246 1247
            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            with paddle.static.program_guard(main_program, startup_program):
                i = paddle.full(shape=[1], fill_value=0, dtype='int64')     # loop counter
                ten = paddle.full(shape=[1], fill_value=10, dtype='int64')  # loop length
                i, ten = paddle.static.nn.while_loop(cond, body, [i, ten])
G
guofei 已提交
1248
                
C
Chen Long 已提交
1249
                exe = paddle.static.Executor(paddle.CPUPlace())
1250
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1251 1252 1253 1254 1255 1256 1257 1258
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1259
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1260 1261 1262 1263
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1264 1265
    check_variable_and_dtype(pre_cond, 'var of cond returned', ['bool'],
                             'fluid.layers.while_loop')
G
guofei 已提交
1266 1267
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1268
            "the shape of the variable returned by cond should be [1],"
G
guofei 已提交
1269 1270
            "but given shape as {0}.".format(list(pre_cond.shape)))

J
Jiabin Yang 已提交
1271
    if _non_static_mode():
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
        now_cond = pre_cond.numpy()[0]
        while (now_cond):
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
                    "(length and structure) and types as loop_vars")
            now_cond = cond(*output_vars).numpy()[0]
1282
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1283 1284
        return loop_vars

G
guofei 已提交
1285
    while_loop_block = While(pre_cond, is_test, name)
1286
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1287
    with while_loop_block.block():
1288 1289 1290 1291 1292 1293 1294 1295 1296
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1297 1298
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1299 1300 1301
        try:
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1302 1303 1304
            raise ValueError(
                "body in while_loop should return the same arity "
                "(length and structure) as loop_vars: {0}".format(e))
1305
        now_cond = cond(*output_vars)
1306
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1307 1308 1309 1310
        assign(now_cond, pre_cond)
    return loop_vars


1311
def lod_rank_table(x, level=0):
1312 1313
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1314 1315
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1316
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1317
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1318 1319
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1320 1321 1322 1323

        .. code-block:: text

            x is a LoDTensor:
1324 1325
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1326 1327
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1328 1329 1330
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1331

Y
yangyaming 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1341 1342 1343 1344

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1345 1346
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1347 1348 1349 1350 1351 1352 1353

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1354
            import paddle.fluid as fluid
Y
yangyaming 已提交
1355
            x = fluid.layers.data(name='x', shape=[10],
1356
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1357
            out = layers.lod_rank_table(x=x, level=0)
1358
    """
1359 1360 1361 1362 1363 1364
    check_type(x, 'x', (Variable, list), 'lod_rank_table')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_rank_table')

Y
Yu Yang 已提交
1365
    helper = LayerHelper("lod_rank_table", **locals())
1366 1367 1368 1369 1370 1371
    table = helper.create_variable(type=core.VarDesc.VarType.LOD_RANK_TABLE,
                                   name=unique_name.generate("lod_rank_table"))
    helper.append_op(type='lod_rank_table',
                     inputs={'X': x},
                     outputs={'Out': table},
                     attrs={'level': level})
Y
Yu Yang 已提交
1372
    return table
Y
Yu Yang 已提交
1373 1374


Y
yuyang18 已提交
1375
@templatedoc()
1376
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1377 1378 1379 1380 1381 1382 1383 1384
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1385 1386

    Args:
Y
yuyang18 已提交
1387
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1388 1389

    Returns:
Y
yuyang18 已提交
1390
        ${out_comment}.
F
fengjiayi 已提交
1391 1392
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1393
    res = helper.create_variable_for_type_inference(dtype="int64")
1394 1395 1396
    helper.append_op(type="max_sequence_len",
                     inputs={"RankTable": rank_table},
                     outputs={"Out": res})
F
fengjiayi 已提交
1397 1398 1399
    return res


1400
def lod_tensor_to_array(x, table):
1401
    """
F
fengjiayi 已提交
1402 1403
    Convert a LoDTensor to a LoDTensorArray.

1404 1405 1406 1407 1408
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1409
    Users should not use it directly.
1410 1411

    Args:
F
fengjiayi 已提交
1412
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1413 1414
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1415
                                descending order. It is generally generated
F
fengjiayi 已提交
1416
                                by `layers.lod_rank_table()` API.
1417 1418

    Returns:
F
fengjiayi 已提交
1419
        Variable: The LoDTensorArray that has been converted from the input tensor.
1420 1421 1422 1423

    Examples:
        .. code-block:: python

1424
          import paddle.fluid as fluid
1425 1426 1427
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1428
    """
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
    check_type(x, 'x', (Variable, list), 'lod_tensor_to_array')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
    check_type(table, 'table', (Variable, list), 'lod_tensor_to_array')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
1439 1440
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1441
        name=unique_name.generate("lod_tensor_to_array"),
1442
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1443
        dtype=x.dtype)
1444 1445 1446 1447 1448 1449
    helper.append_op(type='lod_tensor_to_array',
                     inputs={
                         'X': x,
                         'RankTable': table
                     },
                     outputs={'Out': array})
1450 1451 1452
    return array


1453
def array_to_lod_tensor(x, table):
1454
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1455 1456

    Args:
1457
        x (Variable|list): The lod tensor array to be converted to a tensor.
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1469
          import paddle.fluid as fluid
1470 1471 1472 1473
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1474
    """
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
    check_type(x, 'x', (Variable, list), 'array_to_lod_tensor')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')
    check_type(table, 'table', (Variable, list), 'array_to_lod_tensor')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')

1486
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1487
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1488 1489 1490 1491 1492 1493
    helper.append_op(type="array_to_lod_tensor",
                     inputs={
                         'X': x,
                         'RankTable': table
                     },
                     outputs={'Out': tmp})
1494 1495 1496
    return tmp


1497
def increment(x, value=1.0, in_place=True):
1498
    """
1499 1500
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1501

1502
    Parameters:
T
tianshuo78520a 已提交
1503
        x (Variable): A tensor that must always contain only one element, its data type supports
1504 1505 1506
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1507 1508

    Returns:
1509
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1510 1511 1512 1513

    Examples:
        .. code-block:: python

1514
          import paddle.fluid as fluid
1515 1516
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1517
    """
1518 1519
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
Y
Yu Yang 已提交
1520
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1521
    if not in_place:
X
Xin Pan 已提交
1522
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1523 1524
    else:
        out = x
1525 1526 1527 1528
    helper.append_op(type='increment',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={'step': float(value)})
Y
Yang Yu 已提交
1529
    return out
Y
Yu Yang 已提交
1530 1531


1532
def array_write(x, i, array=None):
1533
    """
1534 1535 1536 1537
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1538 1539

    Args:
1540 1541 1542 1543 1544 1545 1546
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written. 
            The default value is None, when a new LoDTensorArray will be created and returned 
            as a result.
1547

1548
    Returns:
1549
        Variable: The input ``array`` after ``x`` is written into.
1550 1551

    Examples:
D
dzhwinter 已提交
1552
        .. code-block:: python
1553

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1581
    """
J
Jiabin Yang 已提交
1582
    if _non_static_mode():
1583 1584 1585 1586 1587 1588 1589 1590 1591
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1592
        i = i.numpy().item(0)
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
        if array is None:
            array = create_array(x.dtype)
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1607 1608
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1609
    helper = LayerHelper('array_write', **locals())
1610 1611
    if array is not None:
        if not isinstance(
1612 1613
                array, Variable
        ) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
1614 1615
            raise TypeError(
                "array should be tensor array vairable in array_write Op")
Y
Yu Yang 已提交
1616 1617 1618 1619
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1620
            dtype=x.dtype)
1621 1622 1623 1624 1625 1626
    helper.append_op(type='write_to_array',
                     inputs={
                         'X': [x],
                         'I': [i]
                     },
                     outputs={'Out': [array]})
Y
Yu Yang 已提交
1627 1628 1629
    return array


1630
def create_array(dtype, initialized_list=None):
1631
    """
1632 1633 1634 1635
    This OP creates an LOD_TENSOR_ARRAY. It is used as
    the input of :ref:`api_fluid_layers_array_read` and 
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1636 1637

    Args:
1638 1639
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1640 1641
        initialized_list(list): Used to initialize as default value for created array.
                    All values in initialized list should be a Tensor.
1642 1643

    Returns:
1644
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1645 1646 1647 1648

    Examples:
        .. code-block:: python

1649
          import paddle.fluid as fluid
1650
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1651 1652

    """
1653 1654 1655 1656
    array = []
    if initialized_list is not None:
        if not isinstance(initialized_list, (list, tuple)):
            raise TypeError(
1657 1658
                "Require type(initialized_list) should be list/tuple, but received {}"
                .format(type(initialized_list)))
1659 1660 1661 1662 1663 1664
        array = list(initialized_list)

    # NOTE: Only support plain list like [x, y,...], not support nested list in static mode.
    for val in array:
        if not isinstance(val, Variable):
            raise TypeError(
1665 1666
                "All values in `initialized_list` should be Variable, but recevied {}."
                .format(type(val)))
1667

J
Jiabin Yang 已提交
1668
    if _non_static_mode():
1669
        return array
1670

Y
Yang Yang(Tony) 已提交
1671
    helper = LayerHelper("array", **locals())
1672
    tensor_array = helper.create_variable(
Y
Yang Yang(Tony) 已提交
1673 1674 1675 1676
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)

1677 1678 1679 1680 1681
    for val in array:
        array_write(x=val, i=array_length(tensor_array), array=tensor_array)

    return tensor_array

Y
Yang Yang(Tony) 已提交
1682

Y
yuyang18 已提交
1683
@templatedoc()
W
wawltor 已提交
1684
def less_than(x, y, force_cpu=None, cond=None, name=None):
1685
    """
1686

Y
yuyang18 已提交
1687
    ${comment}
1688 1689

    Args:
N
Noel 已提交
1690 1691
        x(Tensor): ${x_comment}.
        y(Tensor): ${y_comment}.
Y
yuyang18 已提交
1692
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
N
Noel 已提交
1693
        cond(Tensor, optional): Optional output which can be any created Tensor
1694
            that meets the requirements to store the result of *less_than*.
N
Noel 已提交
1695
            if cond is None, a new Tensor will be created to store the result.
W
wawltor 已提交
1696 1697
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1698
    Returns:
Y
yuyang18 已提交
1699
        ${out_comment}.
1700 1701 1702 1703

    Examples:
        .. code-block:: python

N
Noel 已提交
1704 1705 1706 1707 1708 1709 1710
            import paddle

            x = paddle.to_tensor([1, 2, 3, 4], dtype='float32')
            y = paddle.to_tensor([2, 2, 1, 3], dtype='float32')
            result = paddle.less_than(x, y)
            print(result) # [True, False, False, False]

1711
    """
1712 1713 1714 1715 1716 1717 1718 1719 1720
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_than")
    if cond is not None:
        check_type(cond, "cond", Variable, "less_than")
    if force_cpu != None:
        check_type(force_cpu, "force_cpu", bool, "less_than")

Y
Yang Yang(Tony) 已提交
1721 1722
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1723
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1724 1725
        cond.stop_gradient = True

Y
yuyang18 已提交
1726 1727 1728 1729
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

1730 1731 1732 1733 1734 1735 1736
    helper.append_op(type='less_than',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Y
Yang Yang(Tony) 已提交
1737 1738 1739
    return cond


Z
zhoukunsheng 已提交
1740
@templatedoc()
W
wawltor 已提交
1741
def less_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1742
    """
1743 1744 1745 1746
    :alias_main: paddle.less_equal
	:alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal
	:old_api: paddle.fluid.layers.less_equal

1747
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1748 1749

    Args:
1750 1751
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1752 1753
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *less_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1754 1755
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1756 1757

    Returns:
1758
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1759 1760 1761 1762

    Examples:
        .. code-block:: python

1763
          import paddle.fluid as fluid
1764 1765 1766 1767 1768 1769
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
1770
    """
1771 1772 1773 1774 1775
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    if cond is not None:
1776
        check_type(cond, "cond", Variable, "less_equal")
1777

Z
zhoukunsheng 已提交
1778 1779 1780 1781 1782 1783 1784
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1785 1786 1787 1788 1789 1790 1791
    helper.append_op(type='less_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Z
zhoukunsheng 已提交
1792 1793 1794 1795
    return cond


@templatedoc()
W
wawltor 已提交
1796
def greater_than(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1797
    """
1798 1799 1800 1801
    :alias_main: paddle.greater_than
	:alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than
	:old_api: paddle.fluid.layers.greater_than

1802
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
1803 1804

    Args:
1805 1806
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1807 1808
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_than*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1809 1810
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1811 1812

    Returns:
1813
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x` .
Z
zhoukunsheng 已提交
1814 1815 1816 1817

    Examples:
        .. code-block:: python

1818
          import paddle.fluid as fluid
1819 1820 1821 1822 1823
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
1824
    """
1825 1826 1827 1828 1829
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    if cond is not None:
1830
        check_type(cond, "cond", Variable, "greater_than")
1831

Z
zhoukunsheng 已提交
1832 1833 1834 1835 1836 1837 1838
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1839 1840 1841
    if in_dygraph_mode():
        return _C_ops.final_state_greater_than(x, y, -1)
    else:
1842 1843 1844 1845 1846 1847 1848
        helper.append_op(type='greater_than',
                         inputs={
                             'X': [x],
                             'Y': [y]
                         },
                         outputs={'Out': [cond]},
                         attrs=attrs)
1849
        return cond
Z
zhoukunsheng 已提交
1850 1851 1852


@templatedoc()
W
wawltor 已提交
1853
def greater_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1854
    """
1855 1856 1857 1858
    :alias_main: paddle.greater_equal
	:alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal
	:old_api: paddle.fluid.layers.greater_equal

1859
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
1860 1861

    Args:
1862 1863
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1864 1865
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1866 1867
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1868 1869

    Returns:
1870
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1871 1872 1873 1874

    Examples:
        .. code-block:: python

1875
          import paddle.fluid as fluid
1876 1877 1878 1879 1880 1881
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
1882

Z
zhoukunsheng 已提交
1883
    """
1884 1885 1886 1887 1888
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    if cond is not None:
1889
        check_type(cond, "cond", Variable, "greater_equal")
1890

Z
zhoukunsheng 已提交
1891 1892 1893 1894 1895 1896 1897
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1898 1899 1900 1901 1902 1903 1904
    helper.append_op(type='greater_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Z
zhoukunsheng 已提交
1905 1906 1907
    return cond


W
wawltor 已提交
1908
def equal(x, y, cond=None, name=None):
1909 1910 1911 1912
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
1913 1914 1915 1916 1917
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
        cond(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1918 1919
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1920 1921

    Returns:
W
wangchaochaohu 已提交
1922 1923
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
1924 1925 1926 1927

    Examples:
        .. code-block:: python

1928
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
1929 1930 1931 1932 1933 1934 1935
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
1936
    """
1937 1938 1939 1940 1941
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "equal")
    if cond is not None:
1942
        check_type(cond, "cond", Variable, "equal")
1943

1944 1945
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1946
        cond = helper.create_variable_for_type_inference(dtype='bool')
1947 1948
        cond.stop_gradient = True

1949 1950 1951 1952 1953 1954
    helper.append_op(type='equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]})
1955 1956 1957
    return cond


W
wawltor 已提交
1958
def not_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1959
    """
1960 1961 1962 1963
    :alias_main: paddle.not_equal
	:alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal
	:old_api: paddle.fluid.layers.not_equal

1964
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
1965 1966

    Args:
1967 1968
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1969 1970
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *not_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1971 1972
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1973 1974

    Returns:
1975
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1976 1977 1978 1979

    Examples:
        .. code-block:: python

1980 1981 1982 1983
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1984 1985
          out = fluid.layers.not_equal(x=label, y=limit)
    """
1986 1987 1988 1989 1990
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    if cond is not None:
1991
        check_type(cond, "cond", Variable, "not_equal")
1992

Z
zhoukunsheng 已提交
1993 1994 1995 1996 1997
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

1998 1999 2000 2001 2002 2003
    helper.append_op(type='not_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]})
Z
zhoukunsheng 已提交
2004 2005 2006
    return cond


2007
def array_read(array, i):
2008
    """
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
    This OP is used to read data at the specified position from the input array 
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
    is the specified read position. This OP is often used together with 
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
2024

K
kavyasrinet 已提交
2025
    Args:
2026 2027 2028
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
2029

K
kavyasrinet 已提交
2030
    Returns:
2031
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
2032

K
kavyasrinet 已提交
2033
    Examples:
2034 2035
        .. code-block:: python

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2067
    """
J
Jiabin Yang 已提交
2068
    if _non_static_mode():
2069 2070 2071 2072 2073 2074 2075 2076 2077
        assert isinstance(
            array,
            list), "The 'array' in array_read must be list in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
2078
        i = i.numpy().item(0)
2079 2080
        return array[i]

2081
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
2082 2083 2084 2085 2086
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
2087
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
2088 2089 2090 2091 2092 2093
    helper.append_op(type='read_from_array',
                     inputs={
                         'X': [array],
                         'I': [i]
                     },
                     outputs={'Out': [out]})
Y
Yu Yang 已提交
2094
    return out
Y
Yang Yu 已提交
2095 2096


2097
def shrink_memory(x, i, table):
2098
    """
Y
yuyang18 已提交
2099
    This function creates an operator to shrink rnn memory using the RankTable
2100
    as mentioned in the input parameter.
Y
yuyang18 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
2121
    """
Y
Yang Yu 已提交
2122
    helper = LayerHelper('shrink_memory', **locals())
2123 2124 2125
    check_type(x, 'x', Variable, 'shrink_memory')
    check_type(i, 'i', Variable, 'shrink_memory')
    check_type(table, 'table', Variable, 'shrink_memory')
X
Xin Pan 已提交
2126
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2127 2128 2129 2130 2131 2132 2133 2134
    helper.append_op(type='shrink_rnn_memory',
                     inputs={
                         'X': [x],
                         'I': [i],
                         'RankTable': [table]
                     },
                     outputs={'Out': [out]},
                     attrs={})
Y
Yang Yu 已提交
2135
    return out
Y
Yang Yu 已提交
2136 2137


2138
def array_length(array):
2139
    """
2140 2141
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` , 
T
tianshuo78520a 已提交
2142
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
2143

K
kavyasrinet 已提交
2144
    Args:
2145
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
2146 2147

    Returns:
2148
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
2149 2150

    Examples:
Q
qiaolongfei 已提交
2151
        .. code-block:: python
K
kavyasrinet 已提交
2152

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
2169

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
            
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2182
    """
2183

J
Jiabin Yang 已提交
2184
    if _non_static_mode():
2185 2186 2187 2188 2189
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        return len(array)

2190 2191 2192 2193 2194 2195
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError(
            "array should be tensor array vairable in array_length Op")

Y
Yang Yu 已提交
2196
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
2197
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
2198
    tmp.stop_gradient = True
2199 2200 2201
    helper.append_op(type='lod_array_length',
                     inputs={'X': [array]},
                     outputs={'Out': [tmp]})
Y
Yang Yu 已提交
2202
    return tmp
Y
Yu Yang 已提交
2203 2204 2205


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
2206
    """
2207 2208 2209
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
2210 2211 2212
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
2213
    def __init__(self, block):
2214
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
Y
Yu Yang 已提交
2215 2216 2217 2218 2219 2220 2221 2222
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
2223 2224
        return super(ConditionalBlockGuard,
                     self).__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
2225 2226 2227


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
2228 2229 2230 2231 2232 2233 2234 2235
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
2236
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
2237 2238 2239 2240 2241
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

2242
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

2254
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
2255
        for each_input in inputs:
2256
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
2257
        self.inputs = inputs
2258
        self.is_scalar_condition = is_scalar_condition
2259
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
2270 2271 2272 2273
        params, intermediate = get_inputs_outputs_in_block(inside_block,
                                                           params,
                                                           intermediate,
                                                           helper=self.helper)
Y
Yu Yang 已提交
2274

2275 2276 2277
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
2278
        param_list = [
W
Wu Yi 已提交
2279
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
2280 2281
        ]

X
Xin Pan 已提交
2282 2283 2284 2285 2286
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
2287 2288

        step_scope = parent_block.create_var(
2289
            type=core.VarDesc.VarType.STEP_SCOPES)
2290
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
2291 2292
            type='conditional_block',
            inputs={
2293 2294
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
2295
            },
2296 2297 2298 2299
            outputs={
                'Out': out_list,
                'Scope': [step_scope]
            },
2300 2301 2302 2303 2304
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })

2305 2306 2307 2308 2309 2310
        if self.need_append_conditional_block_grad(inside_block):
            self.append_conditional_block_grad(parent_block, inside_block,
                                               conditional_block_op)

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
2311
        inside_block_idx = inside_block.idx
2312

2313 2314 2315
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
        return grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356

    def append_conditional_block_grad(self, parent_block, inside_block,
                                      conditional_block_op):
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
                param_list.append(cpt.to_text(inner_var.name))

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
2357 2358
            conditional_block_op.desc, cpt.to_text(set()),
            [grad_sub_block.desc])
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
        new_op_desc.set_output('Input@GRAD',
                               [param + "@GRAD" for param in param_list])

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
2373 2374
            if grad_sub_block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
                continue
            grad_sub_block.desc.var(cpt.to_bytes(grad_var_name))
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2391

2392
def copy_var_to_parent_block(var, layer_helper):
2393 2394
    if not isinstance(var, Variable):
        return var
2395 2396 2397 2398 2399
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
    assert parent_idx >= 0, "Got wrong parent block index when assigning var to parent scope in control_flow"
    parent_block = prog.block(parent_idx)

2400 2401 2402 2403
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
            and parent_block._find_var_recursive(var.name):
        parent_block_var = var
    else:
2404 2405 2406
        parent_block_var = parent_block.create_var(dtype=var.dtype,
                                                   shape=var.shape,
                                                   type=var.type)
2407
        assign(var, parent_block_var)
2408 2409 2410
    return parent_block_var


2411
def cond(pred, true_fn=None, false_fn=None, name=None, return_names=None):
2412
    """
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
    
    Note: 
2424 2425 2426 2427
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

2428 2429 2430 2431 2432 2433 2434
        2. This API could be used under both static mode or dygraph mode. If it
        is in dygraph mode, the API only runs one branch based on condition.

        3. If it is in static mode, any tensors or operations created outside 
        or inside of ``true_fn`` and ``false_fn`` will be in net building
        regardless of which branch is selected at runtime. This has frequently
        surprised users who expected a lazy semantics. For example:
2435 2436

        .. code-block:: python
2437 2438 2439 2440 2441

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
2442
            c = a * b
2443
            out = paddle.static.nn.cond(a < b, lambda: a + c, lambda: b * b)
2444

2445 2446 2447
        No matter whether ``a < b`` , ``c = a * b`` will be in net building and
        run. ``a + c`` and ``b * b`` will be in net building, but only one
        branch will be executed during runtime.
2448 2449

    Args:
2450
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2451
            value determines whether to return the result of ``true_fn`` or
2452 2453 2454 2455 2456
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
2457
        return_names: A list of strings to represents the name of returned vars. useful to debug.
2458
        name(str, optional): The default value is ``None`` . Normally users
2459
             don't have to set this parameter. For more information, please
2460 2461 2462
             refer to :ref:`api_guide_Name` .

    Returns:
2463
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2464
        predicate ``pred`` is true else ``false_fn()`` .
2465 2466 2467

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2468 2469
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2470 2471 2472 2473

    Examples:
        .. code-block:: python

2474
            import paddle
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
2485 2486 2487 2488
                return paddle.full(shape=[1, 2], dtype='int32',
                                   fill_value=1), paddle.full(shape=[2, 3],
                                                              dtype='bool',
                                                              fill_value=True)
2489

2490 2491

            def false_func():
2492 2493 2494 2495 2496
                return paddle.full(shape=[3, 4], dtype='float32',
                                   fill_value=3), paddle.full(shape=[4, 5],
                                                              dtype='int64',
                                                              fill_value=2)

2497

2498 2499
            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
2500
            pred = paddle.less_than(x=x, y=y, name=None)
2501
            ret = paddle.static.nn.cond(pred, true_func, false_func)
2502
            # ret is a tuple containing 2 tensors
2503 2504
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2505
            #           [ True  True  True]]            
2506

2507
    """
J
Jiabin Yang 已提交
2508
    if _non_static_mode():
2509
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
C
crystal 已提交
2510
        assert pred.size == 1, "condition input's numel should be 1"
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
                        "The true_fn in cond must be callable, but received {}".
                        format(type(true_fn).__name__))
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
2523 2524
                        "The false_fn in cond must be callable, but received {}"
                        .format(type(false_fn).__name__))
2525 2526 2527
                return false_fn()
        return None

2528 2529
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2530 2531 2532
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2533
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2534 2535
    if true_fn is not None:
        if not callable(true_fn):
2536 2537 2538
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
                    type(true_fn).__name__))
2539 2540 2541 2542
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2543
                true_output = map_structure(copy_to_parent_func,
2544 2545 2546
                                            origin_true_output)
    if false_fn is not None:
        if not callable(false_fn):
2547 2548 2549
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
                    type(false_fn).__name__))
2550 2551
        false_cond_block = ConditionalBlock([logical_not(pred)],
                                            is_scalar_condition=True)
2552 2553 2554
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2555
                false_output = map_structure(copy_to_parent_func,
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
                                             origin_false_output)

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns None while false_fn returns non-None")
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns non-None while false_fn returns None")

    # Merge ture and false output if they are not None
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
    if return_names is None:
        return_names = ["no name"] * len(to_sequence(true_output))
    else:
        """ 
        dy2static will set the return_names and expand the return values to UndefinedVar.
        """
        true_output, false_output = expand_undefined_var(
            true_output, false_output, return_names)
        true_output, false_output = change_none_to_undefinedvar(
            true_output, false_output)
    if len(to_sequence(true_output)) != len(to_sequence(false_output)):
2582
        raise ValueError(
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
            "true fn returns {} vars, but false fn returns {} vars, which is not equals"
            .format(len(to_sequence(true_output)),
                    len(to_sequence(false_output))))
    for true_out, false_out, return_name in zip(to_sequence(true_output),
                                                to_sequence(false_output),
                                                to_sequence(return_names)):
        try:
            assert_same_structure(true_out, false_out, check_types=False)
        except ValueError as e:
            raise ValueError(
                "Incompatible return values of `{}` in true_fn and false_fn in cond: {}"
                .format(return_name, e))
2595 2596

    mask = cast(pred, dtype='int32')
2597 2598
    merge_func = lambda false_var, true_var: select_input_with_buildin_type(
        [false_var, true_var], mask)
2599 2600 2601 2602
    merged_output = map_structure(merge_func, false_output, true_output)
    return merged_output


2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
def change_none_to_undefinedvar(nest1, nest2):
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar

    def map_fn(x):
        if x is None: return UndefinedVar("padding")
        return x

    nest1_out = pack_sequence_as(nest1, list(map(map_fn, flatten(nest1))))
    nest2_out = pack_sequence_as(nest2, list(map(map_fn, flatten(nest2))))
    return nest1_out, nest2_out


def expand_undefined_var(nest1, nest2, names):
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_VALUE_PREFIX

    def pack_undefined_var_as(seq):
        return pack_sequence_as(seq,
                                [UndefinedVar("padding") for i in flatten(seq)])

    def map_fn(n1, n2, name):
        if not name.startswith(RETURN_VALUE_PREFIX) and (isinstance(
                n1, UndefinedVar) or n1 is None):
            return pack_undefined_var_as(n2)
        return n1

    nest1_out = list(
        map(map_fn, to_sequence(nest1), to_sequence(nest2), to_sequence(names)))
    nest2_out = list(
        map(map_fn, to_sequence(nest2), to_sequence(nest1), to_sequence(names)))
    if not is_sequence(nest1): nest1_out = nest1_out[0]
    if not is_sequence(nest2): nest2_out = nest2_out[0]
    return nest1_out, nest2_out


L
liym27 已提交
2638
def _error_message(what, arg_name, op_name, right_value, error_value):
2639
    error_message = "{what} of '{arg_name}' in {op_name} must be " \
L
liym27 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
        "{right_value}, but received: {error_value}.".format(
        what=what,
        arg_name=arg_name,
        op_name=op_name,
        right_value=right_value,
        error_value=error_value)

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
2652 2653
    :api_attr: Static Graph

L
liym27 已提交
2654 2655 2656 2657 2658 2659 2660 2661
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2662
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
L
liym27 已提交
2663 2664 2665 2666 2667 2668 2669
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
2670
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
L
liym27 已提交
2671 2672 2673 2674 2675 2676
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

2677 2678 2679
            import paddle

            paddle.enable_static()
L
liym27 已提交
2680 2681

            def fn_1():
2682
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
2683 2684

            def fn_2():
2685
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
2686 2687

            def fn_3():
2688
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
2689

2690 2691 2692 2693
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
2694 2695 2696
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)
L
liym27 已提交
2697

2698 2699 2700
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1
L
liym27 已提交
2701 2702

                # Call fn_1 because pred_1 is True
2703
                out_1 = paddle.static.nn.case(
L
liym27 已提交
2704 2705 2706 2707
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
2708
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
L
liym27 已提交
2709

2710
                exe = paddle.static.Executor(paddle.CPUPlace())
L
liym27 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
2721
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
2722 2723 2724 2725 2726

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
                    _error_message("The elements' type", "pred_fn_pairs",
2727
                                   "case", tuple, type(pred_fn)))
L
liym27 已提交
2728 2729 2730
            if len(pred_fn) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "pred_fn_pairs", "case",
2731 2732
                                   "2",
                                   str(len(pred_fn)) + "-tuple"))
L
liym27 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
                    _error_message("The pred's type", "pred_fn_pairs", "case",
                                   "boolean Variable", type(pred)))

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
                    " be callable.".format(pred.name))

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


2765
class Switch(object):
Q
qiaolongfei 已提交
2766
    """
2767
    :api_attr: Static Graph
Q
qiaolongfei 已提交
2768

2769 2770 2771 2772 2773 2774 2775
    This class is used to implement Switch branch control function. 
    Switch branch contains several case branches and one default branch. 
    Switch control flow checks whether the case branch conditions are satisfied in turn, 
    and only executes the statement after the first case branch that satisfies the conditions. 
    If there is no case branch that satisfies the condition, 
    only the statement following the default branch is executed.

2776 2777 2778 2779
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

2780
    Member Functions:
2781
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
2782 2783 2784 2785 2786 2787
        
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
2788

2789 2790 2791 2792 2793 2794 2795 2796 2797
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
2798

2799 2800
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
2801 2802 2803

    Examples:
        .. code-block:: python
2804 2805
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
2806

2807
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
2808 2809 2810 2811 2812
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
2813
            zero_var = fluid.layers.fill_constant(
2814
                shape=[1], dtype='float32', value=0.0)
2815
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
2816
                shape=[1], dtype='float32', value=1.0)
2817
            two_var = fluid.layers.fill_constant(
2818
                shape=[1], dtype='float32', value=2.0)
2819

2820
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
2821 2822

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
2823
                with switch.case(global_step == zero_var):
2824
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
2825
                with switch.default():
2826
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
2827

2828 2829 2830 2831 2832
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
2833 2834
    """

2835 2836 2837 2838 2839 2840 2841 2842 2843
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

2844 2845 2846 2847
        check_variable_and_dtype(
            condition, 'condition', ['bool'],
            'the member function case of fluid.layers.Switch')

2848 2849 2850 2851 2852 2853 2854
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
2855 2856
            new_not_cond = logical_and(x=pre_not_cond,
                                       y=logical_not(x=condition))
2857 2858
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
2859
                [logical_and(x=pre_not_cond, y=condition)],
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
2887 2888 2889


class IfElseBlockGuard(object):
2890

Y
Yu Yang 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
2924
    """
2925 2926
    :api_attr: Static Graph

2927 2928 2929 2930
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

2931 2932 2933 2934
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
        
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
        
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)] 

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
2976
        print(res)
2977
        # [array([-1.], dtype=float32)] 
X
Xin Pan 已提交
2978 2979

    Args:
2980 2981
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
2982

2983 2984
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
2985

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
 
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
2996

X
Xin Pan 已提交
2997
    """
Y
Yu Yang 已提交
2998 2999 3000 3001
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

3002
    def __init__(self, cond, name=None):
3003 3004
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
3005
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
3017
            parent_block = self._parent_block()
Y
Yu Yang 已提交
3018
            out_true = parent_block.create_var(
3019 3020
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
3021
                dtype=x.dtype)
Y
Yu Yang 已提交
3022 3023

            out_false = parent_block.create_var(
3024 3025
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
3026
                dtype=x.dtype)
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
            parent_block.append_op(type='split_lod_tensor',
                                   inputs={
                                       'X': x,
                                       'Mask': self.cond,
                                   },
                                   outputs={
                                       'OutTrue': out_true,
                                       'OutFalse': out_false
                                   },
                                   attrs={'level': 0})
Y
Yu Yang 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

3046
    def _parent_block(self):
Y
Yu Yang 已提交
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
3062
        parent_block = self._parent_block()
Y
Yu Yang 已提交
3063
        for each_out in outs:
3064 3065
            check_type(each_out, "each output", Variable,
                       "fluid.layers.IfElse.output")
Y
Yu Yang 已提交
3066 3067
            # create outside tensor
            outside_out = parent_block.create_var(
3068
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
3069
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
3070
                dtype=each_out.dtype)
Y
Yu Yang 已提交
3071 3072 3073
            out_table.append(outside_out)

            # assign local var to outside
3074
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
3075 3076 3077 3078

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
3079
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
3093 3094 3095 3096 3097
                merge_lod_tensor(in_true=true_var,
                                 in_false=false_var,
                                 mask=self.cond,
                                 x=self.cond,
                                 level=0))
Y
Yu Yang 已提交
3098
        return rlist
3099 3100 3101


class DynamicRNN(object):
Y
yuyang18 已提交
3102
    """
3103 3104
    :api_attr: Static Graph

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
T
tianshuo78520a 已提交
3117
    The input sequences will be shrank because only sequences of which the
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
3130

3131 3132 3133 3134
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
3135 3136 3137 3138

    Examples:
        .. code-block:: python

3139
            import paddle.fluid as fluid
3140

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
3167
    """
3168 3169 3170 3171
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

3172 3173
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
3174 3175 3176 3177
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
3178
        self.zero_idx = None
3179 3180 3181
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
3182
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
3183 3184 3185 3186 3187
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

3188
    def step_input(self, x, level=0):
3189
        r"""
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
3233

Y
yuyang18 已提交
3234
        Args:
3235 3236 3237 3238 3239 3240 3241
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
3242 3243

        Returns:
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3278
        """
3279
        self._assert_in_rnn_block_("step_input")
3280
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.step_input()')
3281 3282 3283
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
3284
                name=unique_name.generate('lod_rank_table'),
3285 3286
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
3287 3288 3289 3290
            parent_block.append_op(type='lod_rank_table',
                                   inputs={"X": x},
                                   outputs={"Out": self.lod_rank_table},
                                   attrs={"level": level})
3291
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
3292 3293
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
3294
            self.max_seq_len.stop_gradient = False
3295 3296 3297
            parent_block.append_op(type='max_sequence_len',
                                   inputs={'RankTable': self.lod_rank_table},
                                   outputs={"Out": self.max_seq_len})
3298
            self.cond.stop_gradient = True
3299 3300 3301 3302 3303 3304 3305
            parent_block.append_op(type='less_than',
                                   inputs={
                                       'X': self.step_idx,
                                       'Y': self.max_seq_len
                                   },
                                   outputs={'Out': self.cond},
                                   attrs={'force_cpu': True})
3306 3307

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
3308
            name=unique_name.generate('dynamic_rnn_input_array'),
3309 3310 3311
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
3312 3313 3314 3315 3316 3317
        parent_block.append_op(type='lod_tensor_to_array',
                               inputs={
                                   'X': x,
                                   'RankTable': self.lod_rank_table
                               },
                               outputs={'Out': input_array})
3318
        return array_read(array=input_array, i=self.step_idx)
3319

Y
yangyaming 已提交
3320
    def static_input(self, x):
3321
        r"""
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
3395

Y
yuyang18 已提交
3396
        Args:
3397 3398 3399 3400
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
3401 3402

        Returns:
T
tianshuo78520a 已提交
3403
            Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
3415 3416 3417 3418

        Examples:
            .. code-block:: python

3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3445
        """
Y
yangyaming 已提交
3446
        self._assert_in_rnn_block_("static_input")
3447
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.static_input()')
Y
yangyaming 已提交
3448 3449 3450 3451 3452
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3453
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
3454 3455
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
3456 3457 3458 3459 3460 3461
        parent_block.append_op(type='reorder_lod_tensor_by_rank',
                               inputs={
                                   'X': [x],
                                   'RankTable': [self.lod_rank_table]
                               },
                               outputs={'Out': [x_reordered]})
Y
yangyaming 已提交
3462 3463
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
3464
    @signature_safe_contextmanager
3465
    def block(self):
Y
yuyang18 已提交
3466
        """
3467 3468 3469 3470 3471 3472
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
3473
        """
3474 3475
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
3476 3477 3478 3479
        self.step_idx = fill_constant(shape=[1],
                                      dtype='int64',
                                      value=0,
                                      force_cpu=True)
3480 3481 3482 3483
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
3484
            increment(x=self.step_idx, value=1.0, in_place=True)
3485 3486

            for new_mem, mem_array in self.mem_link:
3487 3488
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

3489 3490 3491 3492
            less_than(x=self.step_idx,
                      y=self.max_seq_len,
                      force_cpu=True,
                      cond=self.cond)
3493 3494 3495 3496

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
3497
                array_to_lod_tensor(x=each_array, table=self.lod_rank_table))
3498 3499

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
3500
        """
T
tianshuo78520a 已提交
3501
        This function is used to get the output  sequences of DynamicRNN.
3502 3503 3504 3505 3506 3507 3508 3509 3510

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
3511
        """
3512
        if self.status != DynamicRNN.AFTER_RNN:
3513 3514
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
3515 3516 3517 3518 3519
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

3520 3521 3522 3523 3524 3525
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
3526
        r"""
3527 3528 3529
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
3530

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
T
tianshuo78520a 已提交
3543
            value (float, optional): When init is None, it is used as initialized value
3544 3545
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
T
tianshuo78520a 已提交
3546
                the memory needs to reorder like the RNN's input sequences. It should be
3547 3548 3549 3550 3551 3552 3553
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
T
tianshuo78520a 已提交
3554
            Variable: The memory LoDTensor after shrank.  If there are :code:`num_sequences` \
3555
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
T
tianshuo78520a 已提交
3556
                the memory Tensor also need to be shrank and will only retain data \
3557 3558 3559 3560 3561 3562
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3563

3564 3565 3566
        Examples:
            .. code-block:: python

3567
                import paddle.fluid as fluid
3568

3569 3570
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
3571

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
3583

3584 3585
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3586 3587


3588 3589
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
3590

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3610
        """
3611
        self._assert_in_rnn_block_('memory')
3612
        self._init_zero_idx_()
3613 3614 3615
        if shape is not None:
            check_type(shape, 'shape', (list, tuple),
                       'fluid.layers.DynamicRNN.memory()')
3616
        if init is not None:
3617 3618
            check_type(init, 'init', Variable,
                       'fluid.layers.DynamicRNN.memory()')
3619
            parent_block = self._parent_block_()
3620 3621 3622 3623 3624 3625 3626 3627
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3628
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
3629 3630
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
3631 3632 3633 3634 3635 3636
                parent_block.append_op(type='reorder_lod_tensor_by_rank',
                                       inputs={
                                           'X': [init_tensor],
                                           'RankTable': [self.lod_rank_table]
                                       },
                                       outputs={'Out': [init_reordered]})
3637
                init_tensor = init_reordered
3638
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
3639
                name=unique_name.generate('dynamic_rnn_mem_array'),
3640 3641
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
3642 3643 3644 3645 3646 3647
            parent_block.append_op(type='write_to_array',
                                   inputs={
                                       'X': init_tensor,
                                       'I': self.zero_idx
                                   },
                                   outputs={'Out': mem_array})
3648
            retv = array_read(array=mem_array, i=self.step_idx)
3649 3650 3651
            retv = shrink_memory(x=retv,
                                 i=self.step_idx,
                                 table=self.lod_rank_table)
3652 3653 3654 3655 3656 3657 3658 3659 3660
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
3661
                name=unique_name.generate('mem_init'), dtype=dtype)
3662
            arr, dtype = self.input_array[0]
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
            in0 = parent_block.create_var(name=unique_name.generate('in0'),
                                          dtype=dtype)
            parent_block.append_op(type='read_from_array',
                                   inputs={
                                       'X': [arr],
                                       'I': [self.zero_idx]
                                   },
                                   outputs={'Out': [in0]})
            parent_block.append_op(type='fill_constant_batch_size_like',
                                   inputs={'Input': [in0]},
                                   outputs={'Out': [init]},
                                   attrs={
                                       'shape': [-1] + shape,
                                       'value': float(value),
                                       'dtype': init.dtype
                                   })
3679 3680 3681
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
3682
        """
3683 3684
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
3685
        Args:
3686 3687 3688
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
3689 3690 3691

        Returns:
            None
3692 3693 3694 3695 3696 3697
        
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3698
        """
3699
        self._assert_in_rnn_block_('update_memory')
3700 3701 3702 3703
        check_type(ex_mem, 'ex_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
        check_type(new_mem, 'new_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
3714
        """
3715
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
3716 3717

        Args:
3718 3719
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
3720 3721 3722

        Returns:
            None
3723 3724 3725

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
3726
        """
3727 3728 3729
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
3730 3731
            check_type(each, "outputs", Variable,
                       "fluid.layers.DynamicRNN.output")
3732
            outside_array = parent_block.create_var(
3733
                name=unique_name.generate_with_ignorable_key("_".join(
3734 3735 3736 3737 3738 3739
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

3740 3741 3742 3743 3744
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
3745 3746 3747 3748 3749 3750 3751 3752 3753
            parent_block.append_op(type='fill_constant',
                                   inputs={},
                                   outputs={'Out': [self.zero_idx]},
                                   attrs={
                                       'shape': [1],
                                       'dtype': self.zero_idx.dtype,
                                       'value': float(0),
                                       'force_cpu': True
                                   })
3754

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
3765 3766
            raise ValueError(
                "{0} can only be invoked inside rnn block.".format(method))
Y
Yang Yu 已提交
3767 3768


L
liym27 已提交
3769 3770
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
3771 3772
    :api_attr: Static Graph

L
liym27 已提交
3773 3774 3775
    This operator is like a C++ switch/case statement.

    Args:
3776
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
L
liym27 已提交
3777 3778 3779 3780 3781
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3782
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
L
liym27 已提交
3783 3784 3785 3786
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
3787
        TypeError: If the type of ``branch_index`` is not Tensor.
L
liym27 已提交
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

3799 3800 3801
            import paddle

            paddle.enable_static()
3802

L
liym27 已提交
3803
            def fn_1():
3804
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
3805 3806

            def fn_2():
3807
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
3808 3809

            def fn_3():
3810
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
3811

3812 3813 3814
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
3815 3816
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)
L
liym27 已提交
3817

3818
                out_1 = paddle.static.nn.switch_case(
L
liym27 已提交
3819 3820 3821 3822
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

3823
                out_2 = paddle.static.nn.switch_case(
L
liym27 已提交
3824 3825 3826 3827 3828
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
3829
                out_3 = paddle.static.nn.switch_case(
L
liym27 已提交
3830 3831 3832
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

3833
                exe = paddle.static.Executor(paddle.CPUPlace())
3834
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
3835 3836 3837 3838 3839 3840 3841 3842
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

3843 3844
        check_variable_and_dtype(branch_index, 'branch_index',
                                 ['uint8', 'int32', 'int64'], 'switch_case')
L
liym27 已提交
3845 3846 3847 3848

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

3849
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861

        branch_fns = branch_fns.items() if isinstance(branch_fns,
                                                      dict) else branch_fns

        branch_fns = list(enumerate(branch_fns)) if all(
            callable(fn) for fn in branch_fns) else branch_fns

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
                    _error_message("The elements' type", "branch_fns",
3862
                                   "switch_case", tuple, type(branch_fns)))
L
liym27 已提交
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874

            if len(index_fn_pair) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "branch_fns",
                                   "switch_case", "2",
                                   str(len(index_fn_pair)) + "-tuple"))

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
                    _error_message("The key's type", "branch_fns",
3875
                                   "switch_case", int, type(key)))
L
liym27 已提交
3876 3877 3878

            if key in keys_of_fns:
                raise ValueError(
3879 3880
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once."
                    .format(key))
L
liym27 已提交
3881 3882 3883 3884 3885
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
3886 3887 3888
                    _error_message(
                        "The type of function for key {}".format(key),
                        "branch_fns", "switch_case", "callable", type(fn)))
L
liym27 已提交
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


3913
@templatedoc()
Y
Yang Yu 已提交
3914
def reorder_lod_tensor_by_rank(x, rank_table):
3915 3916 3917 3918
    """
    ${comment}

    Args:
3919 3920
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
3921 3922
    
    Returns:
3923
        out(${out_type}): ${out_comment}.
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
3937 3938 3939 3940 3941 3942 3943

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
    check_type(rank_table, 'rank_table', (Variable),
               'reorder_lod_tensor_by_rank')
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
3944 3945
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
3946
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3947 3948 3949 3950 3951 3952
    helper.append_op(type='reorder_lod_tensor_by_rank',
                     inputs={
                         'X': [x],
                         'RankTable': [rank_table]
                     },
                     outputs={'Out': [out]})
Y
Yang Yu 已提交
3953
    return out
3954 3955


3956
def is_empty(x, name=None):
3957
    """
3958

3959
    Test whether a Tensor is empty.
3960 3961

    Args:
3962 3963 3964 3965
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .
3966 3967

    Returns:
3968
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.
3969 3970 3971 3972

    Examples:
        .. code-block:: python

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])
3984

3985
    """
H
hong 已提交
3986 3987 3988
    if in_dygraph_mode():
        return _C_ops.final_state_is_empty(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3989
        return _C_ops.is_empty(x)
3990

3991 3992
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'is_empty')
3993 3994
    check_type(name, "name", (str, type(None)), "is_empty")

3995
    helper = LayerHelper("is_empty", **locals())
3996 3997
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
3998 3999 4000
    helper.append_op(type='is_empty',
                     inputs={'X': [x]},
                     outputs={'Out': [cond]})
4001
    return cond