control_flow.py 154.1 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18
from .layer_function_generator import autodoc, templatedoc
19
from .tensor import assign, cast, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator, in_dygraph_mode, static_only
22
from ..layer_helper import LayerHelper, unique_name
M
minqiyang 已提交
23
from .nn import logical_and, logical_not, logical_or
24
from .utils import assert_same_structure, map_structure, hold_mutable_vars, copy_mutable_vars
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
L
liym27 已提交
28
from functools import reduce, partial
29
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
30 31
from ... import compat as cpt
from ..backward import _infer_var_data_type_shape_
D
dzhwinter 已提交
32

Q
QI JUN 已提交
33
__all__ = [
W
Wu Yi 已提交
34
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
35
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
36
    'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN',
H
Huihuang Zheng 已提交
37 38
    'reorder_lod_tensor_by_rank', 'Print', 'Assert', 'is_empty', 'case',
    'switch_case', 'while_loop'
D
dzhwinter 已提交
39 40
]

Y
Yu Yang 已提交
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
def select_output(input, outputs, mask):
    """
    **select_output**    
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
59 60 61 62
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    helper.append_op(
        type='select_output',
        inputs={'X': input,
                'Mask': mask},
        outputs={'Out': outputs})
    return outputs


def select_input(inputs, mask):
    """
    **select_input**
    
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
87 88 89 90 91 92
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

    input_dtype = inputs[0].dtype
    input_shape = inputs[0].shape
    input_type = inputs[0].type
93 94 95

    out = helper.create_variable(
        dtype=input_dtype, shape=input_shape, type=input_type)
96 97 98 99 100 101 102 103
    helper.append_op(
        type='select_input',
        inputs={'X': inputs,
                'Mask': mask},
        outputs={'Out': out})
    return out


104
def split_lod_tensor(input, mask, level=0):
105 106 107 108
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
109 110
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
111 112

    Args:
113
        input(Variable|tuple|list|None): The input tensor that contains complete
114
                                lod information needed to construct the output.
115
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
116
        level(int): The specific lod level to split.
117 118

    Returns:
Q
qiaolongfei 已提交
119 120 121 122
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
123 124 125 126

    Examples:
        .. code-block:: python

127
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
128
          x = fluid.layers.data(name='x', shape=[1])
129 130
          x.persistable = True

Q
qiaolongfei 已提交
131
          y = fluid.layers.data(name='y', shape=[1])
132 133
          y.persistable = True

Q
qiaolongfei 已提交
134
          out_true, out_false = fluid.layers.split_lod_tensor(
135
                input=x, mask=y, level=level)
136

137
    """
138 139 140 141
    check_type(input, 'input', (Variable, list, tuple, type(None)),
               'fluid.layers.split_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
142
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
143 144
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
145 146 147 148 149 150 151 152 153 154 155 156
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


157
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
158 159 160 161 162
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
163 164 165
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
166 167

    Args:
168 169 170
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
171
                            lod information needed to construct the output.
172
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
173
        level(int): The specific lod level to merge.
174 175 176 177 178 179 180

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

181
          import paddle.fluid as fluid
182 183 184 185 186 187 188 189 190 191 192 193
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
194
    helper = LayerHelper('merge_lod_tensor', **locals())
195 196 197 198 199 200 201
    check_type(x, 'x', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
    check_type(in_true, 'in_true', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(in_false, 'in_false', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
X
Xin Pan 已提交
202
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
203 204 205 206 207 208 209 210 211 212 213
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


214
@static_only
Y
Yan Chunwei 已提交
215 216 217
def Print(input,
          first_n=-1,
          message=None,
218
          summarize=20,
Y
Yan Chunwei 已提交
219 220 221
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
222
          print_tensor_layout=True,
Y
yangyaming 已提交
223 224
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
225
    '''
226 227
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
228 229 230 231 232 233 234 235 236
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
237
        input (Variable): A Tensor to print.
238
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
239
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
240 241
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
242 243 244
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
245
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
246
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
247
        print_phase (str): Which phase to displace, including 'forward',
248 249 250
                'backward' and 'both'. Default: 'both'. If set to 'backward', will 
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
251 252

    Returns:
253
        Variable: Output tensor.
Y
Yan Chunwei 已提交
254

255 256 257 258
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
259

Y
Yan Chunwei 已提交
260 261
    Examples:
        .. code-block:: python
262
           
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
           import paddle

           paddle.enable_static()
        
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
281
    '''
282 283 284
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64', 'bool'],
                             'fluid.layers.Print')
285

286 287
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
Y
Yan Chunwei 已提交
288 289
    helper.append_op(
        type='print',
Y
yangyaming 已提交
290
        inputs={'In': input},
291
        outputs={'Out': output},
Y
Yan Chunwei 已提交
292 293 294 295 296 297 298
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
299
            'print_tensor_layout': print_tensor_layout,
Y
Yan Chunwei 已提交
300
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
301
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
302
        })
303
    return output
Y
Yan Chunwei 已提交
304 305


H
Huihuang Zheng 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

    op = helper.append_op(
        type="assert",
        inputs={"Cond": cond,
                "Data": [] if data is None else list(data)},
        attrs={"summarize": summarize})

    return op


Y
Yu Yang 已提交
378 379
class BlockGuard(object):
    """
380 381 382 383
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
384 385
    """

386 387
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
388
            raise TypeError("BlockGuard takes a program")
389
        self.main_program = main_program
Y
Yu Yang 已提交
390 391

    def __enter__(self):
W
Wu Yi 已提交
392
        self.main_program._create_block()
Y
Yu Yang 已提交
393 394

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
395
        self.main_program._rollback()
Y
Yu Yang 已提交
396 397 398 399 400
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
401 402 403 404 405
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
406 407
    """

Y
Yu Yang 已提交
408
    def __init__(self, rnn):
X
Xin Pan 已提交
409
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
410
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
411
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
412 413 414 415
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
416
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
417 418

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
419 420
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
421
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
422
        self.rnn._complete_op()
Y
Yang Yang 已提交
423 424
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
425 426 427 428


class StaticRNNMemoryLink(object):
    """
429 430 431 432
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
433 434 435 436 437 438 439 440 441


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
442 443 444 445 446 447 448 449 450
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
451
    """
452 453
    :api_attr: Static Graph

454 455
    StaticRNN class.

456 457 458 459 460 461 462
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
463 464

    Examples:
465 466 467 468 469 470
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
471 472
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
473 474 475 476 477
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
478
            # transform batch size to dim 1
479 480 481 482
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
483
                # mark created x_emb as input, each step process a word
484
                word = rnn.step_input(x_emb)
485
                # create prev memory parameter, batch size comes from word
486 487
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
488 489 490
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
                # mark hidden as output 
491
                rnn.step_output(hidden)
492
            # get StaticrNN final output
493
            result = rnn()
C
chengduo 已提交
494

495
    """
Y
Yu Yang 已提交
496 497 498 499
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

500
    def __init__(self, name=None):
501
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
502
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
503 504 505 506 507 508 509 510
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
511
        """
512 513
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
514
        """
Y
Yang Yang 已提交
515
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
516 517 518 519 520

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

521 522 523 524 525 526 527
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
528
        """
C
chengduo 已提交
529 530 531
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
532 533
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
534

535
        Args:
536
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
537 538
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
539 540 541 542 543 544 545
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
546 547

        Returns:
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)


        Examples 2:
579 580
            .. code-block:: python

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers
            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
            	boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
            		# mark created x_emb as input, each step process a word
            		word = rnn.step_input(x_emb)
            		# init memory
            		prev = rnn.memory(init=boot_memory)
            		hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
            		# update hidden with prev
            		rnn.update_memory(prev, hidden)

604
        """
Y
Yu Yang 已提交
605
        self._assert_in_rnn_block_('memory')
606 607 608 609 610 611
        check_type(init, "init", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(shape, "shape", (list, tuple, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(batch_ref, "batch_ref", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
Y
Yu Yang 已提交
612
        if init is None:
613
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
614
                raise ValueError(
615
                    "if init is None, memory at least need shape and batch_ref")
616
            parent_block = self._parent_block()
617
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
618
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
619
            boot_var = parent_block.create_var(
620 621
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
622
                dtype=batch_ref.dtype,
623
                persistable=False)
Y
Yu Yang 已提交
624 625

            parent_block.append_op(
626 627
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
628 629 630
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
631
                    'shape': boot_var.shape,
F
fengjiayi 已提交
632
                    'dtype': boot_var.dtype,
633 634
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
635 636 637 638 639
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
640 641
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
642
                dtype=init.dtype,
Y
Yu Yang 已提交
643 644 645 646 647 648
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
649 650 651 652 653 654 655 656
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)

C
chengduo 已提交
686
        """
Y
Yu Yang 已提交
687
        self._assert_in_rnn_block_('step_input')
688
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
689
        if self.seq_len is None:
Y
Yu Yang 已提交
690
            self.seq_len = x.shape[0]
691
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
692 693 694
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
695
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
696 697 698 699
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
700 701 702 703 704 705 706 707
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
               		dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
               		word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	rnn.step_output(hidden)

            	result = rnn()

C
chengduo 已提交
739
        """
Y
Yu Yang 已提交
740
        self._assert_in_rnn_block_('step_output')
741
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
742

X
Xin Pan 已提交
743
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
744 745 746 747
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
748
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
749

750
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
751 752
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
753
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
754 755 756 757

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
758 759 760 761
        """
        Mark the StaticRNN output variables.

        Args:
762
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
763 764 765

        Returns:
            None
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	# mark each step's hidden and word as output
                	rnn.output(hidden, word)

            	result = rnn()
C
chengduo 已提交
797
        """
Y
Yu Yang 已提交
798 799 800 801
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
802
        """
803
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
804 805 806

        Args:
            mem(Variable): the memory variable.
807
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
808
                           var and mem should have same dims and data type.
C
chengduo 已提交
809 810 811

        Returns:
            None
812

C
chengduo 已提交
813
        """
814 815
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
816 817
        self.memories[mem.name].mem = var

818
    def _parent_block(self):
819
        prog = self.helper.main_program
Y
Yu Yang 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

835
    def _complete_op(self):
836 837
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
838
        parent_block = self._parent_block()
Y
Yu Yang 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
853 854 855
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
856 857 858 859 860 861 862 863
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

864
        parameters = [parent_block.var(name) for name in set(params)]
Y
Yu Yang 已提交
865 866 867 868 869 870 871

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
872
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
873 874 875
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
876
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
877 878
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
879 880
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
881 882
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
883 884
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
885 886 887 888
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
889
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
903
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
904 905
                'ex_states': pre_memories,
                'states': memories,
906
                'sub_block': rnn_block
Y
Yu Yang 已提交
907
            })
Y
Yu Yang 已提交
908 909


Y
Yang Yang(Tony) 已提交
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
925
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
926 927 928
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
def get_inputs_outputs_in_block(current_block, inner_inputs, inner_outputs,
                                helper):
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
                if in_var_name not in inner_outputs:
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
        if not parent_block_var and current_block_var and \
                current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


Y
Yang Yang(Tony) 已提交
972
class While(object):
X
Xin Pan 已提交
973
    """
974 975
    :api_attr: Static Graph
    
976
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
977

978 979 980 981
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

982 983 984 985 986 987
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
988
    Args:
989
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
990
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
991
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
992

993
    Examples 1:
X
Xin Pan 已提交
994
          .. code-block:: python
995 996
            
            import paddle.fluid as fluid
997 998 999 1000 1001
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1002

1003
            cond = fluid.layers.less_than(x=i, y=loop_len)
1004
            while_op = fluid.layers.While(cond=cond)
1005
            with while_op.block():
1006
                i = fluid.layers.increment(x=i, value=1, in_place=True)
1007
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)
1008 1009 1010 1011 1012

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = fluid.layers.less_than(x=i, y=loop_len)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1042 1043
    """

Y
Yang Yang(Tony) 已提交
1044 1045 1046 1047
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1048
    def __init__(self, cond, is_test=False, name=None):
1049
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1050
        self.status = While.BEFORE_WHILE_BLOCK
1051
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1052
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1053
            raise TypeError(
1054
                "condition expected shape as [1], but given shape as {0}.".
1055
                format(list(cond.shape)))
Y
Yang Yang(Tony) 已提交
1056
        self.cond_var = cond
C
chengduo 已提交
1057
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1058 1059 1060 1061

    def block(self):
        return WhileGuard(self)

1062
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1063 1064 1065 1066 1067 1068 1069
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1070 1071
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
            while_block, x_name_list, inner_outputs, self.helper)
Y
Yang Yang(Tony) 已提交
1072 1073 1074

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1075 1076 1077
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1078 1079 1080 1081 1082 1083 1084

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
1085 1086 1087 1088
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
1089 1090 1091 1092
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
1093 1094
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
1095 1096


1097
def assign_skip_lod_tensor_array(input, output):
1098
    """
1099
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1100
    """
1101 1102 1103 1104 1105 1106 1107 1108
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
        assign(input, output)
1109 1110


G
guofei 已提交
1111
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1112
    """
1113 1114
    :api_attr: Static Graph

G
guofei 已提交
1115 1116
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1117 1118 1119 1120
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1121
    Args:
1122 1123 1124 1125 1126
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
	    as many arguments as ``loop_vars`` .
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1127
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1128 1129
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1130

G
guofei 已提交
1131
    Returns:
1132
        A list or tuple of tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
    
    Returen type:
        list(Variable)|tuple(Variable).

    Raises:
        TypeError: If the type of ``cond`` is not callable.
        TypeError: If the type of ``body`` is not callable.
        TypeError: If the type of ``loop_vars`` is not list or tuple.
        TypeError: If the type of ``cond`` returns is not Variable.
        TypeError: If the type of ``cond`` returns is not a boolean variable.
        TypeError: If the shape of ``cond`` returns is not equals 1.
        ValueError: If the ``var_loops`` is empty.
1145
        ValueError: If the length or type of ``body`` returns is not same as ``loop_vars``.
G
guofei 已提交
1146 1147 1148 1149 1150 1151

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
1152 1153 1154
            import paddle
            paddle.enable_static()

G
guofei 已提交
1155

1156 1157
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1158

1159 1160 1161
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1162 1163 1164 1165 1166 1167

            main_program = fluid.default_main_program()
            startup_program = fluid.default_startup_program()
            with fluid.program_guard(main_program, startup_program):
                i = layers.fill_constant(shape=[1], dtype='int64', value=0)     # loop counter
                ten = layers.fill_constant(shape=[1], dtype='int64', value=10)  # loop length
1168
                i, ten = layers.while_loop(cond, body, [i, ten])
G
guofei 已提交
1169 1170
                
                exe = fluid.Executor(fluid.CPUPlace())
1171
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1172 1173 1174 1175 1176 1177 1178 1179
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1180
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1181 1182 1183 1184
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1185 1186
    check_variable_and_dtype(pre_cond, 'var of cond returned', ['bool'],
                             'fluid.layers.while_loop')
G
guofei 已提交
1187 1188
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1189
            "the shape of the variable returned by cond should be [1],"
G
guofei 已提交
1190 1191
            "but given shape as {0}.".format(list(pre_cond.shape)))

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    if in_dygraph_mode():
        now_cond = pre_cond.numpy()[0]
        while (now_cond):
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
                    "(length and structure) and types as loop_vars")
            now_cond = cond(*output_vars).numpy()[0]
1203
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1204 1205
        return loop_vars

G
guofei 已提交
1206
    while_loop_block = While(pre_cond, is_test, name)
1207
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1208
    with while_loop_block.block():
1209 1210 1211 1212 1213 1214 1215 1216 1217
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1218 1219
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1220 1221 1222
        try:
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1223
            raise ValueError("body in while_loop should return the same arity "
1224 1225
                             "(length and structure) as loop_vars: {0}".format(
                                 e))
1226
        now_cond = cond(*output_vars)
1227
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1228 1229 1230 1231
        assign(now_cond, pre_cond)
    return loop_vars


1232
def lod_rank_table(x, level=0):
1233 1234
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1235 1236
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1237
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1238
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1239 1240
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1241 1242 1243 1244

        .. code-block:: text

            x is a LoDTensor:
1245 1246
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1247 1248
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1249 1250 1251
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1252

Y
yangyaming 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1262 1263 1264 1265

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1266 1267
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1268 1269 1270 1271 1272 1273 1274

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1275
            import paddle.fluid as fluid
Y
yangyaming 已提交
1276
            x = fluid.layers.data(name='x', shape=[10],
1277
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1278
            out = layers.lod_rank_table(x=x, level=0)
1279
    """
1280 1281 1282 1283 1284 1285
    check_type(x, 'x', (Variable, list), 'lod_rank_table')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_rank_table')

Y
Yu Yang 已提交
1286 1287 1288
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
1289
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
1290 1291 1292 1293 1294 1295
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
1296 1297


Y
yuyang18 已提交
1298
@templatedoc()
1299
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1300 1301 1302 1303 1304 1305 1306 1307
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1308 1309

    Args:
Y
yuyang18 已提交
1310
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1311 1312

    Returns:
Y
yuyang18 已提交
1313
        ${out_comment}.
F
fengjiayi 已提交
1314 1315
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1316
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
1317 1318 1319 1320 1321 1322 1323
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


1324
def lod_tensor_to_array(x, table):
1325
    """
F
fengjiayi 已提交
1326 1327
    Convert a LoDTensor to a LoDTensorArray.

1328 1329 1330 1331 1332
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1333
    Users should not use it directly.
1334 1335

    Args:
F
fengjiayi 已提交
1336
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1337 1338
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1339
                                descending order. It is generally generated
F
fengjiayi 已提交
1340
                                by `layers.lod_rank_table()` API.
1341 1342

    Returns:
F
fengjiayi 已提交
1343
        Variable: The LoDTensorArray that has been converted from the input tensor.
1344 1345 1346 1347

    Examples:
        .. code-block:: python

1348
          import paddle.fluid as fluid
1349 1350 1351
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1352
    """
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
    check_type(x, 'x', (Variable, list), 'lod_tensor_to_array')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
    check_type(table, 'table', (Variable, list), 'lod_tensor_to_array')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
1363 1364
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1365
        name=unique_name.generate("lod_tensor_to_array"),
1366
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1367
        dtype=x.dtype)
1368 1369 1370 1371 1372 1373 1374 1375
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


1376
def array_to_lod_tensor(x, table):
1377
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1378 1379

    Args:
1380
        x (Variable|list): The lod tensor array to be converted to a tensor.
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1392
          import paddle.fluid as fluid
1393 1394 1395 1396
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1397
    """
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
    check_type(x, 'x', (Variable, list), 'array_to_lod_tensor')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')
    check_type(table, 'table', (Variable, list), 'array_to_lod_tensor')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')

1409
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1410
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1411 1412 1413 1414 1415 1416 1417 1418
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


1419
def increment(x, value=1.0, in_place=True):
1420
    """
1421 1422
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1423

1424
    Parameters:
T
tianshuo78520a 已提交
1425
        x (Variable): A tensor that must always contain only one element, its data type supports
1426 1427 1428
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1429 1430

    Returns:
1431
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1432 1433 1434 1435

    Examples:
        .. code-block:: python

1436
          import paddle.fluid as fluid
1437 1438
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1439
    """
1440 1441
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
Y
Yu Yang 已提交
1442
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1443
    if not in_place:
X
Xin Pan 已提交
1444
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1445 1446
    else:
        out = x
Y
Yu Yang 已提交
1447 1448 1449
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1450
        outputs={'Out': [out]},
1451
        attrs={'step': float(value)})
Y
Yang Yu 已提交
1452
    return out
Y
Yu Yang 已提交
1453 1454


1455
def array_write(x, i, array=None):
1456
    """
1457 1458 1459 1460
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1461 1462

    Args:
1463 1464 1465 1466 1467 1468 1469
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written. 
            The default value is None, when a new LoDTensorArray will be created and returned 
            as a result.
1470

1471
    Returns:
1472
        Variable: The input ``array`` after ``x`` is written into.
1473 1474

    Examples:
D
dzhwinter 已提交
1475
        .. code-block:: python
1476

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1504
    """
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
    if in_dygraph_mode():
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1515
        i = i.numpy().item(0)
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
        if array is None:
            array = create_array(x.dtype)
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1530 1531
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1532
    helper = LayerHelper('array_write', **locals())
1533 1534 1535 1536 1537 1538
    if array is not None:
        if not isinstance(
                array,
                Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
                "array should be tensor array vairable in array_write Op")
Y
Yu Yang 已提交
1539 1540 1541 1542
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1543
            dtype=x.dtype)
Y
Yu Yang 已提交
1544 1545 1546 1547 1548 1549 1550 1551
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


1552
def create_array(dtype):
1553
    """
1554 1555 1556 1557
    This OP creates an LOD_TENSOR_ARRAY. It is used as
    the input of :ref:`api_fluid_layers_array_read` and 
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1558 1559

    Args:
1560 1561
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1562 1563

    Returns:
1564
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1565 1566 1567 1568

    Examples:
        .. code-block:: python

1569
          import paddle.fluid as fluid
1570
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1571 1572

    """
1573 1574 1575
    if in_dygraph_mode():
        return []

Y
Yang Yang(Tony) 已提交
1576 1577 1578 1579 1580 1581 1582
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
1583
@templatedoc()
W
wawltor 已提交
1584
def less_than(x, y, force_cpu=None, cond=None, name=None):
1585
    """
1586

Y
yuyang18 已提交
1587
    ${comment}
1588 1589

    Args:
N
Noel 已提交
1590 1591
        x(Tensor): ${x_comment}.
        y(Tensor): ${y_comment}.
Y
yuyang18 已提交
1592
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
N
Noel 已提交
1593
        cond(Tensor, optional): Optional output which can be any created Tensor
1594
            that meets the requirements to store the result of *less_than*.
N
Noel 已提交
1595
            if cond is None, a new Tensor will be created to store the result.
W
wawltor 已提交
1596 1597
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1598
    Returns:
Y
yuyang18 已提交
1599
        ${out_comment}.
1600 1601 1602 1603

    Examples:
        .. code-block:: python

N
Noel 已提交
1604 1605 1606 1607 1608 1609 1610
            import paddle

            x = paddle.to_tensor([1, 2, 3, 4], dtype='float32')
            y = paddle.to_tensor([2, 2, 1, 3], dtype='float32')
            result = paddle.less_than(x, y)
            print(result) # [True, False, False, False]

1611
    """
1612 1613 1614 1615 1616 1617 1618 1619 1620
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_than")
    if cond is not None:
        check_type(cond, "cond", Variable, "less_than")
    if force_cpu != None:
        check_type(force_cpu, "force_cpu", bool, "less_than")

Y
Yang Yang(Tony) 已提交
1621 1622
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1623
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1624 1625
        cond.stop_gradient = True

Y
yuyang18 已提交
1626 1627 1628 1629
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

Y
Yang Yang(Tony) 已提交
1630
    helper.append_op(
J
JiayiFeng 已提交
1631 1632 1633 1634
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1635
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1636 1637 1638
    return cond


Z
zhoukunsheng 已提交
1639
@templatedoc()
W
wawltor 已提交
1640
def less_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1641
    """
1642 1643 1644 1645
    :alias_main: paddle.less_equal
	:alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal
	:old_api: paddle.fluid.layers.less_equal

1646
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1647 1648

    Args:
1649 1650
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1651 1652
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *less_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1653 1654
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1655 1656

    Returns:
1657
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1658 1659 1660 1661

    Examples:
        .. code-block:: python

1662
          import paddle.fluid as fluid
1663 1664 1665 1666 1667 1668
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
1669
    """
1670 1671 1672 1673 1674
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    if cond is not None:
1675
        check_type(cond, "cond", Variable, "less_equal")
1676

Z
zhoukunsheng 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
W
wawltor 已提交
1694
def greater_than(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1695
    """
1696 1697 1698 1699
    :alias_main: paddle.greater_than
	:alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than
	:old_api: paddle.fluid.layers.greater_than

1700
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
1701 1702

    Args:
1703 1704
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1705 1706
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_than*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1707 1708
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1709 1710

    Returns:
1711
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x` .
Z
zhoukunsheng 已提交
1712 1713 1714 1715

    Examples:
        .. code-block:: python

1716
          import paddle.fluid as fluid
1717 1718 1719 1720 1721
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
1722
    """
1723 1724 1725 1726 1727
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    if cond is not None:
1728
        check_type(cond, "cond", Variable, "greater_than")
1729

Z
zhoukunsheng 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
W
wawltor 已提交
1747
def greater_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1748
    """
1749 1750 1751 1752
    :alias_main: paddle.greater_equal
	:alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal
	:old_api: paddle.fluid.layers.greater_equal

1753
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
1754 1755

    Args:
1756 1757
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1758 1759
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1760 1761
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1762 1763

    Returns:
1764
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1765 1766 1767 1768

    Examples:
        .. code-block:: python

1769
          import paddle.fluid as fluid
1770 1771 1772 1773 1774 1775
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
1776

Z
zhoukunsheng 已提交
1777
    """
1778 1779 1780 1781 1782
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    if cond is not None:
1783
        check_type(cond, "cond", Variable, "greater_equal")
1784

Z
zhoukunsheng 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


W
wawltor 已提交
1801
def equal(x, y, cond=None, name=None):
1802 1803 1804 1805
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
1806 1807 1808 1809 1810
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
        cond(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1811 1812
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1813 1814

    Returns:
W
wangchaochaohu 已提交
1815 1816
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
1817 1818 1819 1820

    Examples:
        .. code-block:: python

1821
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
1822 1823 1824 1825 1826 1827 1828
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
1829
    """
1830 1831 1832 1833 1834
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "equal")
    if cond is not None:
1835
        check_type(cond, "cond", Variable, "equal")
1836

1837 1838
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1839
        cond = helper.create_variable_for_type_inference(dtype='bool')
1840 1841 1842 1843 1844 1845 1846 1847
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


W
wawltor 已提交
1848
def not_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1849
    """
1850 1851 1852 1853
    :alias_main: paddle.not_equal
	:alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal
	:old_api: paddle.fluid.layers.not_equal

1854
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
1855 1856

    Args:
1857 1858
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1859 1860
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *not_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1861 1862
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1863 1864

    Returns:
1865
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1866 1867 1868 1869

    Examples:
        .. code-block:: python

1870 1871 1872 1873
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1874 1875
          out = fluid.layers.not_equal(x=label, y=limit)
    """
1876 1877 1878 1879 1880
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    if cond is not None:
1881
        check_type(cond, "cond", Variable, "not_equal")
1882

Z
zhoukunsheng 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1894
def array_read(array, i):
1895
    """
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
    This OP is used to read data at the specified position from the input array 
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
    is the specified read position. This OP is often used together with 
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
1911

K
kavyasrinet 已提交
1912
    Args:
1913 1914 1915
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
1916

K
kavyasrinet 已提交
1917
    Returns:
1918
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
1919

K
kavyasrinet 已提交
1920
    Examples:
1921 1922
        .. code-block:: python

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
1954
    """
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
    if in_dygraph_mode():
        assert isinstance(
            array,
            list), "The 'array' in array_read must be list in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1965
        i = i.numpy().item(0)
1966 1967
        return array[i]

1968
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
1969 1970 1971 1972 1973
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1974
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1975 1976 1977 1978 1979 1980
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1981 1982


1983
def shrink_memory(x, i, table):
1984
    """
Y
yuyang18 已提交
1985
    This function creates an operator to shrink rnn memory using the RankTable
1986
    as mentioned in the input parameter.
Y
yuyang18 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
2007
    """
Y
Yang Yu 已提交
2008
    helper = LayerHelper('shrink_memory', **locals())
2009 2010 2011
    check_type(x, 'x', Variable, 'shrink_memory')
    check_type(i, 'i', Variable, 'shrink_memory')
    check_type(table, 'table', Variable, 'shrink_memory')
X
Xin Pan 已提交
2012
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
2013
    helper.append_op(
Y
Yang Yu 已提交
2014
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
2015 2016 2017 2018 2019 2020
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
2021 2022


2023
def array_length(array):
2024
    """
2025 2026
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` , 
T
tianshuo78520a 已提交
2027
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
2028

K
kavyasrinet 已提交
2029
    Args:
2030
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
2031 2032

    Returns:
2033
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
2034 2035

    Examples:
Q
qiaolongfei 已提交
2036
        .. code-block:: python
K
kavyasrinet 已提交
2037

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
2054

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
            
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2067
    """
2068

2069 2070 2071 2072 2073 2074
    if in_dygraph_mode():
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        return len(array)

2075 2076 2077 2078 2079 2080
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError(
            "array should be tensor array vairable in array_length Op")

Y
Yang Yu 已提交
2081
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
2082
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
2083 2084 2085 2086
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
2087 2088 2089


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
2090
    """
2091 2092 2093
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
2094 2095 2096
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
2097
    def __init__(self, block):
2098
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
Y
Yu Yang 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
2112 2113 2114 2115 2116 2117 2118 2119
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
2120
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
2121 2122 2123 2124 2125
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

2126
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

2138
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
2139
        for each_input in inputs:
2140
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
2141
        self.inputs = inputs
2142
        self.is_scalar_condition = is_scalar_condition
2143
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
2154 2155
        params, intermediate = get_inputs_outputs_in_block(
            inside_block, params, intermediate, helper=self.helper)
Y
Yu Yang 已提交
2156

2157 2158 2159
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
2160
        param_list = [
W
Wu Yi 已提交
2161
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
2162 2163
        ]

X
Xin Pan 已提交
2164 2165 2166 2167 2168
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
2169 2170

        step_scope = parent_block.create_var(
2171
            type=core.VarDesc.VarType.STEP_SCOPES)
2172
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
2173 2174
            type='conditional_block',
            inputs={
2175 2176
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
2177 2178 2179
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
2180 2181 2182 2183 2184
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })

2185 2186 2187 2188 2189 2190
        if self.need_append_conditional_block_grad(inside_block):
            self.append_conditional_block_grad(parent_block, inside_block,
                                               conditional_block_op)

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
2191
        inside_block_idx = inside_block.idx
2192

2193 2194 2195
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
        return grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271

    def append_conditional_block_grad(self, parent_block, inside_block,
                                      conditional_block_op):
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
                param_list.append(cpt.to_text(inner_var.name))

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
            conditional_block_op.desc,
            cpt.to_text(set()), [grad_sub_block.desc])

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
        new_op_desc.set_output('Input@GRAD',
                               [param + "@GRAD" for param in param_list])

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
            if grad_sub_block.desc.has_var_recursive(
                    cpt.to_bytes(grad_var_name)
            ) or grad_var_name == core.empty_var_name():
                continue
            grad_sub_block.desc.var(cpt.to_bytes(grad_var_name))
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2272

2273 2274 2275 2276 2277 2278 2279 2280
def copy_var_to_parent_block(var, layer_helper):
    if var is None:
        return None
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
    assert parent_idx >= 0, "Got wrong parent block index when assigning var to parent scope in control_flow"
    parent_block = prog.block(parent_idx)

2281 2282 2283 2284 2285 2286 2287
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
            and parent_block._find_var_recursive(var.name):
        parent_block_var = var
    else:
        parent_block_var = parent_block.create_var(
            dtype=var.dtype, shape=var.shape, type=var.type)
        assign(var, parent_block_var)
2288 2289 2290 2291 2292
    return parent_block_var


def cond(pred, true_fn=None, false_fn=None, name=None):
    """
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
    
    Note: 
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

        2. Any tensors or operations created outside of ``true_fn`` and
        ``false_fn`` will be executed regardless of which branch is selected at
        runtime. This has frequently surprised users who expected a lazy
        semantics. For example:

        .. code-block:: python
2314 2315 2316 2317 2318

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
2319
            c = a * b
2320
            out = paddle.nn.cond(a < b, lambda: a + c, lambda: b * b)
2321 2322

        No matter whether ``a < b`` , ``c = a * b`` will run.
2323 2324

    Args:
2325
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2326
            value determines whether to return the result of ``true_fn`` or
2327 2328 2329 2330 2331 2332
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2333
             don't have to set this parameter. For more information, please
2334 2335 2336
             refer to :ref:`api_guide_Name` .

    Returns:
2337
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2338
        predicate ``pred`` is true else ``false_fn()`` .
2339 2340 2341

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2342 2343
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2344 2345 2346 2347

    Examples:
        .. code-block:: python

2348
            import paddle
2349 2350 2351 2352 2353 2354 2355 2356 2357

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

2358

2359
            def true_func():
2360 2361 2362 2363 2364
                return paddle.fill_constant(shape=[1, 2], dtype='int32',
                                            value=1), paddle.fill_constant(shape=[2, 3],
                                                                           dtype='bool',
                                                                           value=True)

2365 2366

            def false_func():
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
                return paddle.fill_constant(shape=[3, 4], dtype='float32',
                                            value=3), paddle.fill_constant(shape=[4, 5],
                                                                           dtype='int64',
                                                                           value=2)

            x = paddle.fill_constant(shape=[1], dtype='float32', value=0.1)
            y = paddle.fill_constant(shape=[1], dtype='float32', value=0.23)
            pred = paddle.less_than(x=x, y=y, name=None)
            ret = paddle.nn.cond(pred, true_func, false_func)
            # ret is a tuple containing 2 tensors
2377 2378
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2379
            #           [ True  True  True]]            
2380

2381
    """
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
    if in_dygraph_mode():
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
        assert pred.numpy().size == 1, "condition input's numel should be 1"
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
                        "The true_fn in cond must be callable, but received {}".
                        format(type(true_fn).__name__))
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
                        "The false_fn in cond must be callable, but received {}".
                        format(type(false_fn).__name__))
                return false_fn()
        return None

2402 2403
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2404 2405 2406
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2407
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2408 2409
    if true_fn is not None:
        if not callable(true_fn):
2410 2411 2412
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
                    type(true_fn).__name__))
2413 2414 2415 2416
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2417
                true_output = map_structure(copy_to_parent_func,
2418 2419 2420
                                            origin_true_output)
    if false_fn is not None:
        if not callable(false_fn):
2421 2422 2423
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
                    type(false_fn).__name__))
2424 2425 2426 2427 2428
        false_cond_block = ConditionalBlock(
            [logical_not(pred)], is_scalar_condition=True)
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2429
                false_output = map_structure(copy_to_parent_func,
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
                                             origin_false_output)

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns None while false_fn returns non-None")
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns non-None while false_fn returns None")

    # Merge ture and false output if they are not None
    try:
        assert_same_structure(true_output, false_output, check_types=False)
    except ValueError as e:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: {}".
            format(e))

    mask = cast(pred, dtype='int32')
    merge_func = lambda false_var, true_var : select_input([false_var, true_var], mask)
    merged_output = map_structure(merge_func, false_output, true_output)
    return merged_output


L
liym27 已提交
2458
def _error_message(what, arg_name, op_name, right_value, error_value):
2459
    error_message = "{what} of '{arg_name}' in {op_name} must be " \
L
liym27 已提交
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
        "{right_value}, but received: {error_value}.".format(
        what=what,
        arg_name=arg_name,
        op_name=op_name,
        right_value=right_value,
        error_value=error_value)

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
2472 2473
    :api_attr: Static Graph

L
liym27 已提交
2474 2475 2476 2477 2478 2479 2480 2481
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2482
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
L
liym27 已提交
2483 2484 2485 2486 2487 2488 2489
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
2490
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
L
liym27 已提交
2491 2492 2493 2494 2495 2496
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

2497 2498 2499
            import paddle

            paddle.enable_static()
L
liym27 已提交
2500 2501

            def fn_1():
2502
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
2503 2504

            def fn_2():
2505
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
2506 2507

            def fn_3():
2508
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
2509

2510 2511 2512 2513
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
2514 2515 2516
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)
L
liym27 已提交
2517

2518 2519 2520
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1
L
liym27 已提交
2521 2522

                # Call fn_1 because pred_1 is True
2523
                out_1 = paddle.static.nn.case(
L
liym27 已提交
2524 2525 2526 2527
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
2528
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
L
liym27 已提交
2529

2530
                exe = paddle.static.Executor(paddle.CPUPlace())
L
liym27 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
2541
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
2542 2543 2544 2545 2546

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
                    _error_message("The elements' type", "pred_fn_pairs",
2547
                                   "case", tuple, type(pred_fn)))
L
liym27 已提交
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
            if len(pred_fn) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "pred_fn_pairs", "case",
                                   "2", str(len(pred_fn)) + "-tuple"))
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
                    _error_message("The pred's type", "pred_fn_pairs", "case",
                                   "boolean Variable", type(pred)))

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
                    " be callable.".format(pred.name))

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


2584
class Switch(object):
Q
qiaolongfei 已提交
2585
    """
2586
    :api_attr: Static Graph
Q
qiaolongfei 已提交
2587

2588 2589 2590 2591 2592 2593 2594
    This class is used to implement Switch branch control function. 
    Switch branch contains several case branches and one default branch. 
    Switch control flow checks whether the case branch conditions are satisfied in turn, 
    and only executes the statement after the first case branch that satisfies the conditions. 
    If there is no case branch that satisfies the condition, 
    only the statement following the default branch is executed.

2595 2596 2597 2598
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

2599
    Member Functions:
2600
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
2601 2602 2603 2604 2605 2606
        
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
2607

2608 2609 2610 2611 2612 2613 2614 2615 2616
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
2617

2618 2619
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
2620 2621 2622

    Examples:
        .. code-block:: python
2623 2624
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
2625

2626
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
2627 2628 2629 2630 2631
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
2632
            zero_var = fluid.layers.fill_constant(
2633
                shape=[1], dtype='float32', value=0.0)
2634
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
2635
                shape=[1], dtype='float32', value=1.0)
2636
            two_var = fluid.layers.fill_constant(
2637
                shape=[1], dtype='float32', value=2.0)
2638

2639
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
2640 2641

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
2642
                with switch.case(global_step == zero_var):
2643
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
2644
                with switch.default():
2645
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
2646

2647 2648 2649 2650 2651
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
2652 2653
    """

2654 2655 2656 2657 2658 2659 2660 2661 2662
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

2663 2664 2665 2666
        check_variable_and_dtype(
            condition, 'condition', ['bool'],
            'the member function case of fluid.layers.Switch')

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
2743
    """
2744 2745
    :api_attr: Static Graph

2746 2747 2748 2749
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

2750 2751 2752 2753
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
        
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
        
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)] 

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
2795
        print(res)
2796
        # [array([-1.], dtype=float32)] 
X
Xin Pan 已提交
2797 2798

    Args:
2799 2800
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
2801

2802 2803
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
2804

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
 
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
2815

X
Xin Pan 已提交
2816
    """
Y
Yu Yang 已提交
2817 2818 2819 2820
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

2821
    def __init__(self, cond, name=None):
2822 2823
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
2824
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
2836
            parent_block = self._parent_block()
Y
Yu Yang 已提交
2837
            out_true = parent_block.create_var(
2838 2839
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
2840
                dtype=x.dtype)
Y
Yu Yang 已提交
2841 2842

            out_false = parent_block.create_var(
2843 2844
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
2845
                dtype=x.dtype)
Y
Yu Yang 已提交
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

2864
    def _parent_block(self):
Y
Yu Yang 已提交
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
2880
        parent_block = self._parent_block()
Y
Yu Yang 已提交
2881
        for each_out in outs:
2882 2883
            check_type(each_out, "each output", Variable,
                       "fluid.layers.IfElse.output")
Y
Yu Yang 已提交
2884 2885
            # create outside tensor
            outside_out = parent_block.create_var(
2886
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
2887
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
2888
                dtype=each_out.dtype)
Y
Yu Yang 已提交
2889 2890 2891
            out_table.append(outside_out)

            # assign local var to outside
2892
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
2893 2894 2895 2896

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
2897
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
2916
                    level=0))
Y
Yu Yang 已提交
2917
        return rlist
2918 2919 2920


class DynamicRNN(object):
Y
yuyang18 已提交
2921
    """
2922 2923
    :api_attr: Static Graph

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
T
tianshuo78520a 已提交
2936
    The input sequences will be shrank because only sequences of which the
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
2949

2950 2951 2952 2953
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
2954 2955 2956 2957

    Examples:
        .. code-block:: python

2958
            import paddle.fluid as fluid
2959

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
2986
    """
2987 2988 2989 2990
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

2991 2992
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
2993 2994 2995 2996
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
2997
        self.zero_idx = None
2998 2999 3000
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
3001
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
3002 3003 3004 3005 3006
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

3007
    def step_input(self, x, level=0):
3008
        r"""
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
3052

Y
yuyang18 已提交
3053
        Args:
3054 3055 3056 3057 3058 3059 3060
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
3061 3062

        Returns:
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3097
        """
3098
        self._assert_in_rnn_block_("step_input")
3099
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.step_input()')
3100 3101 3102
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
3103
                name=unique_name.generate('lod_rank_table'),
3104 3105 3106 3107 3108
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
3109 3110
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
3111
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
3112 3113
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
3124 3125
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
3126 3127

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
3128
            name=unique_name.generate('dynamic_rnn_input_array'),
3129 3130 3131 3132 3133 3134 3135 3136
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
3137
        return array_read(array=input_array, i=self.step_idx)
3138

Y
yangyaming 已提交
3139
    def static_input(self, x):
3140
        r"""
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
3214

Y
yuyang18 已提交
3215
        Args:
3216 3217 3218 3219
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
3220 3221

        Returns:
T
tianshuo78520a 已提交
3222
            Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
3234 3235 3236 3237

        Examples:
            .. code-block:: python

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3264
        """
Y
yangyaming 已提交
3265
        self._assert_in_rnn_block_("static_input")
3266
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.static_input()')
Y
yangyaming 已提交
3267 3268 3269 3270 3271
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3272
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
3282
    @signature_safe_contextmanager
3283
    def block(self):
Y
yuyang18 已提交
3284
        """
3285 3286 3287 3288 3289 3290
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
3291
        """
3292 3293
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
3294 3295
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
3296 3297 3298 3299
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
3300
            increment(x=self.step_idx, value=1.0, in_place=True)
3301 3302

            for new_mem, mem_array in self.mem_link:
3303 3304
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
3305 3306 3307 3308 3309
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
3310 3311 3312 3313 3314

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
3315
                    x=each_array, table=self.lod_rank_table))
3316 3317

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
3318
        """
T
tianshuo78520a 已提交
3319
        This function is used to get the output  sequences of DynamicRNN.
3320 3321 3322 3323 3324 3325 3326 3327 3328

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
3329
        """
3330
        if self.status != DynamicRNN.AFTER_RNN:
3331 3332
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
3333 3334 3335 3336 3337
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

3338 3339 3340 3341 3342 3343
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
3344
        r"""
3345 3346 3347
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
3348

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
T
tianshuo78520a 已提交
3361
            value (float, optional): When init is None, it is used as initialized value
3362 3363
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
T
tianshuo78520a 已提交
3364
                the memory needs to reorder like the RNN's input sequences. It should be
3365 3366 3367 3368 3369 3370 3371
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
T
tianshuo78520a 已提交
3372
            Variable: The memory LoDTensor after shrank.  If there are :code:`num_sequences` \
3373
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
T
tianshuo78520a 已提交
3374
                the memory Tensor also need to be shrank and will only retain data \
3375 3376 3377 3378 3379 3380
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3381

3382 3383 3384
        Examples:
            .. code-block:: python

3385
                import paddle.fluid as fluid
3386

3387 3388
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
3389

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
3401

3402 3403
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3404 3405


3406 3407
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
3408

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3428
        """
3429
        self._assert_in_rnn_block_('memory')
3430
        self._init_zero_idx_()
3431 3432 3433
        if shape is not None:
            check_type(shape, 'shape', (list, tuple),
                       'fluid.layers.DynamicRNN.memory()')
3434
        if init is not None:
3435 3436
            check_type(init, 'init', Variable,
                       'fluid.layers.DynamicRNN.memory()')
3437
            parent_block = self._parent_block_()
3438 3439 3440 3441 3442 3443 3444 3445
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3446
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
3457
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
3458
                name=unique_name.generate('dynamic_rnn_mem_array'),
3459 3460 3461 3462
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
3463
                inputs={'X': init_tensor,
3464 3465
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
3466
            retv = array_read(array=mem_array, i=self.step_idx)
3467
            retv = shrink_memory(
3468
                x=retv, i=self.step_idx, table=self.lod_rank_table)
3469 3470 3471 3472 3473 3474 3475 3476 3477
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
3478
                name=unique_name.generate('mem_init'), dtype=dtype)
3479
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
3480 3481
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
3499
        """
3500 3501
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
3502
        Args:
3503 3504 3505
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
3506 3507 3508

        Returns:
            None
3509 3510 3511 3512 3513 3514
        
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3515
        """
3516
        self._assert_in_rnn_block_('update_memory')
3517 3518 3519 3520
        check_type(ex_mem, 'ex_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
        check_type(new_mem, 'new_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
3531
        """
3532
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
3533 3534

        Args:
3535 3536
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
3537 3538 3539

        Returns:
            None
3540 3541 3542

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
3543
        """
3544 3545 3546
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
3547 3548
            check_type(each, "outputs", Variable,
                       "fluid.layers.DynamicRNN.output")
3549
            outside_array = parent_block.create_var(
3550
                name=unique_name.generate_with_ignorable_key("_".join(
3551 3552 3553 3554 3555 3556
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
3585 3586


L
liym27 已提交
3587 3588
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
3589 3590
    :api_attr: Static Graph

L
liym27 已提交
3591 3592 3593
    This operator is like a C++ switch/case statement.

    Args:
3594
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
L
liym27 已提交
3595 3596 3597 3598 3599
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3600
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
L
liym27 已提交
3601 3602 3603 3604
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
3605
        TypeError: If the type of ``branch_index`` is not Tensor.
L
liym27 已提交
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

3617 3618 3619
            import paddle

            paddle.enable_static()
3620

L
liym27 已提交
3621
            def fn_1():
3622
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
3623 3624

            def fn_2():
3625
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
3626 3627

            def fn_3():
3628
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
3629

3630 3631 3632
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
3633 3634
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)
L
liym27 已提交
3635

3636
                out_1 = paddle.static.nn.switch_case(
L
liym27 已提交
3637 3638 3639 3640
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

3641
                out_2 = paddle.static.nn.switch_case(
L
liym27 已提交
3642 3643 3644 3645 3646
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
3647
                out_3 = paddle.static.nn.switch_case(
L
liym27 已提交
3648 3649 3650
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

3651
                exe = paddle.static.Executor(paddle.CPUPlace())
3652
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
3653 3654 3655 3656 3657 3658 3659 3660
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

3661 3662
        check_variable_and_dtype(branch_index, 'branch_index',
                                 ['uint8', 'int32', 'int64'], 'switch_case')
L
liym27 已提交
3663 3664 3665 3666

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

3667
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679

        branch_fns = branch_fns.items() if isinstance(branch_fns,
                                                      dict) else branch_fns

        branch_fns = list(enumerate(branch_fns)) if all(
            callable(fn) for fn in branch_fns) else branch_fns

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
                    _error_message("The elements' type", "branch_fns",
3680
                                   "switch_case", tuple, type(branch_fns)))
L
liym27 已提交
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692

            if len(index_fn_pair) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "branch_fns",
                                   "switch_case", "2",
                                   str(len(index_fn_pair)) + "-tuple"))

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
                    _error_message("The key's type", "branch_fns",
3693
                                   "switch_case", int, type(key)))
L
liym27 已提交
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730

            if key in keys_of_fns:
                raise ValueError(
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once.".
                    format(key))
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
                    _error_message("The type of function for key {}".format(
                        key), "branch_fns", "switch_case", "callable", type(
                            fn)))

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


3731
@templatedoc()
Y
Yang Yu 已提交
3732
def reorder_lod_tensor_by_rank(x, rank_table):
3733 3734 3735 3736
    """
    ${comment}

    Args:
3737 3738
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
3739 3740
    
    Returns:
3741
        out(${out_type}): ${out_comment}.
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
3755 3756 3757 3758 3759 3760 3761

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
    check_type(rank_table, 'rank_table', (Variable),
               'reorder_lod_tensor_by_rank')
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
3762 3763
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
3764
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
3765 3766 3767 3768 3769 3770
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
3771 3772


3773
def is_empty(x, name=None):
3774
    """
3775

3776
    Test whether a Tensor is empty.
3777 3778

    Args:
3779 3780 3781 3782
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .
3783 3784

    Returns:
3785
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.
3786 3787 3788 3789

    Examples:
        .. code-block:: python

3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])
3801

3802
    """
3803 3804 3805
    if in_dygraph_mode():
        return core.ops.is_empty(x)

3806 3807
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'is_empty')
3808 3809
    check_type(name, "name", (str, type(None)), "is_empty")

3810
    helper = LayerHelper("is_empty", **locals())
3811 3812
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
3813 3814 3815
    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond