control_flow.py 66.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dzhwinter 已提交
14
import contextlib
D
dzhwinter 已提交
15

16 17
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
18
from .. import core
19
from ..framework import Program, Variable, Operator
20
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
21
from ..initializer import force_init_on_cpu
22
from .ops import logical_and, logical_not, logical_or
Y
yuyang18 已提交
23
import numpy
24
from functools import reduce
D
dzhwinter 已提交
25

Q
QI JUN 已提交
26
__all__ = [
Y
ying 已提交
27
    'While',
28
    'Switch',
Y
ying 已提交
29 30 31 32
    'increment',
    'array_write',
    'create_array',
    'less_than',
33
    'equal',
Y
ying 已提交
34 35 36 37 38 39 40 41
    'array_read',
    'array_length',
    'IfElse',
    'DynamicRNN',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'ParallelDo',
    'Print',
42
    'is_empty',
D
dzhwinter 已提交
43 44
]

Y
Yu Yang 已提交
45

46
def split_lod_tensor(input, mask, level=0):
47 48 49 50
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
51 52
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
53 54 55 56 57

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
58
        level(int): The specific lod level to split.
59 60

    Returns:
Q
qiaolongfei 已提交
61 62 63 64
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
65 66 67 68

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
69
          x = fluid.layers.data(name='x', shape=[1])
70 71
          x.persistable = True

Q
qiaolongfei 已提交
72
          y = fluid.layers.data(name='y', shape=[1])
73 74
          y.persistable = True

Q
qiaolongfei 已提交
75
          out_true, out_false = fluid.layers.split_lod_tensor(
76
                input=x, mask=y, level=level)
77

78
    """
79
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
80 81
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
82 83 84 85 86 87 88 89 90 91 92 93
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


94
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
95 96 97 98 99
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
100 101 102
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
103 104 105 106 107 108 109

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
110
        level(int): The specific lod level to merge.
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
130
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
131
    out = helper.create_tmp_variable(dtype=in_true.dtype)
132 133 134 135 136 137 138 139 140 141 142
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
143 144 145 146 147 148 149
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
150 151
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
152 153 154 155 156 157 158 159 160 161
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
162 163 164 165 166 167 168 169 170
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
171
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
172 173
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
174 175

    Returns:
Y
yangyaming 已提交
176
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
177

Y
Yan Chunwei 已提交
178

Y
Yan Chunwei 已提交
179
    Examples:
Y
Yan Chunwei 已提交
180

Y
Yan Chunwei 已提交
181 182
        .. code-block:: python

Y
Yan Chunwei 已提交
183 184 185
           value = some_layer(...)
           Print(value, summarize=10,
               message="The content of some_layer: ")
Y
Yan Chunwei 已提交
186 187
    '''
    helper = LayerHelper('print', **locals())
Y
yangyaming 已提交
188
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yan Chunwei 已提交
189 190
    helper.append_op(
        type='print',
Y
yangyaming 已提交
191
        inputs={'In': input},
Y
Yan Chunwei 已提交
192 193 194 195 196 197 198 199
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
200 201 202
            'print_phase': print_phase.upper()
        },
        outputs={'Out': out})
Y
Yan Chunwei 已提交
203 204 205
    return out


Y
Yu Yang 已提交
206 207
class BlockGuard(object):
    """
208 209 210 211
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
212 213
    """

214 215
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
216
            raise TypeError("BlockGuard takes a program")
217
        self.main_program = main_program
Y
Yu Yang 已提交
218 219

    def __enter__(self):
220
        self.main_program.create_block()
Y
Yu Yang 已提交
221 222

    def __exit__(self, exc_type, exc_val, exc_tb):
223
        self.main_program.rollback()
Y
Yu Yang 已提交
224 225 226 227 228
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
229
class ParallelDo(object):
230
    """
L
Luo Tao 已提交
231 232
    ParallelDo is used to represent multi-thread data parallel processing.

L
Luo Tao 已提交
233
    Its vanilla implementation can be shown as the following (:math:`|` means
L
Luo Tao 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    single thread and :math:`||||` means multiple threads)

    .. code-block:: text

      In the forward pass
        |      Split input onto different devices
        |      Copy parameter onto different devices
        ||||   Compute forward pass in parallel
        |      Merge output from different devices

      In the backward pass
        |      Split output@grad onto different devices
        ||||   Compute backward pass in parallel
        |      accumulate param@grad from different devices to the first device
        |      Merge input@grad from different devices
L
Luo Tao 已提交
249
        |      Copy param@grad to the place of parallel_do_op
L
Luo Tao 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

    Examples:

    .. code-block:: python

      images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
      label = fluid.layers.data(name='label', shape=[1], dtype='int64')

      # ParallelDo version & Single-thread version
      if thread_num > 1:
          places = fluid.layers.get_places(thread_num)
          pd = fluid.layers.ParallelDo(places)
          with pd.do():
              images = pd.read_input(images)
              label = pd.read_input(label)
              predict = cnn_model(images)
              cost = fluid.layers.cross_entropy(input=predict, label=label)

              avg_cost = fluid.layers.mean(x=cost)
              pd.write_output(avg_cost)

          avg_cost = pd()
          avg_cost = fluid.layers.mean(avg_cost)
      else:
          predict = cnn_model(images)
          cost = fluid.layers.cross_entropy(input=predict, label=label)
          avg_cost = fluid.layers.mean(x=cost)

    .. warning::
    
       It will be soon deprecated, please use ParallelExecutor instead.
Y
Yang Yang 已提交
281 282
    """

Y
Yang Yang 已提交
283
    def __init__(self, places, use_nccl=False, name=None):
Y
Yang Yang 已提交
284 285 286 287 288
        self.helper = LayerHelper("parallel_do", name=name)
        self.inputs = []
        self.places = places
        self.outputs = []
        self.status = StaticRNN.BEFORE_RNN_BLOCK
Y
Yang Yang 已提交
289
        self.use_nccl = use_nccl
Y
Yang Yang 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

    def do(self):
        return BlockGuardWithCompletion(self)

    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def read_input(self, var):
        self.inputs.append(var)
Y
Yang Yang 已提交
313
        return var
Y
Yang Yang 已提交
314 315 316 317 318 319 320 321 322 323

    def write_output(self, var):
        self.outputs.append(var)

    def get_parameters(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        local_inputs = set()
Y
Yang Yang(Tony) 已提交
324
        params = list()
Y
Yang Yang 已提交
325 326 327 328 329 330 331 332
        for var in self.inputs:
            local_inputs.add(var.name)

        for op in current_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)
Y
Yang Yang(Tony) 已提交
333 334 335 336 337

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

Y
Yang Yang 已提交
338
        params = list(set(params))
Y
Yang Yang 已提交
339 340 341 342 343 344 345 346 347 348 349

        return [parent_block.var(name) for name in params]

    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

Y
Yang Yang 已提交
350 351 352 353 354 355 356 357 358 359
        self.outputs = [
            parent_block.create_var(
                name=o.name,
                shape=o.shape,
                dtype=o.dtype,
                lod_level=o.lod_level,
                persistable=o.persistable,
                stop_gradient=o.stop_gradient) for o in self.outputs
        ]

Y
Yang Yang 已提交
360
        inputs = [parent_block.var(i.name) for i in self.inputs]
Y
Yang Yang 已提交
361
        outputs = [parent_block.var(o.name) for o in self.outputs]
Y
Yang Yang 已提交
362 363 364 365 366 367 368 369

        parent_block.append_op(
            type='parallel_do',
            inputs={
                'inputs': inputs,
                'parameters': self.get_parameters(),
                'places': self.places
            },
Y
Yang Yang 已提交
370
            outputs={'outputs': outputs,
Y
Yang Yang 已提交
371
                     'parallel_scopes': [step_scope]},
Y
Yang Yang 已提交
372 373
            attrs={'sub_block': current_block,
                   'use_nccl': self.use_nccl})
Y
Yang Yang 已提交
374 375 376 377 378 379 380


class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
381 382
    """

Y
Yu Yang 已提交
383
    def __init__(self, rnn):
Y
Yang Yang 已提交
384 385 386 387
        if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)):
            raise TypeError(
                "BlockGuardWithCompletion takes a StaticRNN or ParallelDo")
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
388 389 390 391
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
392
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
393 394

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
395 396
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
397
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
Y
Yang Yang 已提交
398 399 400
        self.rnn.complete_op()
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
401 402 403 404


class StaticRNNMemoryLink(object):
    """
405 406 407 408
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
409 410 411 412 413 414 415 416 417


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
418 419 420 421 422 423 424 425 426
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
427 428 429 430 431 432
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
433 434 435 436
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

437 438
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
439 440 441 442 443 444 445 446
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
Y
Yang Yang 已提交
447
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
448 449 450 451 452

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

453 454 455 456 457 458 459
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
460 461 462 463 464 465 466 467 468
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
469 470
        self._assert_in_rnn_block_('memory')
        if init is None:
471
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
472
                raise ValueError(
473
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
474
            parent_block = self.parent_block()
Y
Yu Yang 已提交
475 476
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
477
            boot_var = parent_block.create_var(
478 479
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
480
                dtype=batch_ref.dtype,
481
                persistable=False)
Y
Yu Yang 已提交
482 483

            parent_block.append_op(
484 485
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
486 487 488
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
489
                    'shape': boot_var.shape,
F
fengjiayi 已提交
490
                    'dtype': boot_var.dtype,
491 492
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
493 494 495 496 497
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
498
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
499
                dtype=init.dtype,
Y
Yu Yang 已提交
500 501 502 503 504 505 506 507 508 509
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
510 511
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
512 513 514
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
515
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
516 517 518 519 520 521 522 523
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
524
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
525 526 527 528
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
529
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
530

Y
Yu Yang 已提交
531
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
532 533
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
534
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
548
        prog = self.helper.main_program
Y
Yu Yang 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

Y
Yang Yang 已提交
564
    def complete_op(self):
565 566
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
601
        for _, mem in list(self.memories.items()):
Y
Yu Yang 已提交
602 603 604 605
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
606
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
607 608 609 610 611

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
612
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
628
                'sub_block': rnn_block
Y
Yu Yang 已提交
629
            })
Y
Yu Yang 已提交
630 631


Y
Yang Yang(Tony) 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
652 653 654 655 656 657 658 659 660 661
    """
    while loop control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str): The name of this layer.

    Examples:
          .. code-block:: python

X
Xin Pan 已提交
662 663 664
            d0 = layers.data("d0", shape=[10], dtype='float32')
            data_array = layers.array_write(x=d0, i=i)
            array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
X
Xin Pan 已提交
665

X
Xin Pan 已提交
666 667 668 669 670 671 672
            cond = layers.less_than(x=i, y=array_len)
            while_op = layers.While(cond=cond)
            with while_op.block():
                d = layers.array_read(array=data_array, i=i)
                i = layers.increment(x=i, in_place=True)
                layers.array_write(result, i=i, array=d)
                layers.less_than(x=i, y=array_len, cond=cond)
X
Xin Pan 已提交
673 674
    """

Y
Yang Yang(Tony) 已提交
675 676 677 678
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

679 680
    def __init__(self, cond, name=None):
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
681 682 683 684
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
685
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
723 724 725 726
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
727 728 729 730
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
731
            attrs={'sub_block': while_block})
Y
Yang Yang(Tony) 已提交
732 733


734
def lod_rank_table(x, level=0):
Y
yangyaming 已提交
735 736 737
    """LoD Rank Table Operator. Given an input variable **x** and a level number
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
738
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
739 740 741
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
742 743 744 745

        .. code-block:: text

            x is a LoDTensor:
746 747
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
748 749
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
750 751 752
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
753

Y
yangyaming 已提交
754 755 756 757 758 759 760 761 762
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
763 764 765 766

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
767 768
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
769 770 771 772 773 774 775 776

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
777
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
778
            out = layers.lod_rank_table(x=x, level=0)
779
    """
Y
Yu Yang 已提交
780 781 782
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
783
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
784 785 786 787 788 789
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
790 791


Y
yuyang18 已提交
792
@templatedoc()
793
def max_sequence_len(rank_table):
Y
yuyang18 已提交
794 795 796 797 798 799 800 801
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
802 803

    Args:
Y
yuyang18 已提交
804
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
805 806

    Returns:
Y
yuyang18 已提交
807
        ${out_comment}.
F
fengjiayi 已提交
808 809 810 811 812 813 814 815 816 817
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


818
def lod_tensor_to_array(x, table):
F
fengjiayi 已提交
819 820 821 822 823
    """ 
    Convert a LoDTensor to a LoDTensorArray.

    This function split a LoDTesnor to a LoDTensorArray according to its LoD 
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in 
F
fengjiayi 已提交
824 825 826
    PaddlePaddle. The generated LoDTensorArray of this function can be further read 
    or written by `read_from_array()` and `write_to_array()` operators. However, 
    this function is generally an internal component of PaddlePaddle `DynamicRNN`. 
F
fengjiayi 已提交
827
    Users should not use it directly.
828 829

    Args:
F
fengjiayi 已提交
830
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
831 832
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
F
fengjiayi 已提交
833
                                descending order. It is generally generated 
F
fengjiayi 已提交
834
                                by `layers.lod_rank_table()` API.
835 836

    Returns:
F
fengjiayi 已提交
837
        Variable: The LoDTensorArray that has been converted from the input tensor.
838 839 840 841 842 843 844

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
845
    """
846 847
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
848
        name=unique_name.generate("lod_tensor_to_array"),
849
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
850
        dtype=x.dtype)
851 852 853 854 855 856 857 858
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


859
def array_to_lod_tensor(x, table):
860
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
861 862

    Args:
863
        x (Variable|list): The lod tensor array to be converted to a tensor.
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
879
    """
880
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
881
    tmp = helper.create_tmp_variable(dtype=x.dtype)
882 883 884 885 886 887 888 889
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


890
def increment(x, value=1.0, in_place=True):
891 892
    """
    This function performs an operation that increments each value in the
893 894 895 896 897 898 899 900 901
    input :math:`x` by an amount: :math:`value` as mentioned in the input
    parameter. This operation is performed in-place by default.

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
902
        Variable: The elementwise-incremented object.
903 904 905 906 907 908

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
909
    """
Y
Yu Yang 已提交
910
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
911
    if not in_place:
F
fengjiayi 已提交
912
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
913 914
    else:
        out = x
Y
Yu Yang 已提交
915 916 917
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
918
        outputs={'Out': [out]},
919
        attrs={'step': float(value)})
Y
Yang Yu 已提交
920
    return out
Y
Yu Yang 已提交
921 922


923
def array_write(x, i, array=None):
924 925 926 927 928
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
929 930 931

    Args:
        x (Variable|list): The input tensor from which the data will be read.
932 933 934 935 936 937 938 939
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

940
    Returns:
941
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
942 943

    Examples:
D
dzhwinter 已提交
944
        .. code-block:: python
945 946 947 948

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
949
    """
Y
Yu Yang 已提交
950 951 952 953 954
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
955
            dtype=x.dtype)
Y
Yu Yang 已提交
956 957 958 959 960 961 962 963
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


964
def create_array(dtype):
965
    """
Q
qiaolongfei 已提交
966
    **Create LoDTensorArray**
967

Q
qiaolongfei 已提交
968 969
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
970 971

    Args:
Q
qiaolongfei 已提交
972
        dtype (int|float): The data type of the elements in the lod_tensor_array.
973 974

    Returns:
975
        Variable: The lod_tensor_array variable storing the elements of data type.
976 977 978 979 980 981 982

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
983 984 985 986 987 988 989
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
990 991
@templatedoc()
def less_than(x, y, force_cpu=None, cond=None, **ignored):
992
    """
Y
yuyang18 已提交
993
    ${comment}
994

Y
yuyang18 已提交
995 996
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
997 998

    Args:
Y
yuyang18 已提交
999 1000 1001
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1002 1003 1004
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1005
        ${out_comment}.
1006
    """
Y
Yang Yang(Tony) 已提交
1007 1008 1009 1010 1011
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

Y
yuyang18 已提交
1012 1013 1014 1015 1016 1017
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1018
    helper.append_op(
J
JiayiFeng 已提交
1019 1020 1021 1022
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1023
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1024 1025 1026
    return cond


1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
def equal(x, y, cond=None, **ignored):
    """
    **equal**

    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


1057
def array_read(array, i):
1058 1059
    """
    This function performs the operation to read the data in as an
1060
    LOD_TENSOR_ARRAY.
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
        
        And:
        
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1076
    Args:
1077 1078 1079
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1080 1081
    Returns:
        Variable: The tensor type variable that has the data written to it.
1082

K
kavyasrinet 已提交
1083
    Examples:
1084 1085
        .. code-block:: python

K
kavyasrinet 已提交
1086 1087 1088
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
1089
    """
Y
Yu Yang 已提交
1090 1091 1092 1093 1094
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1095
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1096 1097 1098 1099 1100 1101
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1102 1103


1104
def shrink_memory(x, i, table):
1105
    """
Y
yuyang18 已提交
1106
    This function creates an operator to shrink rnn memory using the RankTable
1107
    as mentioned in the input parameter.
Y
yuyang18 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1128
    """
Y
Yang Yu 已提交
1129
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1130
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1131
    helper.append_op(
Y
Yang Yu 已提交
1132
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1133 1134 1135 1136 1137 1138
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1139 1140


1141
def array_length(array):
1142
    """
Q
qiaolongfei 已提交
1143
    **Get the Length of Input LoDTensorArray**
1144 1145

    This function performs the operation to find the length of the input
1146
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1147

1148 1149
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1150 1151 1152 1153 1154 1155 1156 1157
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1158
        .. code-block:: python
K
kavyasrinet 已提交
1159 1160 1161 1162 1163

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1164

1165
    """
Y
Yang Yu 已提交
1166 1167 1168 1169 1170 1171
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1172 1173 1174


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1175 1176 1177 1178 1179 1180 1181
    """
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for 
    holding a ConditionalBlock, and helping users entering and exiting the 
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard 
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1223
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1224 1225 1226 1227
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1228
        self.is_scalar_condition = is_scalar_condition
1229
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1254
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1255 1256 1257 1258 1259
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
X
xuwei06 已提交
1260
            if var_name in intermediate
Y
Yu Yang 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1273 1274 1275 1276 1277 1278 1279
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1280
    """
Q
qiaolongfei 已提交
1281 1282
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1283 1284 1285 1286

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1287

Q
qiaolongfei 已提交
1288
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1289 1290 1291 1292

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1293 1294 1295 1296

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
            lr = fluid.layers.tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
            two_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=2.0)

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1309
                with switch.case(global_step == zero_var):
Q
qiaolongfei 已提交
1310 1311 1312
                    fluid.layers.tensor.assign(input=one_var, output=lr)
                with switch.default():
                    fluid.layers.tensor.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1313 1314 1315

    """

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
Q
qiaolongfei 已提交
1345 1346
        """
        create a default case for this switch
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1415

X
improve  
Xin Pan 已提交
1416
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1417
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1418 1419
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1420 1421
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1422 1423
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1424 1425 1426 1427
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1428 1429 1430
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1431 1432 1433
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1434 1435 1436 1437
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1438
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1439 1440
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1441
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1453
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1454
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1455
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1456
                dtype=x.dtype)
Y
Yu Yang 已提交
1457 1458

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1459
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1460
                dtype=x.dtype)
Y
Yu Yang 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1479
    def _parent_block(self):
Y
Yu Yang 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1495
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1496 1497 1498 1499 1500
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1501 1502
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1503
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1504 1505 1506
            out_table.append(outside_out)

            # assign local var to outside
1507
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1508 1509 1510 1511

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1512
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1531
                    level=0))
Y
Yu Yang 已提交
1532
        return rlist
1533 1534 1535


class DynamicRNN(object):
Y
yuyang18 已提交
1536
    """
Y
yuyang18 已提交
1537 1538 1539
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

    The input lod must be set. Please reference `lod_tensor`

    >>> import paddle.fluid as fluid
    >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
    >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
    >>>                                    is_sparse=True)
    >>>
    >>> drnn = fluid.layers.DynamicRNN()
    >>> with drnn.block():
    >>>     word = drnn.step_input(embedding)
    >>>     prev = drnn.memory(shape=[200])
    >>>     hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
    >>>     drnn.update_memory(prev, hidden)  # set prev to hidden
    >>>     drnn.output(hidden)
    >>>
    >>> # last is the last time step of rnn. It is the encoding result.
    >>> last = fluid.layers.sequence_last_step(drnn())

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
    """
1568 1569 1570 1571
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1572 1573
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1574 1575 1576 1577
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1578 1579
        self.zero_idx = fill_constant(
            shape=[1], value=0, dtype='int64', force_cpu=True)
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
Y
yuyang18 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598
        """
        Mark a sequence as a dynamic RNN input.
        Args:
            x(Variable): The input sequence.

        Returns:
            The current timestep in the input sequence.

        """
1599 1600 1601
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1602
                "step_input() can only take a Variable as its input.")
1603 1604 1605
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1606
                name=unique_name.generate('lod_rank_table'),
1607 1608 1609 1610 1611 1612 1613
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1614 1615
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1626 1627
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1628 1629

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1630
            name=unique_name.generate('dynamic_rnn_input_array'),
1631 1632 1633 1634 1635 1636 1637 1638
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1639
        return array_read(array=input_array, i=self.step_idx)
1640

Y
yangyaming 已提交
1641
    def static_input(self, x):
Y
yuyang18 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650
        """
        Mark a variable as a RNN input. The input will not be scattered into
        time steps.
        Args:
            x(Variable): The input variable.

        Returns:
            The input variable that can access in RNN.
        """
Y
yangyaming 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1660
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

1670 1671
    @contextlib.contextmanager
    def block(self):
Y
yuyang18 已提交
1672 1673 1674 1675
        """
        The block for user to define operators in RNN. See the class docstring
        for more details.
        """
1676 1677
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1678 1679
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1680 1681 1682 1683
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1684
            increment(x=self.step_idx, value=1.0, in_place=True)
1685 1686

            for new_mem, mem_array in self.mem_link:
1687 1688
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1689 1690 1691 1692 1693
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1694 1695 1696 1697 1698

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1699
                    x=each_array, table=self.lod_rank_table))
1700 1701

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1702 1703 1704
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1705
        if self.status != DynamicRNN.AFTER_RNN:
1706 1707
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1708 1709 1710 1711 1712
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1713 1714 1715 1716 1717 1718
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1719
        """
Y
yuyang18 已提交
1720
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>> boot_memory = fluid.layers.data(
        >>>                 name='boot', dtype='float32', shape=[10])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(init=boot_memory, need_reorder=True)
        >>>     hidden = fluid.layers.fc(
        >>>                 input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(shape=[10], dtype='float32', value=0)
        >>>     hidden = fluid.layers.fc(
        >>>             input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Args:
            init(Variable|None): The initialized variable.

            shape(list|tuple): The memory shape. NOTE the shape does not contain
            batch_size.

            value(float): the initalized value.

            need_reorder(bool): True if the initialized memory depends on the
            input sample.

            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
            the memory variable.

        """
1783 1784 1785 1786 1787 1788
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1789 1790 1791 1792 1793 1794 1795 1796
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1797
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1808
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1809
                name=unique_name.generate('dynamic_rnn_mem_array'),
1810 1811 1812 1813
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1814
                inputs={'X': init_tensor,
1815 1816
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1817
            retv = array_read(array=mem_array, i=self.step_idx)
1818
            retv = shrink_memory(
1819
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1820 1821 1822 1823 1824 1825 1826 1827 1828
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1829
                name=unique_name.generate('mem_init'), dtype=dtype)
1830
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1831 1832
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885
        """
        mark the RNN output variables.

        Args:
            outputs: The output variables.

        Returns:
            None
        """
1886 1887 1888 1889
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1890
                name=unique_name.generate("_".join(
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1909 1910


1911
@autodoc()
Y
Yang Yu 已提交
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
1924 1925 1926 1927


def is_empty(x, cond=None, **ignored):
    """
F
fengjiayi 已提交
1928
    Test whether a Variable is empty.
1929 1930

    Args:
F
fengjiayi 已提交
1931 1932
        x (Variable): The Variable to be tested.
        cond (Variable|None): Output parameter. Returns the test result 
F
fengjiayi 已提交
1933
                              of given 'x'. Default: None
1934 1935

    Returns:
F
fengjiayi 已提交
1936
        Variable: A bool scalar. True if 'x' is an empty Variable.
1937 1938 1939

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
1940
                   not bool.
1941 1942 1943 1944

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
1945 1946 1947
          res = fluid.layers.is_empty(x=input)
          # or:
          fluid.layers.is_empty(x=input, cond=res)
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond