control_flow.py 66.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dzhwinter 已提交
14
import contextlib
D
dzhwinter 已提交
15

Y
yuyang18 已提交
16
from layer_function_generator import autodoc, templatedoc
Y
Yu Yang 已提交
17
from tensor import assign, fill_constant
18
from .. import core
19
from ..framework import Program, Variable, Operator
20
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
21
from ..initializer import force_init_on_cpu
22
from ops import logical_and, logical_not, logical_or
Y
yuyang18 已提交
23
import numpy
D
dzhwinter 已提交
24

Q
QI JUN 已提交
25
__all__ = [
Y
ying 已提交
26 27 28 29 30 31
    'split_lod_tensor',
    'merge_lod_tensor',
    'BlockGuard',
    'BlockGuardWithCompletion',
    'WhileGuard',
    'While',
32
    'Switch',
Y
ying 已提交
33 34 35 36 37 38 39 40
    'lod_rank_table',
    'max_sequence_len',
    'lod_tensor_to_array',
    'array_to_lod_tensor',
    'increment',
    'array_write',
    'create_array',
    'less_than',
41
    'equal',
Y
ying 已提交
42 43 44 45 46 47 48 49 50 51
    'array_read',
    'shrink_memory',
    'array_length',
    'IfElse',
    'DynamicRNN',
    'ConditionalBlock',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'ParallelDo',
    'Print',
52
    'is_empty',
D
dzhwinter 已提交
53 54
]

Y
Yu Yang 已提交
55

56
def split_lod_tensor(input, mask, level=0):
57 58 59 60
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
61 62
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
63 64 65 66 67

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
68
        level(int): The specific lod level to split.
69 70

    Returns:
Q
qiaolongfei 已提交
71 72 73 74
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
75 76 77 78

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
79
          x = fluid.layers.data(name='x', shape=[1])
80 81
          x.persistable = True

Q
qiaolongfei 已提交
82
          y = fluid.layers.data(name='y', shape=[1])
83 84
          y.persistable = True

Q
qiaolongfei 已提交
85
          out_true, out_false = fluid.layers.split_lod_tensor(
86
                input=x, mask=y, level=level)
87

88
    """
89
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
90 91
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
92 93 94 95 96 97 98 99 100 101 102 103
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


104
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
105 106 107 108 109
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
110 111 112
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
113 114 115 116 117 118 119

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
120
        level(int): The specific lod level to merge.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
140
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
141
    out = helper.create_tmp_variable(dtype=in_true.dtype)
142 143 144 145 146 147 148 149 150 151 152
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
153 154 155 156 157 158 159
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
160 161
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
162 163 164 165 166 167 168 169 170 171
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
172 173 174 175 176 177 178 179 180
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
181
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
182 183
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
184 185

    Returns:
Y
yangyaming 已提交
186
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
187 188 189 190 191 192 193 194 195

    Examples:
        .. code-block:: python

        value = some_layer(...)
        Print(value, summarize=10,
              message="The content of some_layer: ")
    '''
    helper = LayerHelper('print', **locals())
Y
yangyaming 已提交
196
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yan Chunwei 已提交
197 198
    helper.append_op(
        type='print',
Y
yangyaming 已提交
199
        inputs={'In': input},
Y
Yan Chunwei 已提交
200 201 202 203 204 205 206 207
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
208 209 210
            'print_phase': print_phase.upper()
        },
        outputs={'Out': out})
Y
Yan Chunwei 已提交
211 212 213
    return out


Y
Yu Yang 已提交
214 215
class BlockGuard(object):
    """
216 217 218 219
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
220 221
    """

222 223
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
224
            raise TypeError("BlockGuard takes a program")
225
        self.main_program = main_program
Y
Yu Yang 已提交
226 227

    def __enter__(self):
228
        self.main_program.create_block()
Y
Yu Yang 已提交
229 230

    def __exit__(self, exc_type, exc_val, exc_tb):
231
        self.main_program.rollback()
Y
Yu Yang 已提交
232 233 234 235 236
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
237
class ParallelDo(object):
238
    """
L
Luo Tao 已提交
239 240
    ParallelDo is used to represent multi-thread data parallel processing.

L
Luo Tao 已提交
241
    Its vanilla implementation can be shown as the following (:math:`|` means
L
Luo Tao 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    single thread and :math:`||||` means multiple threads)

    .. code-block:: text

      In the forward pass
        |      Split input onto different devices
        |      Copy parameter onto different devices
        ||||   Compute forward pass in parallel
        |      Merge output from different devices

      In the backward pass
        |      Split output@grad onto different devices
        ||||   Compute backward pass in parallel
        |      accumulate param@grad from different devices to the first device
        |      Merge input@grad from different devices
L
Luo Tao 已提交
257
        |      Copy param@grad to the place of parallel_do_op
L
Luo Tao 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

    Examples:

    .. code-block:: python

      images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
      label = fluid.layers.data(name='label', shape=[1], dtype='int64')

      # ParallelDo version & Single-thread version
      if thread_num > 1:
          places = fluid.layers.get_places(thread_num)
          pd = fluid.layers.ParallelDo(places)
          with pd.do():
              images = pd.read_input(images)
              label = pd.read_input(label)
              predict = cnn_model(images)
              cost = fluid.layers.cross_entropy(input=predict, label=label)

              avg_cost = fluid.layers.mean(x=cost)
              pd.write_output(avg_cost)

          avg_cost = pd()
          avg_cost = fluid.layers.mean(avg_cost)
      else:
          predict = cnn_model(images)
          cost = fluid.layers.cross_entropy(input=predict, label=label)
          avg_cost = fluid.layers.mean(x=cost)

    .. warning::
    
       It will be soon deprecated, please use ParallelExecutor instead.
Y
Yang Yang 已提交
289 290
    """

Y
Yang Yang 已提交
291
    def __init__(self, places, use_nccl=False, name=None):
Y
Yang Yang 已提交
292 293 294 295 296
        self.helper = LayerHelper("parallel_do", name=name)
        self.inputs = []
        self.places = places
        self.outputs = []
        self.status = StaticRNN.BEFORE_RNN_BLOCK
Y
Yang Yang 已提交
297
        self.use_nccl = use_nccl
Y
Yang Yang 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

    def do(self):
        return BlockGuardWithCompletion(self)

    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def read_input(self, var):
        self.inputs.append(var)
Y
Yang Yang 已提交
321
        return var
Y
Yang Yang 已提交
322 323 324 325 326 327 328 329 330 331

    def write_output(self, var):
        self.outputs.append(var)

    def get_parameters(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        local_inputs = set()
Y
Yang Yang(Tony) 已提交
332
        params = list()
Y
Yang Yang 已提交
333 334 335 336 337 338 339 340
        for var in self.inputs:
            local_inputs.add(var.name)

        for op in current_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)
Y
Yang Yang(Tony) 已提交
341 342 343 344 345

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

Y
Yang Yang 已提交
346
        params = list(set(params))
Y
Yang Yang 已提交
347 348 349 350 351 352 353 354 355 356 357

        return [parent_block.var(name) for name in params]

    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

Y
Yang Yang 已提交
358 359 360 361 362 363 364 365 366 367
        self.outputs = [
            parent_block.create_var(
                name=o.name,
                shape=o.shape,
                dtype=o.dtype,
                lod_level=o.lod_level,
                persistable=o.persistable,
                stop_gradient=o.stop_gradient) for o in self.outputs
        ]

Y
Yang Yang 已提交
368
        inputs = [parent_block.var(i.name) for i in self.inputs]
Y
Yang Yang 已提交
369
        outputs = [parent_block.var(o.name) for o in self.outputs]
Y
Yang Yang 已提交
370 371 372 373 374 375 376 377

        parent_block.append_op(
            type='parallel_do',
            inputs={
                'inputs': inputs,
                'parameters': self.get_parameters(),
                'places': self.places
            },
Y
Yang Yang 已提交
378
            outputs={'outputs': outputs,
Y
Yang Yang 已提交
379
                     'parallel_scopes': [step_scope]},
Y
Yang Yang 已提交
380 381
            attrs={'sub_block': current_block,
                   'use_nccl': self.use_nccl})
Y
Yang Yang 已提交
382 383 384 385 386 387 388


class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
389 390
    """

Y
Yu Yang 已提交
391
    def __init__(self, rnn):
Y
Yang Yang 已提交
392 393 394 395
        if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)):
            raise TypeError(
                "BlockGuardWithCompletion takes a StaticRNN or ParallelDo")
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
396 397 398 399
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
400
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
401 402

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
403 404
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
405
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
Y
Yang Yang 已提交
406 407 408
        self.rnn.complete_op()
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
409 410 411 412


class StaticRNNMemoryLink(object):
    """
413 414 415 416
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
417 418 419 420 421 422 423 424 425


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
426 427 428 429 430 431 432 433 434
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
435 436 437 438 439 440
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
441 442 443 444
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

445 446
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
447 448 449 450 451 452 453 454
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
Y
Yang Yang 已提交
455
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
456 457 458 459 460

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

461 462 463 464 465 466 467
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
468 469 470 471 472 473 474 475 476
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
477 478
        self._assert_in_rnn_block_('memory')
        if init is None:
479
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
480
                raise ValueError(
481
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
482
            parent_block = self.parent_block()
Y
Yu Yang 已提交
483 484
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
485
            boot_var = parent_block.create_var(
486 487
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
488
                dtype=batch_ref.dtype,
489
                persistable=False)
Y
Yu Yang 已提交
490 491

            parent_block.append_op(
492 493
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
494 495 496
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
497
                    'shape': boot_var.shape,
F
fengjiayi 已提交
498
                    'dtype': boot_var.dtype,
499 500
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
501 502 503 504 505
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
506
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
507
                dtype=init.dtype,
Y
Yu Yang 已提交
508 509 510 511 512 513 514 515 516 517
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
518 519
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
520 521 522
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
523
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
524 525 526 527 528 529 530 531
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
532
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
533 534 535 536
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
537
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
538

Y
Yu Yang 已提交
539
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
540 541
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
542
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
556
        prog = self.helper.main_program
Y
Yu Yang 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

Y
Yang Yang 已提交
572
    def complete_op(self):
573 574
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
614
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
615 616 617 618 619

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
620
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
636
                'sub_block': rnn_block
Y
Yu Yang 已提交
637
            })
Y
Yu Yang 已提交
638 639


Y
Yang Yang(Tony) 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
660 661 662 663 664 665 666 667 668 669
    """
    while loop control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str): The name of this layer.

    Examples:
          .. code-block:: python

X
Xin Pan 已提交
670 671 672
            d0 = layers.data("d0", shape=[10], dtype='float32')
            data_array = layers.array_write(x=d0, i=i)
            array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
X
Xin Pan 已提交
673

X
Xin Pan 已提交
674 675 676 677 678 679 680
            cond = layers.less_than(x=i, y=array_len)
            while_op = layers.While(cond=cond)
            with while_op.block():
                d = layers.array_read(array=data_array, i=i)
                i = layers.increment(x=i, in_place=True)
                layers.array_write(result, i=i, array=d)
                layers.less_than(x=i, y=array_len, cond=cond)
X
Xin Pan 已提交
681 682
    """

Y
Yang Yang(Tony) 已提交
683 684 685 686
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

687 688
    def __init__(self, cond, name=None):
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
689 690 691 692
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
693
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
Y
Yu Yang 已提交
731 732
                'X':
                [parent_block.var_recursive(x_name) for x_name in x_name_list],
Y
Yang Yang(Tony) 已提交
733 734 735 736
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
737
            attrs={'sub_block': while_block})
Y
Yang Yang(Tony) 已提交
738 739


740
def lod_rank_table(x, level=0):
Y
yangyaming 已提交
741 742 743
    """LoD Rank Table Operator. Given an input variable **x** and a level number
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
744
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
745 746 747
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
748 749 750 751

        .. code-block:: text

            x is a LoDTensor:
752 753
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
754 755
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
756 757 758
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
759

Y
yangyaming 已提交
760 761 762 763 764 765 766 767 768
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
769 770 771 772

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
773 774
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
775 776 777 778 779 780 781 782

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
783
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
784
            out = layers.lod_rank_table(x=x, level=0)
785
    """
Y
Yu Yang 已提交
786 787 788
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
789
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
790 791 792 793 794 795
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
796 797


Y
yuyang18 已提交
798
@templatedoc()
799
def max_sequence_len(rank_table):
Y
yuyang18 已提交
800 801 802 803 804 805 806 807
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
808 809

    Args:
Y
yuyang18 已提交
810
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
811 812

    Returns:
Y
yuyang18 已提交
813
        ${out_comment}.
F
fengjiayi 已提交
814 815 816 817 818 819 820 821 822 823
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


824
def lod_tensor_to_array(x, table):
F
fengjiayi 已提交
825 826 827 828 829
    """ 
    Convert a LoDTensor to a LoDTensorArray.

    This function split a LoDTesnor to a LoDTensorArray according to its LoD 
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in 
F
fengjiayi 已提交
830 831 832
    PaddlePaddle. The generated LoDTensorArray of this function can be further read 
    or written by `read_from_array()` and `write_to_array()` operators. However, 
    this function is generally an internal component of PaddlePaddle `DynamicRNN`. 
F
fengjiayi 已提交
833
    Users should not use it directly.
834 835

    Args:
F
fengjiayi 已提交
836
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
837 838
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
F
fengjiayi 已提交
839
                                descending order. It is generally generated 
F
fengjiayi 已提交
840
                                by `layers.lod_rank_table()` API.
841 842

    Returns:
F
fengjiayi 已提交
843
        Variable: The LoDTensorArray that has been converted from the input tensor.
844 845 846 847 848 849 850

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
851
    """
852 853
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
854
        name=unique_name.generate("lod_tensor_to_array"),
855
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
856
        dtype=x.dtype)
857 858 859 860 861 862 863 864
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


865
def array_to_lod_tensor(x, table):
866
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
867 868

    Args:
869
        x (Variable|list): The lod tensor array to be converted to a tensor.
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
885
    """
886
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
887
    tmp = helper.create_tmp_variable(dtype=x.dtype)
888 889 890 891 892 893 894 895
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


896
def increment(x, value=1.0, in_place=True):
897 898
    """
    This function performs an operation that increments each value in the
899 900 901 902 903 904 905 906 907
    input :math:`x` by an amount: :math:`value` as mentioned in the input
    parameter. This operation is performed in-place by default.

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
908
        Variable: The elementwise-incremented object.
909 910 911 912 913 914

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
915
    """
Y
Yu Yang 已提交
916
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
917
    if not in_place:
F
fengjiayi 已提交
918
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
919 920
    else:
        out = x
Y
Yu Yang 已提交
921 922 923
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
924
        outputs={'Out': [out]},
925
        attrs={'step': float(value)})
Y
Yang Yu 已提交
926
    return out
Y
Yu Yang 已提交
927 928


929
def array_write(x, i, array=None):
930 931 932 933 934
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
935 936 937

    Args:
        x (Variable|list): The input tensor from which the data will be read.
938 939 940 941 942 943 944 945
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

946
    Returns:
947
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
948 949

    Examples:
D
dzhwinter 已提交
950
        .. code-block:: python
951 952 953 954

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
955
    """
Y
Yu Yang 已提交
956 957 958 959 960
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
961
            dtype=x.dtype)
Y
Yu Yang 已提交
962 963 964 965 966 967 968 969
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


970
def create_array(dtype):
971
    """
Q
qiaolongfei 已提交
972
    **Create LoDTensorArray**
973

Q
qiaolongfei 已提交
974 975
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
976 977

    Args:
Q
qiaolongfei 已提交
978
        dtype (int|float): The data type of the elements in the lod_tensor_array.
979 980

    Returns:
981
        Variable: The lod_tensor_array variable storing the elements of data type.
982 983 984 985 986 987 988

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
989 990 991 992 993 994 995
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
996 997
@templatedoc()
def less_than(x, y, force_cpu=None, cond=None, **ignored):
998
    """
Y
yuyang18 已提交
999
    ${comment}
1000

Y
yuyang18 已提交
1001 1002
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
1003 1004

    Args:
Y
yuyang18 已提交
1005 1006 1007
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1008 1009 1010
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1011
        ${out_comment}.
1012
    """
Y
Yang Yang(Tony) 已提交
1013 1014 1015 1016 1017
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

Y
yuyang18 已提交
1018 1019 1020 1021 1022 1023
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1024
    helper.append_op(
J
JiayiFeng 已提交
1025 1026 1027 1028
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1029
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1030 1031 1032
    return cond


1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
def equal(x, y, cond=None, **ignored):
    """
    **equal**

    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


1063
def array_read(array, i):
1064 1065
    """
    This function performs the operation to read the data in as an
1066
    LOD_TENSOR_ARRAY.
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
        
        And:
        
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1082
    Args:
1083 1084 1085
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1086 1087
    Returns:
        Variable: The tensor type variable that has the data written to it.
1088

K
kavyasrinet 已提交
1089
    Examples:
1090 1091
        .. code-block:: python

K
kavyasrinet 已提交
1092 1093 1094
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
1095
    """
Y
Yu Yang 已提交
1096 1097 1098 1099 1100
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1101
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1102 1103 1104 1105 1106 1107
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1108 1109


1110
def shrink_memory(x, i, table):
1111
    """
Y
yuyang18 已提交
1112
    This function creates an operator to shrink rnn memory using the RankTable
1113
    as mentioned in the input parameter.
Y
yuyang18 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1134
    """
Y
Yang Yu 已提交
1135
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1136
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1137
    helper.append_op(
Y
Yang Yu 已提交
1138
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1139 1140 1141 1142 1143 1144
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1145 1146


1147
def array_length(array):
1148
    """
Q
qiaolongfei 已提交
1149
    **Get the Length of Input LoDTensorArray**
1150 1151

    This function performs the operation to find the length of the input
1152
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1153

1154 1155
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1156 1157 1158 1159 1160 1161 1162 1163
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1164
        .. code-block:: python
K
kavyasrinet 已提交
1165 1166 1167 1168 1169

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1170

1171
    """
Y
Yang Yu 已提交
1172 1173 1174 1175 1176 1177
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1178 1179 1180


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1181 1182 1183 1184 1185 1186 1187
    """
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for 
    holding a ConditionalBlock, and helping users entering and exiting the 
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard 
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
1204
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1205 1206 1207 1208
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1209
        self.is_scalar_condition = is_scalar_condition
1210
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
Q
Qingsheng Li 已提交
1235
            parent_block.var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1236 1237 1238 1239 1240
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
X
xuwei06 已提交
1241
            if var_name in intermediate
Y
Yu Yang 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1254 1255 1256 1257 1258 1259 1260
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1261
    """
Q
qiaolongfei 已提交
1262 1263
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1264 1265 1266 1267

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1268

Q
qiaolongfei 已提交
1269
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1270 1271 1272 1273

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1274 1275 1276 1277

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
            lr = fluid.layers.tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
            two_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=2.0)

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1290
                with switch.case(global_step == zero_var):
Q
qiaolongfei 已提交
1291 1292 1293
                    fluid.layers.tensor.assign(input=one_var, output=lr)
                with switch.default():
                    fluid.layers.tensor.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1294 1295 1296

    """

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
Q
qiaolongfei 已提交
1326 1327
        """
        create a default case for this switch
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1396

X
improve  
Xin Pan 已提交
1397
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1398
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1399 1400
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1401 1402
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1403 1404
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1405 1406 1407 1408
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1409 1410 1411
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1412 1413 1414
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1415 1416 1417 1418
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1419
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1420 1421
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1422
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1436
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1437
                dtype=x.dtype)
Y
Yu Yang 已提交
1438 1439

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1440
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1441
                dtype=x.dtype)
Y
Yu Yang 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1482 1483
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1484
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1485 1486 1487
            out_table.append(outside_out)

            # assign local var to outside
1488
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1512
                    level=0))
Y
Yu Yang 已提交
1513
        return rlist
1514 1515 1516


class DynamicRNN(object):
Y
yuyang18 已提交
1517
    """
Y
yuyang18 已提交
1518 1519 1520
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548

    The input lod must be set. Please reference `lod_tensor`

    >>> import paddle.fluid as fluid
    >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
    >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
    >>>                                    is_sparse=True)
    >>>
    >>> drnn = fluid.layers.DynamicRNN()
    >>> with drnn.block():
    >>>     word = drnn.step_input(embedding)
    >>>     prev = drnn.memory(shape=[200])
    >>>     hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
    >>>     drnn.update_memory(prev, hidden)  # set prev to hidden
    >>>     drnn.output(hidden)
    >>>
    >>> # last is the last time step of rnn. It is the encoding result.
    >>> last = fluid.layers.sequence_last_step(drnn())

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
    """
1549 1550 1551 1552
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1553 1554
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1555 1556 1557 1558
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1559 1560
        self.zero_idx = fill_constant(
            shape=[1], value=0, dtype='int64', force_cpu=True)
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
Y
yuyang18 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579
        """
        Mark a sequence as a dynamic RNN input.
        Args:
            x(Variable): The input sequence.

        Returns:
            The current timestep in the input sequence.

        """
1580 1581 1582
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1583
                "step_input() can only take a Variable as its input.")
1584 1585 1586
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1587
                name=unique_name.generate('lod_rank_table'),
1588 1589 1590 1591 1592 1593 1594
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1595 1596
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1607 1608
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1609 1610

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1611
            name=unique_name.generate('dynamic_rnn_input_array'),
1612 1613 1614 1615 1616 1617 1618 1619
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1620
        return array_read(array=input_array, i=self.step_idx)
1621

Y
yangyaming 已提交
1622
    def static_input(self, x):
Y
yuyang18 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631
        """
        Mark a variable as a RNN input. The input will not be scattered into
        time steps.
        Args:
            x(Variable): The input variable.

        Returns:
            The input variable that can access in RNN.
        """
Y
yangyaming 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1641
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

1651 1652
    @contextlib.contextmanager
    def block(self):
Y
yuyang18 已提交
1653 1654 1655 1656
        """
        The block for user to define operators in RNN. See the class docstring
        for more details.
        """
1657 1658
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1659 1660
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1661 1662 1663 1664
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1665
            increment(x=self.step_idx, value=1.0, in_place=True)
1666 1667

            for new_mem, mem_array in self.mem_link:
1668 1669
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1670 1671 1672 1673 1674
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1675 1676 1677 1678 1679

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1680
                    x=each_array, table=self.lod_rank_table))
1681 1682

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1683 1684 1685
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1686
        if self.status != DynamicRNN.AFTER_RNN:
1687 1688
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1689 1690 1691 1692 1693
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1694 1695 1696 1697 1698 1699
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1700
        """
Y
yuyang18 已提交
1701
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>> boot_memory = fluid.layers.data(
        >>>                 name='boot', dtype='float32', shape=[10])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(init=boot_memory, need_reorder=True)
        >>>     hidden = fluid.layers.fc(
        >>>                 input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(shape=[10], dtype='float32', value=0)
        >>>     hidden = fluid.layers.fc(
        >>>             input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Args:
            init(Variable|None): The initialized variable.

            shape(list|tuple): The memory shape. NOTE the shape does not contain
            batch_size.

            value(float): the initalized value.

            need_reorder(bool): True if the initialized memory depends on the
            input sample.

            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
            the memory variable.

        """
1764 1765 1766 1767 1768 1769
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1770 1771 1772 1773 1774 1775 1776 1777
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1778
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1789
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1790
                name=unique_name.generate('dynamic_rnn_mem_array'),
1791 1792 1793 1794
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1795
                inputs={'X': init_tensor,
1796 1797
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1798
            retv = array_read(array=mem_array, i=self.step_idx)
1799
            retv = shrink_memory(
1800
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1801 1802 1803 1804 1805 1806 1807 1808 1809
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1810
                name=unique_name.generate('mem_init'), dtype=dtype)
1811
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1812 1813
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866
        """
        mark the RNN output variables.

        Args:
            outputs: The output variables.

        Returns:
            None
        """
1867 1868 1869 1870
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1871
                name=unique_name.generate("_".join(
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1890 1891


1892
@autodoc()
Y
Yang Yu 已提交
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
1905 1906 1907 1908


def is_empty(x, cond=None, **ignored):
    """
F
fengjiayi 已提交
1909
    Test whether a Variable is empty.
1910 1911

    Args:
F
fengjiayi 已提交
1912 1913
        x (Variable): The Variable to be tested.
        cond (Variable|None): Output parameter. Returns the test result 
F
fengjiayi 已提交
1914
                              of given 'x'. Default: None
1915 1916

    Returns:
F
fengjiayi 已提交
1917
        Variable: A bool scalar. True if 'x' is an empty Variable.
1918 1919 1920

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
1921
                   not bool.
1922 1923 1924 1925

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
1926 1927 1928
          res = fluid.layers.is_empty(x=input)
          # or:
          fluid.layers.is_empty(x=input, cond=res)
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond