control_flow.py 79.5 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
M
minqiyang 已提交
24
from .nn import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28
from functools import reduce
D
dzhwinter 已提交
29

Q
QI JUN 已提交
30
__all__ = [
W
Wu Yi 已提交
31
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
32 33
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
    'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
W
Wu Yi 已提交
34
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
D
dzhwinter 已提交
35 36
]

Y
Yu Yang 已提交
37

38
def split_lod_tensor(input, mask, level=0):
39 40 41 42
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
43 44
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
45 46 47 48 49

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
50
        level(int): The specific lod level to split.
51 52

    Returns:
Q
qiaolongfei 已提交
53 54 55 56
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
57 58 59 60

    Examples:
        .. code-block:: python

61
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
62
          x = fluid.layers.data(name='x', shape=[1])
63 64
          x.persistable = True

Q
qiaolongfei 已提交
65
          y = fluid.layers.data(name='y', shape=[1])
66 67
          y.persistable = True

Q
qiaolongfei 已提交
68
          out_true, out_false = fluid.layers.split_lod_tensor(
69
                input=x, mask=y, level=level)
70

71
    """
72
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
73 74
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
75 76 77 78 79 80 81 82 83 84 85 86
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


87
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
88 89 90 91 92
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
93 94 95
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
96 97 98 99 100 101 102

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
103
        level(int): The specific lod level to merge.
104 105 106 107 108 109 110

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

111
          import paddle.fluid as fluid
112 113 114 115 116 117 118 119 120 121 122 123
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
124
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
125
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
126 127 128 129 130 131 132 133 134 135 136
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
137 138 139
def Print(input,
          first_n=-1,
          message=None,
140
          summarize=20,
Y
Yan Chunwei 已提交
141 142 143
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
144 145
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
146 147 148 149 150 151 152 153 154 155
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
156 157 158 159 160 161 162 163 164
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
165
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
166 167
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
168 169

    Returns:
170
        Variable: Output tensor.
Y
Yan Chunwei 已提交
171

172 173 174 175
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
176

Y
Yan Chunwei 已提交
177 178
    Examples:
        .. code-block:: python
179 180 181
           
           import paddle.fluid as fluid
           
182 183 184 185 186 187
           input = fluid.layers.fill_constant(shape=[10,2], value=3, dtype='int64')
           input = fluid.layers.Print(input, message="The content of input layer:")
           
           main_program = fluid.default_main_program()
           exe = fluid.Executor(fluid.CPUPlace())
           exe.run(main_program)
Y
Yan Chunwei 已提交
188

189 190 191 192 193 194 195 196 197 198 199 200 201
    Output at runtime:
        .. code-block:: bash 
           
           1564546375   The content of input layer:     The place is:CPUPlace
           Tensor[fill_constant_0.tmp_0]
               shape: [10,2,]
               dtype: x
               data: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 
               
           # The information of dtype at runtime may vary in different environments.
           # Eg: 
           #    If the dtype='int64' of Tensor y, the corresponding c++ type is int64_t.
           #    The dtype of output is "x" ("x" is typeid(int64_t).name()) with MacOS and gcc4.8.2
Y
Yan Chunwei 已提交
202
    '''
203 204
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
Y
Yan Chunwei 已提交
205 206
    helper.append_op(
        type='print',
Y
yangyaming 已提交
207
        inputs={'In': input},
208
        outputs={'Out': output},
Y
Yan Chunwei 已提交
209 210 211 212 213 214 215 216
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
217
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
218
        })
219
    return output
Y
Yan Chunwei 已提交
220 221


Y
Yu Yang 已提交
222 223
class BlockGuard(object):
    """
224 225 226 227
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
228 229
    """

230 231
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
232
            raise TypeError("BlockGuard takes a program")
233
        self.main_program = main_program
Y
Yu Yang 已提交
234 235

    def __enter__(self):
W
Wu Yi 已提交
236
        self.main_program._create_block()
Y
Yu Yang 已提交
237 238

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
239
        self.main_program._rollback()
Y
Yu Yang 已提交
240 241 242 243 244
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
245 246 247 248 249
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
250 251
    """

Y
Yu Yang 已提交
252
    def __init__(self, rnn):
X
Xin Pan 已提交
253
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
254
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
255
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
256 257 258 259
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
260
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
261 262

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
263 264
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
265
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
266
        self.rnn._complete_op()
Y
Yang Yang 已提交
267 268
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
269 270 271 272


class StaticRNNMemoryLink(object):
    """
273 274 275 276
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
277 278 279 280 281 282 283 284 285


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
286 287 288 289 290 291 292 293 294
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
295 296 297
    """
    StaticRNN class.

C
chengduo 已提交
298 299 300 301 302 303 304
    The StaticRNN can process a batch of sequence data. The length of each
    sample sequence must be equal. The StaticRNN will have its own parameters
    like inputs, outputs, memories. **Note that the first dimension of inputs
    represents sequence length, and all the sequence length of inputs must be
    the same. And the meaning of each axis of input and output are the same.**

    Examples:
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
            x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
                word = rnn.step_input(x_emb)
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                rnn.update_memory(prev, hidden)  # set prev to hidden
                rnn.step_output(hidden)
326
                rnn.output(word)
327 328

            result = rnn()
C
chengduo 已提交
329 330 331 332 333 334 335 336 337 338

    The StaticRNN will unfold sequence into time steps. Users need to define
    how to process each time step during the :code:`with` step.

    The :code:`memory` is used as a staging data cross time step. The initial
    value of memory can be a variable that is filled with a constant value or
    a specified variable.

    The StaticRNN can mark multiple variables as its output. Use `rnn()` to
    get the output sequence.
339
    """
Y
Yu Yang 已提交
340 341 342 343
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

344 345
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
346 347 348 349 350 351 352 353
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
354 355 356
        """
        The block for user to define operators in RNN.
        """
Y
Yang Yang 已提交
357
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
358 359 360 361 362

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

363 364 365 366 367 368 369
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
370
        """
C
chengduo 已提交
371 372 373 374 375 376
        Create a memory variable for static rnn.

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
        must be set, and this function will initialize a :code:`init` Variable.

377
        Args:
C
chengduo 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
            init(Variable|None): The initialized variable. If it is not set,
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
            shape(list|tuple): The shape of the boot memory. NOTE the shape
                does not contain batch_size. Default: None.
            batch_ref(Variable|None): The batch size reference Variable.
                Default: None.
            init_value(float): the init value of boot memory. Default: 0.0.
            init_batch_dim_idx(int): the batch_size axis of the
                :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int): the batch_size axis of the
                :code:`batch_ref` Variable. Default: 1.

        Returns:
            The memory variable.
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
                x_emb = layers.embedding(
                    input=x,
                    size=[vocab_size, hidden_size],
                    dtype='float32',
                    is_sparse=False)
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                    word = rnn.step_input(x_emb)
                    prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                    hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                    rnn.update_memory(prev, hidden)
414
        """
Y
Yu Yang 已提交
415 416
        self._assert_in_rnn_block_('memory')
        if init is None:
417
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
418
                raise ValueError(
419
                    "if init is None, memory at least need shape and batch_ref")
420
            parent_block = self._parent_block()
421
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
422
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
423
            boot_var = parent_block.create_var(
424 425
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
426
                dtype=batch_ref.dtype,
427
                persistable=False)
Y
Yu Yang 已提交
428 429

            parent_block.append_op(
430 431
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
432 433 434
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
435
                    'shape': boot_var.shape,
F
fengjiayi 已提交
436
                    'dtype': boot_var.dtype,
437 438
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
439 440 441 442 443
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
444 445
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
446
                dtype=init.dtype,
Y
Yu Yang 已提交
447 448 449 450 451 452
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
453 454 455 456 457 458 459 460 461 462
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
            The current time step in the input sequence.
        """
Y
Yu Yang 已提交
463 464 465 466
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
467
            self.seq_len = x.shape[0]
468
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
469 470 471
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
472
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
473 474 475 476
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
477 478 479 480 481 482 483 484 485
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
        """
Y
Yu Yang 已提交
486 487 488 489
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
490
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
491 492 493 494
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
495
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
496

497
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
498 499
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
500
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
501 502 503 504

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
505 506 507 508 509 510 511 512 513
        """
        Mark the StaticRNN output variables.

        Args:
            outputs: The output Variables.

        Returns:
            None
        """
Y
Yu Yang 已提交
514 515 516 517
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
518 519 520 521 522 523 524 525 526 527 528
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.

        Args:
            mem(Variable): the memory variable.
            var(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
Y
Yu Yang 已提交
529 530 531 532
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

533
    def _parent_block(self):
534
        prog = self.helper.main_program
Y
Yu Yang 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

550
    def _complete_op(self):
551 552
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
553
        parent_block = self._parent_block()
Y
Yu Yang 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
568 569 570
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
571 572 573 574 575 576 577 578
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

579
        parameters = [parent_block.var(name) for name in set(params)]
Y
Yu Yang 已提交
580 581 582 583 584 585 586

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
587
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
588 589 590
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
591
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
592 593
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
594 595
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
596 597
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
598 599
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
600 601 602 603
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
604
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
618
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
619 620
                'ex_states': pre_memories,
                'states': memories,
621
                'sub_block': rnn_block
Y
Yu Yang 已提交
622
            })
Y
Yu Yang 已提交
623 624


Y
Yang Yang(Tony) 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
640
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
641 642 643 644
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
645 646 647 648
    """
    while loop control flow.

    Args:
649
        cond(Variable): condition used to compare.
C
chengduo 已提交
650
        is_test(bool): A flag indicating whether execution is in test phase.
651
        name(str): The name of this layer.
X
Xin Pan 已提交
652 653 654

    Examples:
          .. code-block:: python
655 656 657 658 659 660 661 662 663 664
            
            import paddle.fluid as fluid
            
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            d0 = fluid.layers.data("d0", shape=[10], dtype='float32')
            data_array = fluid.layers.array_write(x=d0, i=i)
            array_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=3)

            cond = fluid.layers.less_than(x=i, y=array_len)
            while_op = fluid.layers.While(cond=cond)
X
Xin Pan 已提交
665
            with while_op.block():
666 667 668
                d = fluid.layers.array_read(array=data_array, i=i)
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                fluid.layers.less_than(x=i, y=array_len, cond=cond)            
X
Xin Pan 已提交
669 670
    """

Y
Yang Yang(Tony) 已提交
671 672 673 674
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
675
    def __init__(self, cond, is_test=False, name=None):
676
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
677 678 679 680
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
681
        if cond.dtype != core.VarDesc.VarType.BOOL:
682
            raise TypeError("condition should be a boolean variable")
Y
Yang Yang(Tony) 已提交
683
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
684 685 686
            raise TypeError(
                "condition expected shape as [], but given shape as {0}.".
                format(list(cond.shape)))
Y
Yang Yang(Tony) 已提交
687
        self.cond_var = cond
C
chengduo 已提交
688
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
689 690 691 692

    def block(self):
        return WhileGuard(self)

693
    def _complete(self):
Y
Yang Yang(Tony) 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
713 714 715
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
716 717 718 719 720 721 722

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
723 724 725 726
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
727 728 729 730
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
731 732
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
733 734


735
def lod_rank_table(x, level=0):
736 737
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
738 739
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
740
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
741 742 743
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
744 745 746 747

        .. code-block:: text

            x is a LoDTensor:
748 749
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
750 751
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
752 753 754
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
755

Y
yangyaming 已提交
756 757 758 759 760 761 762 763 764
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
765 766 767 768

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
769 770
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
771 772 773 774 775 776 777

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

778
            import paddle.fluid as fluid
Y
yangyaming 已提交
779
            x = fluid.layers.data(name='x', shape=[10],
780
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
781
            out = layers.lod_rank_table(x=x, level=0)
782
    """
Y
Yu Yang 已提交
783 784 785
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
786
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
787 788 789 790 791 792
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
793 794


Y
yuyang18 已提交
795
@templatedoc()
796
def max_sequence_len(rank_table):
Y
yuyang18 已提交
797 798 799 800 801 802 803 804
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
805 806

    Args:
Y
yuyang18 已提交
807
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
808 809

    Returns:
Y
yuyang18 已提交
810
        ${out_comment}.
F
fengjiayi 已提交
811 812
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
813
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
814 815 816 817 818 819 820
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


821
def lod_tensor_to_array(x, table):
822
    """
F
fengjiayi 已提交
823 824
    Convert a LoDTensor to a LoDTensorArray.

825 826 827 828 829
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
830
    Users should not use it directly.
831 832

    Args:
F
fengjiayi 已提交
833
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
834 835
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
836
                                descending order. It is generally generated
F
fengjiayi 已提交
837
                                by `layers.lod_rank_table()` API.
838 839

    Returns:
F
fengjiayi 已提交
840
        Variable: The LoDTensorArray that has been converted from the input tensor.
841 842 843 844

    Examples:
        .. code-block:: python

845
          import paddle.fluid as fluid
846 847 848
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
849
    """
850 851
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
852
        name=unique_name.generate("lod_tensor_to_array"),
853
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
854
        dtype=x.dtype)
855 856 857 858 859 860 861 862
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


863
def array_to_lod_tensor(x, table):
864
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
865 866

    Args:
867
        x (Variable|list): The lod tensor array to be converted to a tensor.
868 869 870 871 872 873 874 875 876 877 878
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

879
          import paddle.fluid as fluid
880 881 882 883
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
884
    """
885
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
886
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
887 888 889 890 891 892 893 894
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


895
def increment(x, value=1.0, in_place=True):
896
    """
S
sneaxiy 已提交
897
    This function performs an operation that increments the value in the
898
    input :math:`x` by an amount: :math:`value` as mentioned in the input
S
sneaxiy 已提交
899 900
    parameter. This operation is performed in-place by default. Notice that
    the number of elements in :math:`x` must be equal to 1.
901 902 903 904 905 906 907

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
908
        Variable: The elementwise-incremented object.
909 910 911 912

    Examples:
        .. code-block:: python

913
          import paddle.fluid as fluid
S
sneaxiy 已提交
914 915
          data = fluid.layers.data(name='data', shape=[1], dtype='float32',
                                   append_batch_size=False)
916
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
917
    """
Y
Yu Yang 已提交
918
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
919
    if not in_place:
X
Xin Pan 已提交
920
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
921 922
    else:
        out = x
Y
Yu Yang 已提交
923 924 925
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
926
        outputs={'Out': [out]},
927
        attrs={'step': float(value)})
Y
Yang Yu 已提交
928
    return out
Y
Yu Yang 已提交
929 930


931
def array_write(x, i, array=None):
932 933 934 935 936
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
937 938 939

    Args:
        x (Variable|list): The input tensor from which the data will be read.
940 941 942 943 944 945 946 947
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

948
    Returns:
949
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
950 951

    Examples:
D
dzhwinter 已提交
952
        .. code-block:: python
953

954
          import paddle.fluid as fluid
955 956
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
957
          arr = fluid.layers.array_write(tmp, i=i)
958
    """
Y
Yu Yang 已提交
959 960 961 962 963
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
964
            dtype=x.dtype)
Y
Yu Yang 已提交
965 966 967 968 969 970 971 972
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


973
def create_array(dtype):
974
    """
Q
qiaolongfei 已提交
975
    **Create LoDTensorArray**
976

Q
qiaolongfei 已提交
977 978
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
979 980

    Args:
Q
qiaolongfei 已提交
981
        dtype (int|float): The data type of the elements in the lod_tensor_array.
982 983

    Returns:
984
        Variable: The lod_tensor_array variable storing the elements of data type.
985 986 987 988

    Examples:
        .. code-block:: python

989
          import paddle.fluid as fluid
990 991 992
          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
993 994 995 996 997 998 999
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
1000
@templatedoc()
1001
def less_than(x, y, force_cpu=None, cond=None):
1002
    """
Y
yuyang18 已提交
1003
    ${comment}
1004 1005

    Args:
Y
yuyang18 已提交
1006 1007 1008
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1009 1010 1011
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1012
        ${out_comment}.
1013 1014 1015 1016

    Examples:
        .. code-block:: python

1017
          import paddle.fluid as fluid
1018 1019 1020
          label = fluid.layers.data(name='y', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], dtype='int64', value=5)
          cond = fluid.layers.less_than(x=label, y=limit)
1021
    """
Y
Yang Yang(Tony) 已提交
1022 1023
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1024
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1025 1026
        cond.stop_gradient = True

Y
yuyang18 已提交
1027 1028 1029 1030 1031 1032
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1033
    helper.append_op(
J
JiayiFeng 已提交
1034 1035 1036 1037
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1038
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1039 1040 1041
    return cond


Z
zhoukunsheng 已提交
1042 1043 1044
@templatedoc()
def less_equal(x, y, cond=None):
    """
1045
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1046 1047

    Args:
1048 1049 1050 1051 1052
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the input shape and data type of \
            this tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the input shape \
            and data type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1053 1054

    Returns:
1055
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1056 1057 1058 1059

    Examples:
        .. code-block:: python

1060
          import paddle.fluid as fluid
1061 1062 1063 1064 1065 1066
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
    """
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_than(x, y, cond=None):
    """
1089
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
1090 1091

    Args:
1092 1093 1094 1095 1096
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \
            tensor is the same as input :attr:`x` . If is not :attr:`None`, the op will set the variable as output tensor, the shape and data type \
            of this tensor should be the same as input :attr:`x` . Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1097 1098

    Returns:
1099
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x` .
Z
zhoukunsheng 已提交
1100 1101 1102 1103

    Examples:
        .. code-block:: python

1104
          import paddle.fluid as fluid
1105 1106 1107 1108 1109
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
    """
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_equal(x, y, cond=None):
    """
1132
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
1133 1134

    Args:
1135 1136 1137 1138 1139
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None` , the op will create a variable as output tensor, the shape and data type of this \
            tensor is the same as input :attr:`x`. If is not :attr:`None` , the op will set the variable as output tensor, the shape and data \
            type of this tensor is the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1140 1141

    Returns:
1142
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1143 1144 1145 1146

    Examples:
        .. code-block:: python

1147
          import paddle.fluid as fluid
1148 1149 1150 1151 1152 1153
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
1154

Z
zhoukunsheng 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
    """
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


1174
def equal(x, y, cond=None):
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

1189 1190 1191
          import paddle.fluid as fluid
          label = fluid.layers.data(name="label", shape=[3,10,32,32], dtype="float32")
          limit = fluid.layers.data(name="limit", shape=[3,10,32,32], dtype="float32")
1192 1193 1194 1195
          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1196
        cond = helper.create_variable_for_type_inference(dtype='bool')
1197 1198 1199 1200 1201 1202 1203 1204
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


Z
zhoukunsheng 已提交
1205 1206
def not_equal(x, y, cond=None):
    """
1207
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
1208 1209

    Args:
1210 1211 1212 1213 1214
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \
             tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the shape and data \
             type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1215 1216

    Returns:
1217
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1218 1219 1220 1221

    Examples:
        .. code-block:: python

1222 1223 1224 1225
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
          out = fluid.layers.not_equal(x=label, y=limit)
    """
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1239
def array_read(array, i):
1240 1241
    """
    This function performs the operation to read the data in as an
1242
    LOD_TENSOR_ARRAY.
1243 1244 1245 1246 1247 1248

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
1249

1250
        And:
1251

1252 1253 1254 1255 1256 1257
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1258
    Args:
1259 1260 1261
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1262 1263
    Returns:
        Variable: The tensor type variable that has the data written to it.
1264

K
kavyasrinet 已提交
1265
    Examples:
1266 1267
        .. code-block:: python

1268
          import paddle.fluid as fluid
Z
zhaoyuchen 已提交
1269
          array = fluid.layers.create_array(dtype='float32')
K
kavyasrinet 已提交
1270
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
Z
zhaoyuchen 已提交
1271
          item = fluid.layers.array_read(array, i)
1272
    """
Y
Yu Yang 已提交
1273 1274 1275 1276 1277
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1278
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1279 1280 1281 1282 1283 1284
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1285 1286


1287
def shrink_memory(x, i, table):
1288
    """
Y
yuyang18 已提交
1289
    This function creates an operator to shrink rnn memory using the RankTable
1290
    as mentioned in the input parameter.
Y
yuyang18 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1311
    """
Y
Yang Yu 已提交
1312
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1313
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1314
    helper.append_op(
Y
Yang Yu 已提交
1315
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1316 1317 1318 1319 1320 1321
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1322 1323


1324
def array_length(array):
1325
    """
Q
qiaolongfei 已提交
1326
    **Get the Length of Input LoDTensorArray**
1327 1328

    This function performs the operation to find the length of the input
1329
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1330

1331 1332
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1333 1334 1335 1336 1337 1338 1339 1340
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1341
        .. code-block:: python
K
kavyasrinet 已提交
1342

1343
          import paddle.fluid as fluid
K
kavyasrinet 已提交
1344 1345 1346 1347
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1348

1349
    """
Y
Yang Yu 已提交
1350
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1351
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1352 1353 1354 1355
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1356 1357 1358


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1359
    """
1360 1361 1362
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1363 1364 1365
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

1396
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1408
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1409 1410 1411 1412
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1413
        self.is_scalar_condition = is_scalar_condition
1414
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1439
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1440 1441 1442
            if each_name not in input_set
        ]

X
Xin Pan 已提交
1443 1444 1445 1446 1447
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1448 1449

        step_scope = parent_block.create_var(
1450
            type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
1451 1452 1453
        parent_block.append_op(
            type='conditional_block',
            inputs={
1454 1455
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1456 1457 1458
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1459 1460 1461 1462 1463 1464 1465
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1466
    """
Q
qiaolongfei 已提交
1467 1468
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1469 1470 1471 1472

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1473

Q
qiaolongfei 已提交
1474
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1475 1476 1477 1478

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1479 1480 1481

    Examples:
        .. code-block:: python
1482 1483
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
1484

1485
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
1486 1487 1488 1489 1490
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
1491 1492 1493
            zero_var = fluid.layers.fill_constant(
                 shape=[1], dtype='float32', value=0.0)
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
1494
                shape=[1], dtype='float32', value=1.0)
1495 1496 1497 1498 1499
            two_var = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=2.0) 

            global_step = fluid.layers.autoincreased_step_counter(
                   counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
1500 1501

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1502
                with switch.case(global_step == zero_var):
1503
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
1504
                with switch.default():
1505
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1506 1507 1508

    """

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1603

1604 1605 1606 1607
            import paddle.fluid as fluid

            image = fluid.layers.data(name="X", shape=[2, 5, 5], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
X
improve  
Xin Pan 已提交
1608
            limit = fluid.layers.fill_constant_batch_size_like(
1609
                 input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1610 1611
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1612 1613
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1614 1615
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1616 1617 1618 1619
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1620 1621 1622
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1623 1624 1625
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1626 1627 1628 1629
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1630
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1631 1632
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1633
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1645
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1646
            out_true = parent_block.create_var(
1647 1648
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1649
                dtype=x.dtype)
Y
Yu Yang 已提交
1650 1651

            out_false = parent_block.create_var(
1652 1653
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1654
                dtype=x.dtype)
Y
Yu Yang 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1673
    def _parent_block(self):
Y
Yu Yang 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1689
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1690 1691 1692 1693 1694
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
1695
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
1696
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1697
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1698 1699 1700
            out_table.append(outside_out)

            # assign local var to outside
1701
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1702 1703 1704 1705

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1706
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1725
                    level=0))
Y
Yu Yang 已提交
1726
        return rlist
1727 1728 1729


class DynamicRNN(object):
Y
yuyang18 已提交
1730
    """
Y
yuyang18 已提交
1731 1732 1733
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1734

1735
    The input lod must be set. Please reference to `lod_tensor`.
Y
yuyang18 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
1745

C
chengduoZH 已提交
1746 1747 1748
    NOTES:
        Currently it is not supported that setting is_sparse to True of any 
        layers within DynamicRNN.
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          sentence = fluid.layers.data(name='sentence', shape=[1], dtype='int64', lod_level=1)
          embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)
    
          drnn = fluid.layers.DynamicRNN()
          with drnn.block():
              word = drnn.step_input(embedding)
              prev = drnn.memory(shape=[200])
              hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
              drnn.update_memory(prev, hidden)  # set prev to hidden
              drnn.output(hidden)

          # Get the last time step of rnn. It is the encoding result.
          rnn_output = drnn()
          last = fluid.layers.sequence_last_step(rnn_output)
Y
yuyang18 已提交
1769
    """
1770 1771 1772 1773
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1774 1775
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1776 1777 1778 1779
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1780
        self.zero_idx = None
1781 1782 1783
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
1784
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
1785 1786 1787 1788 1789
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

1790
    def step_input(self, x, level=0):
Y
yuyang18 已提交
1791 1792
        """
        Mark a sequence as a dynamic RNN input.
H
haowang101779990 已提交
1793

Y
yuyang18 已提交
1794
        Args:
1795 1796
            x (Variable): The input sequence which should have lod information.
            level (int): The level of lod used to split steps. Default: 0.
Y
yuyang18 已提交
1797 1798 1799 1800

        Returns:
            The current timestep in the input sequence.
        """
1801 1802 1803
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1804
                "step_input() can only take a Variable as its input.")
1805 1806 1807
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1808
                name=unique_name.generate('lod_rank_table'),
1809 1810 1811 1812 1813
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
1814 1815
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
1816
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1817 1818
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1829 1830
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1831 1832

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1833
            name=unique_name.generate('dynamic_rnn_input_array'),
1834 1835 1836 1837 1838 1839 1840 1841
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1842
        return array_read(array=input_array, i=self.step_idx)
1843

Y
yangyaming 已提交
1844
    def static_input(self, x):
Y
yuyang18 已提交
1845 1846
        """
        Mark a variable as a RNN input. The input will not be scattered into
1847
        time steps. It is optional.
H
haowang101779990 已提交
1848

Y
yuyang18 已提交
1849
        Args:
1850
            x (Variable): The input variable.
Y
yuyang18 已提交
1851 1852 1853

        Returns:
            The input variable that can access in RNN.
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              encoder_proj = fluid.layers.data(name='encoder_proj', dtype='float32', shape=[32], lod_level=1)
              decoder_boot = fluid.layers.data(name='boot', dtype='float32', shape=[10], lod_level=1)

              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  current_word = drnn.step_input(sentence)
                  encoder_word = drnn.static_input(encoder_proj)
                  hidden_mem = drnn.memory(init=decoder_boot, need_reorder=True)
                  fc_1 = fluid.layers.fc(input=encoder_word, size=30, bias_attr=False)
                  fc_2 = fluid.layers.fc(input=current_word, size=30, bias_attr=False)
                  decoder_inputs = fc_1 + fc_2
                  h, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=hidden_mem, size=30)
                  drnn.update_memory(hidden_mem, h)
                  out = fluid.layers.fc(input=h, size=10, bias_attr=True, act='softmax') 
                  drnn.output(out)

              rnn_output = drnn()
Y
yuyang18 已提交
1878
        """
Y
yangyaming 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1888
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
1898
    @signature_safe_contextmanager
1899
    def block(self):
Y
yuyang18 已提交
1900
        """
1901
        The block for user to define operators in RNN.
Y
yuyang18 已提交
1902
        """
1903 1904
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1905 1906
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1907 1908 1909 1910
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1911
            increment(x=self.step_idx, value=1.0, in_place=True)
1912 1913

            for new_mem, mem_array in self.mem_link:
1914 1915
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1916 1917 1918 1919 1920
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1921 1922 1923 1924 1925

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1926
                    x=each_array, table=self.lod_rank_table))
1927 1928

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1929 1930 1931
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1932
        if self.status != DynamicRNN.AFTER_RNN:
1933 1934
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1935 1936 1937 1938 1939
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1940 1941 1942 1943 1944 1945
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1946
        """
Y
yuyang18 已提交
1947
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1948 1949 1950 1951 1952 1953

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', shape=[32], dtype='float32', lod_level=1)
              boot_memory = fluid.layers.data(name='boot', shape=[10], dtype='float32', lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(init=boot_memory, need_reorder=True)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)

              rnn_output = drnn()
Y
yuyang18 已提交
1971 1972 1973 1974 1975


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

1976 1977
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
1978

1979
              import paddle.fluid as fluid
Y
yuyang18 已提交
1980

1981 1982 1983 1984 1985 1986 1987 1988 1989
              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(shape=[10], dtype='float32', value=0)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)
Y
yuyang18 已提交
1990

1991
              rnn_output = drnn()
Y
yuyang18 已提交
1992 1993


1994 1995 1996
        Args:
            init(Variable|None): The initialized variable.
            shape(list|tuple): The memory shape. The shape does not contain batch_size.
Y
yuyang18 已提交
1997
            value(float): the initalized value.
H
haowang101779990 已提交
1998
            need_reorder(bool): True if the initialized memory depends on the input sample.
Y
yuyang18 已提交
1999 2000 2001
            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
2002
            The memory variable.
Y
yuyang18 已提交
2003
        """
2004
        self._assert_in_rnn_block_('memory')
2005
        self._init_zero_idx_()
2006 2007 2008 2009 2010
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
2011 2012 2013 2014 2015 2016 2017 2018
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
2019
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
2030
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
2031
                name=unique_name.generate('dynamic_rnn_mem_array'),
2032 2033 2034 2035
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
2036
                inputs={'X': init_tensor,
2037 2038
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
2039
            retv = array_read(array=mem_array, i=self.step_idx)
2040
            retv = shrink_memory(
2041
                x=retv, i=self.step_idx, table=self.lod_rank_table)
2042 2043 2044 2045 2046 2047 2048 2049 2050
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
2051
                name=unique_name.generate('mem_init'), dtype=dtype)
2052
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
2053 2054
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
2072 2073 2074
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
H
haowang101779990 已提交
2075
        
Y
yuyang18 已提交
2076 2077 2078 2079 2080 2081 2082
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
2100
        """
2101
        Mark the RNN output variables.
Y
yuyang18 已提交
2102 2103 2104 2105 2106 2107 2108

        Args:
            outputs: The output variables.

        Returns:
            None
        """
2109 2110 2111 2112
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
2113
                name=unique_name.generate_with_ignorable_key("_".join(
2114 2115 2116 2117 2118 2119
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
2148 2149


2150
@templatedoc()
Y
Yang Yu 已提交
2151
def reorder_lod_tensor_by_rank(x, rank_table):
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
    """
    ${comment}

    Args:
    
        x(${x_type}): ${x_comment}
        rank_table(${rank_table_type}): ${rank_table_type}
    
    Returns:
        out(${out_type}): ${out_comment} 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
Y
Yang Yu 已提交
2175 2176 2177 2178
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
2179
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
2180 2181 2182 2183 2184 2185
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
2186 2187


2188
def is_empty(x, cond=None):
2189
    """
F
fengjiayi 已提交
2190
    Test whether a Variable is empty.
2191 2192

    Args:
F
fengjiayi 已提交
2193
        x (Variable): The Variable to be tested.
2194
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
2195
                              of given 'x'. Default: None
2196 2197

    Returns:
F
fengjiayi 已提交
2198
        Variable: A bool scalar. True if 'x' is an empty Variable.
2199 2200 2201

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
2202
                   not bool.
2203 2204 2205 2206

    Examples:
        .. code-block:: python

2207 2208
          import paddle.fluid as fluid
          input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
F
fengjiayi 已提交
2209 2210
          res = fluid.layers.is_empty(x=input)
          # or:
2211 2212
          # fluid.layers.is_empty(x=input, cond=res)

2213 2214 2215
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
2216
        cond = helper.create_variable_for_type_inference(dtype='bool')
2217 2218 2219 2220 2221 2222 2223 2224 2225
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond