control_flow.py 70.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
M
minqiyang 已提交
24
from .nn import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28
from functools import reduce
D
dzhwinter 已提交
29

Q
QI JUN 已提交
30
__all__ = [
W
Wu Yi 已提交
31
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
32 33
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
    'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
W
Wu Yi 已提交
34
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
D
dzhwinter 已提交
35 36
]

Y
Yu Yang 已提交
37

38
def split_lod_tensor(input, mask, level=0):
39 40 41 42
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
43 44
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
45 46 47 48 49

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
50
        level(int): The specific lod level to split.
51 52

    Returns:
Q
qiaolongfei 已提交
53 54 55 56
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
57 58 59 60

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
61
          x = fluid.layers.data(name='x', shape=[1])
62 63
          x.persistable = True

Q
qiaolongfei 已提交
64
          y = fluid.layers.data(name='y', shape=[1])
65 66
          y.persistable = True

Q
qiaolongfei 已提交
67
          out_true, out_false = fluid.layers.split_lod_tensor(
68
                input=x, mask=y, level=level)
69

70
    """
71
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
72 73
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
74 75 76 77 78 79 80 81 82 83 84 85
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


86
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
87 88 89 90 91
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
92 93 94
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
95 96 97 98 99 100 101

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
102
        level(int): The specific lod level to merge.
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
122
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
123
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
124 125 126 127 128 129 130 131 132 133 134
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
135 136 137 138 139 140 141
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
142 143
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
144 145 146 147 148 149 150 151 152 153
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
154 155 156 157 158 159 160 161 162
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
163
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
164 165
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
166 167

    Returns:
Y
yangyaming 已提交
168
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
169

Y
Yan Chunwei 已提交
170

Y
Yan Chunwei 已提交
171
    Examples:
Y
Yan Chunwei 已提交
172

Y
Yan Chunwei 已提交
173 174
        .. code-block:: python

Y
Yan Chunwei 已提交
175 176 177
           value = some_layer(...)
           Print(value, summarize=10,
               message="The content of some_layer: ")
Y
Yan Chunwei 已提交
178 179 180 181
    '''
    helper = LayerHelper('print', **locals())
    helper.append_op(
        type='print',
Y
yangyaming 已提交
182
        inputs={'In': input},
Y
Yan Chunwei 已提交
183 184 185 186 187 188 189 190
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
191
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
192
        })
193
    return input
Y
Yan Chunwei 已提交
194 195


Y
Yu Yang 已提交
196 197
class BlockGuard(object):
    """
198 199 200 201
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
202 203
    """

204 205
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
206
            raise TypeError("BlockGuard takes a program")
207
        self.main_program = main_program
Y
Yu Yang 已提交
208 209

    def __enter__(self):
W
Wu Yi 已提交
210
        self.main_program._create_block()
Y
Yu Yang 已提交
211 212

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
213
        self.main_program._rollback()
Y
Yu Yang 已提交
214 215 216 217 218
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
219 220 221 222 223
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
224 225
    """

Y
Yu Yang 已提交
226
    def __init__(self, rnn):
X
Xin Pan 已提交
227
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
228
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
229
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
230 231 232 233
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
234
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
235 236

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
237 238
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
239
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
240
        self.rnn._complete_op()
Y
Yang Yang 已提交
241 242
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
243 244 245 246


class StaticRNNMemoryLink(object):
    """
247 248 249 250
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
251 252 253 254 255 256 257 258 259


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
260 261 262 263 264 265 266 267 268
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
269 270 271
    """
    StaticRNN class.

C
chengduo 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    The StaticRNN can process a batch of sequence data. The length of each
    sample sequence must be equal. The StaticRNN will have its own parameters
    like inputs, outputs, memories. **Note that the first dimension of inputs
    represents sequence length, and all the sequence length of inputs must be
    the same. And the meaning of each axis of input and output are the same.**

    Examples:
        >>> import paddle.fluid as fluid
        >>> import paddle.fluid.layers as layers
        >>>
        >>> vocab_size, hidden_size=10000, 200
        >>> x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
        >>> x_emb = layers.embedding(
        >>>         input=x,
        >>>         size=[vocab_size, hidden_size],
        >>>         dtype='float32',
        >>>         is_sparse=False)
        >>> x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
        >>>
        >>> rnn = fluid.layers.StaticRNN()
        >>> with rnn.step():
        >>>    word = rnn.step_input(x_emb)
        >>>    prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
        >>>    hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
        >>>    rnn.update_memory(prev, hidden)  # set prev to hidden
        >>>    rnn.step_output(hidden)
        >>>
        >>> result = rnn()

    The StaticRNN will unfold sequence into time steps. Users need to define
    how to process each time step during the :code:`with` step.

    The :code:`memory` is used as a staging data cross time step. The initial
    value of memory can be a variable that is filled with a constant value or
    a specified variable.

    The StaticRNN can mark multiple variables as its output. Use `rnn()` to
    get the output sequence.
310
    """
Y
Yu Yang 已提交
311 312 313 314
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

315 316
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
317 318 319 320 321 322 323 324
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
325 326 327
        """
        The block for user to define operators in RNN.
        """
Y
Yang Yang 已提交
328
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
329 330 331 332 333

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

334 335 336 337 338 339 340
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
341
        """
C
chengduo 已提交
342 343 344 345 346 347
        Create a memory variable for static rnn.

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
        must be set, and this function will initialize a :code:`init` Variable.

348
        Args:
C
chengduo 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
            init(Variable|None): The initialized variable. If it is not set,
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
            shape(list|tuple): The shape of the boot memory. NOTE the shape
                does not contain batch_size. Default: None.
            batch_ref(Variable|None): The batch size reference Variable.
                Default: None.
            init_value(float): the init value of boot memory. Default: 0.0.
            init_batch_dim_idx(int): the batch_size axis of the
                :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int): the batch_size axis of the
                :code:`batch_ref` Variable. Default: 1.

        Returns:
            The memory variable.
364
        """
Y
Yu Yang 已提交
365 366
        self._assert_in_rnn_block_('memory')
        if init is None:
367
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
368
                raise ValueError(
369
                    "if init is None, memory at least need shape and batch_ref")
370
            parent_block = self._parent_block()
Y
Yu Yang 已提交
371 372
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
373
            boot_var = parent_block.create_var(
374 375
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
376
                dtype=batch_ref.dtype,
377
                persistable=False)
Y
Yu Yang 已提交
378 379

            parent_block.append_op(
380 381
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
382 383 384
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
385
                    'shape': boot_var.shape,
F
fengjiayi 已提交
386
                    'dtype': boot_var.dtype,
387 388
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
389 390 391 392 393
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
394
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
395
                dtype=init.dtype,
Y
Yu Yang 已提交
396 397 398 399 400 401
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
402 403 404 405 406 407 408 409 410 411
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
            The current time step in the input sequence.
        """
Y
Yu Yang 已提交
412 413 414 415
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
416 417
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
418 419 420
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
421
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
422 423 424 425
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
426 427 428 429 430 431 432 433 434
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
        """
Y
Yu Yang 已提交
435 436 437 438
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
439
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
440 441 442 443
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
444
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
445

446
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
447 448
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
449
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
450 451 452 453

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
454 455 456 457 458 459 460 461 462
        """
        Mark the StaticRNN output variables.

        Args:
            outputs: The output Variables.

        Returns:
            None
        """
Y
Yu Yang 已提交
463 464 465 466
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
467 468 469 470 471 472 473 474 475 476 477
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.

        Args:
            mem(Variable): the memory variable.
            var(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
Y
Yu Yang 已提交
478 479 480 481
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

482
    def _parent_block(self):
483
        prog = self.helper.main_program
Y
Yu Yang 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

499
    def _complete_op(self):
500 501
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
502
        parent_block = self._parent_block()
Y
Yu Yang 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
517 518 519
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
536
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
537 538 539
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
540
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
541 542
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
543 544
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
545 546
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
547 548
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
549 550 551 552
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
553
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
567
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
568 569
                'ex_states': pre_memories,
                'states': memories,
570
                'sub_block': rnn_block
Y
Yu Yang 已提交
571
            })
Y
Yu Yang 已提交
572 573


Y
Yang Yang(Tony) 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
589
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
590 591 592 593
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
594 595 596 597
    """
    while loop control flow.

    Args:
598
        cond(Variable): condition used to compare.
C
chengduo 已提交
599
        is_test(bool): A flag indicating whether execution is in test phase.
600
        name(str): The name of this layer.
X
Xin Pan 已提交
601 602 603 604

    Examples:
          .. code-block:: python

X
Xin Pan 已提交
605 606 607
            d0 = layers.data("d0", shape=[10], dtype='float32')
            data_array = layers.array_write(x=d0, i=i)
            array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
X
Xin Pan 已提交
608

X
Xin Pan 已提交
609 610 611 612 613 614 615
            cond = layers.less_than(x=i, y=array_len)
            while_op = layers.While(cond=cond)
            with while_op.block():
                d = layers.array_read(array=data_array, i=i)
                i = layers.increment(x=i, in_place=True)
                layers.array_write(result, i=i, array=d)
                layers.less_than(x=i, y=array_len, cond=cond)
X
Xin Pan 已提交
616 617
    """

Y
Yang Yang(Tony) 已提交
618 619 620 621
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
622
    def __init__(self, cond, is_test=False, name=None):
623
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
624 625 626 627
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
628
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
629 630 631 632
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond
C
chengduo 已提交
633
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
634 635 636 637

    def block(self):
        return WhileGuard(self)

638
    def _complete(self):
Y
Yang Yang(Tony) 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
658 659 660
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
661 662 663 664 665 666 667

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
668 669 670 671
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
672 673 674 675
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
676 677
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
678 679


680
def lod_rank_table(x, level=0):
681 682
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
683 684
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
685
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
686 687 688
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
689 690 691 692

        .. code-block:: text

            x is a LoDTensor:
693 694
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
695 696
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
697 698 699
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
700

Y
yangyaming 已提交
701 702 703 704 705 706 707 708 709
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
710 711 712 713

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
714 715
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
716 717 718 719 720 721 722 723

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
724
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
725
            out = layers.lod_rank_table(x=x, level=0)
726
    """
Y
Yu Yang 已提交
727 728 729
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
730
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
731 732 733 734 735 736
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
737 738


Y
yuyang18 已提交
739
@templatedoc()
740
def max_sequence_len(rank_table):
Y
yuyang18 已提交
741 742 743 744 745 746 747 748
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
749 750

    Args:
Y
yuyang18 已提交
751
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
752 753

    Returns:
Y
yuyang18 已提交
754
        ${out_comment}.
F
fengjiayi 已提交
755 756
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
757
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
758 759 760 761 762 763 764
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


765
def lod_tensor_to_array(x, table):
766
    """
F
fengjiayi 已提交
767 768
    Convert a LoDTensor to a LoDTensorArray.

769 770 771 772 773
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
774
    Users should not use it directly.
775 776

    Args:
F
fengjiayi 已提交
777
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
778 779
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
780
                                descending order. It is generally generated
F
fengjiayi 已提交
781
                                by `layers.lod_rank_table()` API.
782 783

    Returns:
F
fengjiayi 已提交
784
        Variable: The LoDTensorArray that has been converted from the input tensor.
785 786 787 788 789 790 791

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
792
    """
793 794
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
795
        name=unique_name.generate("lod_tensor_to_array"),
796
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
797
        dtype=x.dtype)
798 799 800 801 802 803 804 805
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


806
def array_to_lod_tensor(x, table):
807
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
808 809

    Args:
810
        x (Variable|list): The lod tensor array to be converted to a tensor.
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
826
    """
827
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
828
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
829 830 831 832 833 834 835 836
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


837
def increment(x, value=1.0, in_place=True):
838
    """
S
sneaxiy 已提交
839
    This function performs an operation that increments the value in the
840
    input :math:`x` by an amount: :math:`value` as mentioned in the input
S
sneaxiy 已提交
841 842
    parameter. This operation is performed in-place by default. Notice that
    the number of elements in :math:`x` must be equal to 1.
843 844 845 846 847 848 849

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
850
        Variable: The elementwise-incremented object.
851 852 853 854

    Examples:
        .. code-block:: python

S
sneaxiy 已提交
855 856
          data = fluid.layers.data(name='data', shape=[1], dtype='float32',
                                   append_batch_size=False)
857
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
858
    """
Y
Yu Yang 已提交
859
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
860
    if not in_place:
X
Xin Pan 已提交
861
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
862 863
    else:
        out = x
Y
Yu Yang 已提交
864 865 866
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
867
        outputs={'Out': [out]},
868
        attrs={'step': float(value)})
Y
Yang Yu 已提交
869
    return out
Y
Yu Yang 已提交
870 871


872
def array_write(x, i, array=None):
873 874 875 876 877
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
878 879 880

    Args:
        x (Variable|list): The input tensor from which the data will be read.
881 882 883 884 885 886 887 888
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

889
    Returns:
890
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
891 892

    Examples:
D
dzhwinter 已提交
893
        .. code-block:: python
894 895 896 897

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
898
    """
Y
Yu Yang 已提交
899 900 901 902 903
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
904
            dtype=x.dtype)
Y
Yu Yang 已提交
905 906 907 908 909 910 911 912
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


913
def create_array(dtype):
914
    """
Q
qiaolongfei 已提交
915
    **Create LoDTensorArray**
916

Q
qiaolongfei 已提交
917 918
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
919 920

    Args:
Q
qiaolongfei 已提交
921
        dtype (int|float): The data type of the elements in the lod_tensor_array.
922 923

    Returns:
924
        Variable: The lod_tensor_array variable storing the elements of data type.
925 926 927 928 929 930 931

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
932 933 934 935 936 937 938
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
939
@templatedoc()
940
def less_than(x, y, force_cpu=None, cond=None):
941
    """
Y
yuyang18 已提交
942
    ${comment}
943

Y
yuyang18 已提交
944 945
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
946 947

    Args:
Y
yuyang18 已提交
948 949 950
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
951 952 953
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
954
        ${out_comment}.
955
    """
Y
Yang Yang(Tony) 已提交
956 957
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
958
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
959 960
        cond.stop_gradient = True

Y
yuyang18 已提交
961 962 963 964 965 966
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
967
    helper.append_op(
J
JiayiFeng 已提交
968 969 970 971
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
972
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
973 974 975
    return cond


Z
zhoukunsheng 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
@templatedoc()
def less_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x <= y` elementwise, which is equivalent to the overloaded operator `<=`.

    Args:
        x(Variable): First operand of *less_equal*
        y(Variable): Second operand of *less_equal*
        cond(Variable|None): Optional output variable to store the result of *less_equal*

    Returns:
        Variable: The tensor variable storing the output of *less_equal*.

    Examples:
        .. code-block:: python

          out = fluid.layers.less_equal(x=label, y=limit)
    """
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_than(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x > y` elementwise, which is equivalent to the overloaded operator `>`.

    Args:
        x(Variable): First operand of *greater_than*
        y(Variable): Second operand of *greater_than*
        cond(Variable|None): Optional output variable to store the result of *greater_than*

    Returns:
        Variable: The tensor variable storing the output of *greater_than*.

    Examples:
        .. code-block:: python

          out = fluid.layers.greater_than(x=label, y=limit)
    """
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x >= y` elementwise, which is equivalent to the overloaded operator `>=`.

    Args:
        x(Variable): First operand of *greater_equal*
        y(Variable): Second operand of *greater_equal*
        cond(Variable|None): Optional output variable to store the result of *greater_equal*

    Returns:
        Variable: The tensor variable storing the output of *greater_equal*.

    Examples:
        .. code-block:: python

          out = fluid.layers.greater_equal(x=label, y=limit)
    """
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


1084
def equal(x, y, cond=None):
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1103
        cond = helper.create_variable_for_type_inference(dtype='bool')
1104 1105 1106 1107 1108 1109 1110 1111
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


Z
zhoukunsheng 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
def not_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x != y` elementwise, which is equivalent to the overloader operator `!=`.

    Args:
        x(Variable): First operand of *not_equal*
        y(Variable): Second operand of *not_equal*
        cond(Variable|None): Optional output variable to store the result of *not_equal*

    Returns:
        Variable: The tensor variable storing the output of *not_equal*.

    Examples:
        .. code-block:: python

          out = fluid.layers.not_equal(x=label, y=limit)
    """
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1140
def array_read(array, i):
1141 1142
    """
    This function performs the operation to read the data in as an
1143
    LOD_TENSOR_ARRAY.
1144 1145 1146 1147 1148 1149

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
1150

1151
        And:
1152

1153 1154 1155 1156 1157 1158
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1159
    Args:
1160 1161 1162
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1163 1164
    Returns:
        Variable: The tensor type variable that has the data written to it.
1165

K
kavyasrinet 已提交
1166
    Examples:
1167 1168
        .. code-block:: python

Z
zhaoyuchen 已提交
1169
          array = fluid.layers.create_array(dtype='float32')
K
kavyasrinet 已提交
1170
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
Z
zhaoyuchen 已提交
1171
          item = fluid.layers.array_read(array, i)
1172
    """
Y
Yu Yang 已提交
1173 1174 1175 1176 1177
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1178
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1179 1180 1181 1182 1183 1184
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1185 1186


1187
def shrink_memory(x, i, table):
1188
    """
Y
yuyang18 已提交
1189
    This function creates an operator to shrink rnn memory using the RankTable
1190
    as mentioned in the input parameter.
Y
yuyang18 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1211
    """
Y
Yang Yu 已提交
1212
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1213
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1214
    helper.append_op(
Y
Yang Yu 已提交
1215
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1216 1217 1218 1219 1220 1221
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1222 1223


1224
def array_length(array):
1225
    """
Q
qiaolongfei 已提交
1226
    **Get the Length of Input LoDTensorArray**
1227 1228

    This function performs the operation to find the length of the input
1229
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1230

1231 1232
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1233 1234 1235 1236 1237 1238 1239 1240
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1241
        .. code-block:: python
K
kavyasrinet 已提交
1242 1243 1244 1245 1246

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1247

1248
    """
Y
Yang Yu 已提交
1249
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1250
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1251 1252 1253 1254
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1255 1256 1257


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1258
    """
1259 1260 1261
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1262 1263 1264
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1306
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1307 1308 1309 1310
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1311
        self.is_scalar_condition = is_scalar_condition
1312
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1337
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1338 1339 1340
            if each_name not in input_set
        ]

X
Xin Pan 已提交
1341 1342 1343 1344 1345
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1346 1347

        step_scope = parent_block.create_var(
1348
            type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
1349 1350 1351
        parent_block.append_op(
            type='conditional_block',
            inputs={
1352 1353
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1354 1355 1356
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1357 1358 1359 1360 1361 1362 1363
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1364
    """
Q
qiaolongfei 已提交
1365 1366
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1367 1368 1369 1370

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1371

Q
qiaolongfei 已提交
1372
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1373 1374 1375 1376

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1377 1378 1379 1380

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
            lr = fluid.layers.tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
            two_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=2.0)

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1393
                with switch.case(global_step == zero_var):
Q
qiaolongfei 已提交
1394 1395 1396
                    fluid.layers.tensor.assign(input=one_var, output=lr)
                with switch.default():
                    fluid.layers.tensor.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1397 1398 1399

    """

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
Q
qiaolongfei 已提交
1429 1430
        """
        create a default case for this switch
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1499

X
improve  
Xin Pan 已提交
1500
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1501
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1502 1503
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1504 1505
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1506 1507
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1508 1509 1510 1511
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1512 1513 1514
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1515 1516 1517
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1518 1519 1520 1521
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1522
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1523 1524
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1525
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1537
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1538
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1539
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1540
                dtype=x.dtype)
Y
Yu Yang 已提交
1541 1542

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1543
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1544
                dtype=x.dtype)
Y
Yu Yang 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1563
    def _parent_block(self):
Y
Yu Yang 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1579
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1580 1581 1582 1583 1584
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1585 1586
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1587
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1588 1589 1590
            out_table.append(outside_out)

            # assign local var to outside
1591
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1592 1593 1594 1595

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1596
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1615
                    level=0))
Y
Yu Yang 已提交
1616
        return rlist
1617 1618 1619


class DynamicRNN(object):
Y
yuyang18 已提交
1620
    """
Y
yuyang18 已提交
1621 1622 1623
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

    The input lod must be set. Please reference `lod_tensor`

    >>> import paddle.fluid as fluid
    >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
    >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
    >>>                                    is_sparse=True)
    >>>
    >>> drnn = fluid.layers.DynamicRNN()
    >>> with drnn.block():
    >>>     word = drnn.step_input(embedding)
    >>>     prev = drnn.memory(shape=[200])
    >>>     hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
    >>>     drnn.update_memory(prev, hidden)  # set prev to hidden
    >>>     drnn.output(hidden)
    >>>
    >>> # last is the last time step of rnn. It is the encoding result.
    >>> last = fluid.layers.sequence_last_step(drnn())

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
C
chengduoZH 已提交
1651 1652 1653 1654
    
    NOTES:
        Currently it is not supported that setting is_sparse to True of any 
        layers within DynamicRNN.
Y
yuyang18 已提交
1655
    """
1656 1657 1658 1659
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1660 1661
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1662 1663 1664 1665
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1666
        self.zero_idx = None
1667 1668 1669
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
1670
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
1671 1672 1673 1674 1675
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

1676
    def step_input(self, x, level=0):
Y
yuyang18 已提交
1677 1678
        """
        Mark a sequence as a dynamic RNN input.
H
haowang101779990 已提交
1679

Y
yuyang18 已提交
1680 1681
        Args:
            x(Variable): The input sequence.
1682
            level(int): The level of lod used to split steps. Default: 0.
Y
yuyang18 已提交
1683 1684 1685 1686

        Returns:
            The current timestep in the input sequence.
        """
1687 1688 1689
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1690
                "step_input() can only take a Variable as its input.")
1691 1692 1693
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1694
                name=unique_name.generate('lod_rank_table'),
1695 1696 1697 1698 1699
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
1700 1701
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
1702
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1703 1704
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1715 1716
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1717 1718

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1719
            name=unique_name.generate('dynamic_rnn_input_array'),
1720 1721 1722 1723 1724 1725 1726 1727
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1728
        return array_read(array=input_array, i=self.step_idx)
1729

Y
yangyaming 已提交
1730
    def static_input(self, x):
Y
yuyang18 已提交
1731 1732 1733
        """
        Mark a variable as a RNN input. The input will not be scattered into
        time steps.
H
haowang101779990 已提交
1734

Y
yuyang18 已提交
1735 1736 1737 1738 1739 1740
        Args:
            x(Variable): The input variable.

        Returns:
            The input variable that can access in RNN.
        """
Y
yangyaming 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1750
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
1760
    @signature_safe_contextmanager
1761
    def block(self):
Y
yuyang18 已提交
1762
        """
1763
        The block for user to define operators in RNN.
Y
yuyang18 已提交
1764
        """
1765 1766
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1767 1768
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1769 1770 1771 1772
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1773
            increment(x=self.step_idx, value=1.0, in_place=True)
1774 1775

            for new_mem, mem_array in self.mem_link:
1776 1777
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1778 1779 1780 1781 1782
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1783 1784 1785 1786 1787

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1788
                    x=each_array, table=self.lod_rank_table))
1789 1790

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1791 1792 1793
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1794
        if self.status != DynamicRNN.AFTER_RNN:
1795 1796
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1797 1798 1799 1800 1801
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1802 1803 1804 1805 1806 1807
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1808
        """
Y
yuyang18 已提交
1809
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>> boot_memory = fluid.layers.data(
        >>>                 name='boot', dtype='float32', shape=[10])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(init=boot_memory, need_reorder=True)
        >>>     hidden = fluid.layers.fc(
        >>>                 input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(shape=[10], dtype='float32', value=0)
        >>>     hidden = fluid.layers.fc(
        >>>             input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Args:
            init(Variable|None): The initialized variable.

H
haowang101779990 已提交
1858
            shape(list|tuple): The memory shape. NOTE the shape does not contain batch_size.
Y
yuyang18 已提交
1859 1860 1861

            value(float): the initalized value.

H
haowang101779990 已提交
1862
            need_reorder(bool): True if the initialized memory depends on the input sample.
Y
yuyang18 已提交
1863 1864 1865 1866

            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
1867
            The memory variable.
Y
yuyang18 已提交
1868
        """
1869
        self._assert_in_rnn_block_('memory')
1870
        self._init_zero_idx_()
1871 1872 1873 1874 1875
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1876 1877 1878 1879 1880 1881 1882 1883
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1884
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1895
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1896
                name=unique_name.generate('dynamic_rnn_mem_array'),
1897 1898 1899 1900
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1901
                inputs={'X': init_tensor,
1902 1903
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1904
            retv = array_read(array=mem_array, i=self.step_idx)
1905
            retv = shrink_memory(
1906
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1907 1908 1909 1910 1911 1912 1913 1914 1915
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1916
                name=unique_name.generate('mem_init'), dtype=dtype)
1917
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1918 1919
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1937 1938 1939
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
H
haowang101779990 已提交
1940
        
Y
yuyang18 已提交
1941 1942 1943 1944 1945 1946 1947
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
1965
        """
1966
        Mark the RNN output variables.
Y
yuyang18 已提交
1967 1968 1969 1970 1971 1972 1973

        Args:
            outputs: The output variables.

        Returns:
            None
        """
1974 1975 1976 1977
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1978
                name=unique_name.generate("_".join(
1979 1980 1981 1982 1983 1984
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
2013 2014


2015
@autodoc()
Y
Yang Yu 已提交
2016 2017 2018 2019 2020
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
2021
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
2022 2023 2024 2025 2026 2027
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
2028 2029


2030
def is_empty(x, cond=None):
2031
    """
F
fengjiayi 已提交
2032
    Test whether a Variable is empty.
2033 2034

    Args:
F
fengjiayi 已提交
2035
        x (Variable): The Variable to be tested.
2036
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
2037
                              of given 'x'. Default: None
2038 2039

    Returns:
F
fengjiayi 已提交
2040
        Variable: A bool scalar. True if 'x' is an empty Variable.
2041 2042 2043

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
2044
                   not bool.
2045 2046 2047 2048

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
2049 2050 2051
          res = fluid.layers.is_empty(x=input)
          # or:
          fluid.layers.is_empty(x=input, cond=res)
2052 2053 2054
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
2055
        cond = helper.create_variable_for_type_inference(dtype='bool')
2056 2057 2058 2059 2060 2061 2062 2063 2064
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond