control_flow.py 161.3 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18
from .layer_function_generator import autodoc, templatedoc
19
from .tensor import assign, cast, fill_constant
20
from .. import core
H
hong 已提交
21
from ..framework import Program, Variable, Operator, _non_static_mode, static_only, _in_legacy_dygraph, in_dygraph_mode
22
from ..layer_helper import LayerHelper, unique_name
M
minqiyang 已提交
23
from .nn import logical_and, logical_not, logical_or
24
from .utils import assert_same_structure, map_structure, hold_mutable_vars, copy_mutable_vars
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
L
liym27 已提交
28
from functools import reduce, partial
29
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
30 31
from ... import compat as cpt
from ..backward import _infer_var_data_type_shape_
W
wanghuancoder 已提交
32
from paddle import _C_ops
D
dzhwinter 已提交
33

Q
QI JUN 已提交
34
__all__ = [
W
Wu Yi 已提交
35
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
36
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
37
    'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN',
H
Huihuang Zheng 已提交
38 39
    'reorder_lod_tensor_by_rank', 'Print', 'Assert', 'is_empty', 'case',
    'switch_case', 'while_loop'
D
dzhwinter 已提交
40 41
]

Y
Yu Yang 已提交
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
def select_output(input, outputs, mask):
    """
    **select_output**    
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
60 61 62 63
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

64 65 66 67 68 69
    helper.append_op(type='select_output',
                     inputs={
                         'X': input,
                         'Mask': mask
                     },
                     outputs={'Out': outputs})
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    return outputs


def select_input(inputs, mask):
    """
    **select_input**
    
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
89 90 91 92 93 94
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

    input_dtype = inputs[0].dtype
    input_shape = inputs[0].shape
    input_type = inputs[0].type
95

96 97 98 99 100 101 102 103 104
    out = helper.create_variable(dtype=input_dtype,
                                 shape=input_shape,
                                 type=input_type)
    helper.append_op(type='select_input',
                     inputs={
                         'X': inputs,
                         'Mask': mask
                     },
                     outputs={'Out': out})
105 106 107
    return out


108 109 110 111 112 113 114 115
def select_input_with_buildin_type(inputs, mask):
    from paddle.fluid.dygraph.dygraph_to_static.variable_trans_func import to_static_variable
    support_ret_buildin_type = (bool, float, six.integer_types)
    false_var, true_var = inputs

    if isinstance(false_var, Variable) and isinstance(true_var, Variable):
        return select_input(inputs, mask)

116 117
    elif (isinstance(false_var, (support_ret_buildin_type))
          and isinstance(false_var, type(true_var))):
118 119 120 121
        if false_var == true_var:
            return false_var
        else:
            inputs = [
122 123
                to_static_variable(false_var),
                to_static_variable(true_var)
124 125
            ]
    # Deal with the situations like this: false_var is int and true_var is Variable
126 127 128 129
    elif ((isinstance(false_var, support_ret_buildin_type)
           and isinstance(true_var, Variable))
          or (isinstance(true_var, support_ret_buildin_type)
              and isinstance(false_var, Variable))):
130 131 132 133 134 135 136 137 138 139 140 141 142 143
        inputs = [to_static_variable(false_var), to_static_variable(true_var)]
        warnings.warn(
            "Return results from different branches in cond are not same type: "
            "false_var returned by fasle_fn is '{}' and true_var of true_fn is "
            "'{}'".format(type(false_var), type(true_var)))
    else:
        raise TypeError(
            "Unsupported return type of true_fn and false_fn in cond: false_var "
            "returned by fasle_fn is '{}' and true_var of true_fn is '{}'".
            format(type(false_var), type(true_var)))

    return select_input(inputs, mask)


144
def split_lod_tensor(input, mask, level=0):
145 146 147 148
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
149 150
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
151 152

    Args:
153
        input(Variable|tuple|list|None): The input tensor that contains complete
154
                                lod information needed to construct the output.
155
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
156
        level(int): The specific lod level to split.
157 158

    Returns:
Q
qiaolongfei 已提交
159 160 161 162
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
163 164 165 166

    Examples:
        .. code-block:: python

167
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
168
          x = fluid.layers.data(name='x', shape=[1])
169 170
          x.persistable = True

Q
qiaolongfei 已提交
171
          y = fluid.layers.data(name='y', shape=[1])
172 173
          y.persistable = True

Q
qiaolongfei 已提交
174
          out_true, out_false = fluid.layers.split_lod_tensor(
175
                input=x, mask=y, level=level)
176

177
    """
178 179 180 181
    check_type(input, 'input', (Variable, list, tuple, type(None)),
               'fluid.layers.split_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
182
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
183 184
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
185 186 187 188 189 190 191 192 193 194
    helper.append_op(type='split_lod_tensor',
                     inputs={
                         'X': input,
                         'Mask': mask,
                     },
                     outputs={
                         'OutTrue': out_true,
                         'OutFalse': out_false
                     },
                     attrs={'level': level})
195 196 197
    return out_true, out_false


198
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
199 200 201 202 203
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
204 205 206
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
207 208

    Args:
209 210 211
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
212
                            lod information needed to construct the output.
213
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
214
        level(int): The specific lod level to merge.
215 216 217 218 219 220 221

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

222
          import paddle.fluid as fluid
223 224 225 226 227 228 229 230 231 232 233 234
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
235
    helper = LayerHelper('merge_lod_tensor', **locals())
236 237 238 239 240 241 242
    check_type(x, 'x', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
    check_type(in_true, 'in_true', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(in_false, 'in_false', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
X
Xin Pan 已提交
243
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
244 245 246 247 248 249 250 251 252
    helper.append_op(type='merge_lod_tensor',
                     inputs={
                         'X': x,
                         'Mask': mask,
                         'InTrue': in_true,
                         'InFalse': in_false
                     },
                     outputs={'Out': out},
                     attrs={'level': level})
253 254 255
    return out


256
@static_only
Y
Yan Chunwei 已提交
257 258 259
def Print(input,
          first_n=-1,
          message=None,
260
          summarize=20,
Y
Yan Chunwei 已提交
261 262 263
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
264
          print_tensor_layout=True,
Y
yangyaming 已提交
265 266
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
267
    '''
268 269
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
270 271 272 273 274 275 276 277 278
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
279
        input (Variable): A Tensor to print.
280
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
281
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
282 283
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
284 285 286
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
287
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
288
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
289
        print_phase (str): Which phase to displace, including 'forward',
290 291 292
                'backward' and 'both'. Default: 'both'. If set to 'backward', will 
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
293 294

    Returns:
295
        Variable: Output tensor.
Y
Yan Chunwei 已提交
296

297 298 299 300
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
301

Y
Yan Chunwei 已提交
302 303
    Examples:
        .. code-block:: python
304
           
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
           import paddle

           paddle.enable_static()
        
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
323
    '''
324 325 326
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64', 'bool'],
                             'fluid.layers.Print')
327

328 329
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
330 331 332 333 334 335 336 337 338 339 340 341 342 343
    helper.append_op(type='print',
                     inputs={'In': input},
                     outputs={'Out': output},
                     attrs={
                         'first_n': first_n,
                         'summarize': summarize,
                         'message': message or "",
                         'print_tensor_name': print_tensor_name,
                         'print_tensor_type': print_tensor_type,
                         'print_tensor_shape': print_tensor_shape,
                         'print_tensor_layout': print_tensor_layout,
                         'print_tensor_lod': print_tensor_lod,
                         'print_phase': print_phase.upper()
                     })
344
    return output
Y
Yan Chunwei 已提交
345 346


H
Huihuang Zheng 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

410 411 412 413 414 415
    op = helper.append_op(type="assert",
                          inputs={
                              "Cond": cond,
                              "Data": [] if data is None else list(data)
                          },
                          attrs={"summarize": summarize})
H
Huihuang Zheng 已提交
416 417 418 419

    return op


Y
Yu Yang 已提交
420 421
class BlockGuard(object):
    """
422 423 424 425
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
426 427
    """

428 429
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
430
            raise TypeError("BlockGuard takes a program")
431
        self.main_program = main_program
Y
Yu Yang 已提交
432 433

    def __enter__(self):
W
Wu Yi 已提交
434
        self.main_program._create_block()
Y
Yu Yang 已提交
435 436

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
437
        self.main_program._rollback()
Y
Yu Yang 已提交
438 439 440 441 442
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
443 444 445 446 447
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
448 449
    """

Y
Yu Yang 已提交
450
    def __init__(self, rnn):
X
Xin Pan 已提交
451
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
452
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
453
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
454 455 456 457
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
458
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
459 460

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
461 462
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
463
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
464
        self.rnn._complete_op()
465 466
        return super(BlockGuardWithCompletion,
                     self).__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
467 468 469 470


class StaticRNNMemoryLink(object):
    """
471 472 473 474
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
475 476 477 478 479 480 481 482 483


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
484 485 486 487 488 489 490 491 492
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
493
    """
494 495
    :api_attr: Static Graph

496 497
    StaticRNN class.

498 499 500 501 502 503 504
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
505 506

    Examples:
507 508 509 510 511 512
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
513 514
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
515 516 517 518 519
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
520
            # transform batch size to dim 1
521 522 523 524
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
525
                # mark created x_emb as input, each step process a word
526
                word = rnn.step_input(x_emb)
527
                # create prev memory parameter, batch size comes from word
528 529
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
530 531 532
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
                # mark hidden as output 
533
                rnn.step_output(hidden)
534
            # get StaticrNN final output
535
            result = rnn()
C
chengduo 已提交
536

537
    """
Y
Yu Yang 已提交
538 539 540 541
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

542
    def __init__(self, name=None):
543
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
544
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
545 546 547 548 549 550 551 552
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
553
        """
554 555
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
556
        """
Y
Yang Yang 已提交
557
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
558 559 560 561 562

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

563 564 565 566 567 568 569
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
570
        """
C
chengduo 已提交
571 572 573
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
574 575
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
576

577
        Args:
578
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
579 580
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
581 582 583 584 585 586 587
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
588 589

        Returns:
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)


        Examples 2:
621 622
            .. code-block:: python

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers
            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
            	boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
            		# mark created x_emb as input, each step process a word
            		word = rnn.step_input(x_emb)
            		# init memory
            		prev = rnn.memory(init=boot_memory)
            		hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
            		# update hidden with prev
            		rnn.update_memory(prev, hidden)

646
        """
Y
Yu Yang 已提交
647
        self._assert_in_rnn_block_('memory')
648 649 650 651 652 653
        check_type(init, "init", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(shape, "shape", (list, tuple, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(batch_ref, "batch_ref", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
Y
Yu Yang 已提交
654
        if init is None:
655
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
656
                raise ValueError(
657
                    "if init is None, memory at least need shape and batch_ref")
658
            parent_block = self._parent_block()
659
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
660
                [self.helper.name, "memory_boot"]))
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
            boot_var = parent_block.create_var(name=var_name,
                                               shape=shape,
                                               dtype=batch_ref.dtype,
                                               persistable=False)

            parent_block.append_op(type="fill_constant_batch_size_like",
                                   inputs={'Input': [batch_ref]},
                                   outputs={'Out': [boot_var]},
                                   attrs={
                                       'value': init_value,
                                       'shape': boot_var.shape,
                                       'dtype': boot_var.dtype,
                                       'input_dim_idx': ref_batch_dim_idx,
                                       'output_dim_idx': init_batch_dim_idx
                                   })
Y
Yu Yang 已提交
676 677 678 679

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
680 681
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
682
                dtype=init.dtype,
Y
Yu Yang 已提交
683
                shape=init.shape)
684 685
            self.memories[pre_mem.name] = StaticRNNMemoryLink(init=init,
                                                              pre_mem=pre_mem)
Y
Yu Yang 已提交
686 687 688
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
689 690 691 692 693 694 695 696
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)

C
chengduo 已提交
726
        """
Y
Yu Yang 已提交
727
        self._assert_in_rnn_block_('step_input')
728
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
729
        if self.seq_len is None:
Y
Yu Yang 已提交
730
            self.seq_len = x.shape[0]
731
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
732 733
            raise ValueError("Static RNN only take fix seq_len input")

734 735 736 737
        ipt = self.helper.create_variable(name=x.name,
                                          dtype=x.dtype,
                                          shape=list(x.shape[1:]),
                                          type=x.type)
Y
Yu Yang 已提交
738 739 740 741
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
742 743 744 745 746 747 748 749
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
               		dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
               		word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	rnn.step_output(hidden)

            	result = rnn()

C
chengduo 已提交
781
        """
Y
Yu Yang 已提交
782
        self._assert_in_rnn_block_('step_output')
783
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
784

X
Xin Pan 已提交
785
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
786 787 788 789
        self.helper.append_op(type='rnn_memory_helper',
                              inputs={'X': [o]},
                              outputs={'Out': tmp_o},
                              attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
790

791 792 793 794
        out_var = self._parent_block().create_var(name=tmp_o.name,
                                                  shape=[self.seq_len] +
                                                  list(tmp_o.shape),
                                                  dtype=tmp_o.dtype)
Y
Yu Yang 已提交
795 796 797 798

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
799 800 801 802
        """
        Mark the StaticRNN output variables.

        Args:
803
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
804 805 806

        Returns:
            None
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	# mark each step's hidden and word as output
                	rnn.output(hidden, word)

            	result = rnn()
C
chengduo 已提交
838
        """
Y
Yu Yang 已提交
839 840 841 842
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
843
        """
844
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
845 846 847

        Args:
            mem(Variable): the memory variable.
848
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
849
                           var and mem should have same dims and data type.
C
chengduo 已提交
850 851 852

        Returns:
            None
853

C
chengduo 已提交
854
        """
855 856
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
857 858
        self.memories[mem.name].mem = var

859
    def _parent_block(self):
860
        prog = self.helper.main_program
Y
Yu Yang 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

876
    def _complete_op(self):
877 878
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
879
        parent_block = self._parent_block()
Y
Yu Yang 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892 893

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
894 895 896
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
897 898 899 900 901 902 903 904
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

905 906 907
        parameters = [
            parent_block._find_var_recursive(name) for name in set(params)
        ]
Y
Yu Yang 已提交
908 909 910 911 912 913 914

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
915
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
916 917 918
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
919
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
920 921
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
922 923
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
924 925
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
926 927
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
928 929 930 931
            rnn_block.append_op(type='rnn_memory_helper',
                                inputs={'X': [mem_var]},
                                outputs={'Out': [new_mem]},
                                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
932 933 934

            memories.append(new_mem.name)

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
        parent_block.append_op(type='recurrent',
                               inputs={
                                   'inputs': inlinks,
                                   'initial_states': boot_memories,
                                   'parameters': parameters
                               },
                               outputs={
                                   'outputs': outlinks,
                                   'step_scopes': [step_scope]
                               },
                               attrs={
                                   'has_states': len(pre_memories) > 0,
                                   'ex_states': pre_memories,
                                   'states': memories,
                                   'sub_block': rnn_block
                               })
Y
Yu Yang 已提交
951 952


Y
Yang Yang(Tony) 已提交
953
class WhileGuard(BlockGuard):
954

Y
Yang Yang(Tony) 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
969
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
970 971 972
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


973 974 975 976 977 978 979 980 981 982
def get_inputs_outputs_in_block(current_block, inner_inputs, inner_outputs,
                                helper):
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

983 984 985 986 987 988 989 990 991 992 993 994 995
    def is_ignore_vars(op, var_name):
        # NOTE(dev): There are some persistable var created in some non-standard API
        # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in
        # Input and Output. This var shall not be considered as a loop_var in
        # control_flow.
        IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]}
        if op.type in IGNORE_VAR_NAMES:
            var_names = IGNORE_VAR_NAMES[op.type]
            for name in var_names:
                if name in var_name:
                    return True
        return False

996 997 998 999 1000 1001 1002 1003
    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
1004 1005
                if in_var_name not in inner_outputs and not is_ignore_vars(
                        op, in_var_name):
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
        if not parent_block_var and current_block_var and \
                current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


Y
Yang Yang(Tony) 已提交
1030
class While(object):
X
Xin Pan 已提交
1031
    """
1032 1033
    :api_attr: Static Graph
    
1034
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
1035

1036 1037 1038 1039
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

1040 1041 1042 1043 1044 1045
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
1046
    Args:
1047
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
1048
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
1049
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1050

1051
    Examples 1:
X
Xin Pan 已提交
1052
          .. code-block:: python
1053 1054
            
            import paddle.fluid as fluid
1055 1056 1057 1058 1059
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1060

1061
            cond = fluid.layers.less_than(x=i, y=loop_len)
1062
            while_op = fluid.layers.While(cond=cond)
1063
            with while_op.block():
1064
                i = fluid.layers.increment(x=i, value=1, in_place=True)
1065
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)
1066 1067 1068 1069 1070

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = fluid.layers.less_than(x=i, y=loop_len)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1100 1101
    """

Y
Yang Yang(Tony) 已提交
1102 1103 1104 1105
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1106
    def __init__(self, cond, is_test=False, name=None):
1107
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1108
        self.status = While.BEFORE_WHILE_BLOCK
1109
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1110
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1111
            raise TypeError(
1112
                "condition expected shape as [1], but given shape as {0}.".
1113
                format(list(cond.shape)))
Y
Yang Yang(Tony) 已提交
1114
        self.cond_var = cond
C
chengduo 已提交
1115
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1116 1117 1118 1119

    def block(self):
        return WhileGuard(self)

1120
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1121 1122
        main_program = self.helper.main_program
        while_block = main_program.current_block()
1123 1124
        parent_block = main_program.block(
            main_program.current_block().parent_idx)
Y
Yang Yang(Tony) 已提交
1125 1126 1127

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1128 1129
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
            while_block, x_name_list, inner_outputs, self.helper)
Y
Yang Yang(Tony) 已提交
1130 1131 1132

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1133 1134 1135
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1136 1137 1138 1139 1140 1141 1142

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
1143 1144
                'X':
                [parent_block._var_recursive(x_name) for x_name in x_name_list],
Y
Yang Yang(Tony) 已提交
1145 1146
                'Condition': [self.cond_var]
            },
1147 1148 1149 1150 1151 1152 1153 1154
            outputs={
                'Out': out_vars,
                'StepScopes': [step_scope]
            },
            attrs={
                'sub_block': while_block,
                "is_test": self.is_test
            })
Y
Yang Yang(Tony) 已提交
1155 1156


1157
def assign_skip_lod_tensor_array(input, output):
1158
    """
1159
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1160
    """
1161 1162 1163 1164
    if not isinstance(input, Variable) and not isinstance(input, core.VarBase):
        output = input
        return

1165 1166
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
1167 1168
        parent_block = main_program.block(
            main_program.current_block().parent_idx)
1169 1170 1171 1172
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
        assign(input, output)
1173 1174


G
guofei 已提交
1175
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1176
    """
1177 1178
    :api_attr: Static Graph

G
guofei 已提交
1179 1180
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1181 1182 1183 1184
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1185
    Args:
1186 1187 1188 1189 1190
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
	    as many arguments as ``loop_vars`` .
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1191
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1192 1193
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1194

G
guofei 已提交
1195
    Returns:
C
Chen Long 已提交
1196
        A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1197 1198 1199 1200

    Examples:
        .. code-block:: python

1201 1202 1203
            import paddle
            paddle.enable_static()

1204 1205
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1206

1207 1208 1209
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1210

C
Chen Long 已提交
1211 1212 1213 1214 1215 1216
            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            with paddle.static.program_guard(main_program, startup_program):
                i = paddle.full(shape=[1], fill_value=0, dtype='int64')     # loop counter
                ten = paddle.full(shape=[1], fill_value=10, dtype='int64')  # loop length
                i, ten = paddle.static.nn.while_loop(cond, body, [i, ten])
G
guofei 已提交
1217
                
C
Chen Long 已提交
1218
                exe = paddle.static.Executor(paddle.CPUPlace())
1219
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1220 1221 1222 1223 1224 1225 1226 1227
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1228
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1229 1230 1231 1232
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1233 1234
    check_variable_and_dtype(pre_cond, 'var of cond returned', ['bool'],
                             'fluid.layers.while_loop')
G
guofei 已提交
1235 1236
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1237
            "the shape of the variable returned by cond should be [1],"
G
guofei 已提交
1238 1239
            "but given shape as {0}.".format(list(pre_cond.shape)))

J
Jiabin Yang 已提交
1240
    if _non_static_mode():
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
        now_cond = pre_cond.numpy()[0]
        while (now_cond):
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
                    "(length and structure) and types as loop_vars")
            now_cond = cond(*output_vars).numpy()[0]
1251
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1252 1253
        return loop_vars

G
guofei 已提交
1254
    while_loop_block = While(pre_cond, is_test, name)
1255
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1256
    with while_loop_block.block():
1257 1258 1259 1260 1261 1262 1263 1264 1265
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1266 1267
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1268 1269 1270
        try:
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1271 1272 1273
            raise ValueError(
                "body in while_loop should return the same arity "
                "(length and structure) as loop_vars: {0}".format(e))
1274
        now_cond = cond(*output_vars)
1275
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1276 1277 1278 1279
        assign(now_cond, pre_cond)
    return loop_vars


1280
def lod_rank_table(x, level=0):
1281 1282
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1283 1284
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1285
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1286
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1287 1288
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1289 1290 1291 1292

        .. code-block:: text

            x is a LoDTensor:
1293 1294
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1295 1296
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1297 1298 1299
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1300

Y
yangyaming 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1310 1311 1312 1313

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1314 1315
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1316 1317 1318 1319 1320 1321 1322

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1323
            import paddle.fluid as fluid
Y
yangyaming 已提交
1324
            x = fluid.layers.data(name='x', shape=[10],
1325
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1326
            out = layers.lod_rank_table(x=x, level=0)
1327
    """
1328 1329 1330 1331 1332 1333
    check_type(x, 'x', (Variable, list), 'lod_rank_table')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_rank_table')

Y
Yu Yang 已提交
1334
    helper = LayerHelper("lod_rank_table", **locals())
1335 1336 1337 1338 1339 1340
    table = helper.create_variable(type=core.VarDesc.VarType.LOD_RANK_TABLE,
                                   name=unique_name.generate("lod_rank_table"))
    helper.append_op(type='lod_rank_table',
                     inputs={'X': x},
                     outputs={'Out': table},
                     attrs={'level': level})
Y
Yu Yang 已提交
1341
    return table
Y
Yu Yang 已提交
1342 1343


Y
yuyang18 已提交
1344
@templatedoc()
1345
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1346 1347 1348 1349 1350 1351 1352 1353
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1354 1355

    Args:
Y
yuyang18 已提交
1356
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1357 1358

    Returns:
Y
yuyang18 已提交
1359
        ${out_comment}.
F
fengjiayi 已提交
1360 1361
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1362
    res = helper.create_variable_for_type_inference(dtype="int64")
1363 1364 1365
    helper.append_op(type="max_sequence_len",
                     inputs={"RankTable": rank_table},
                     outputs={"Out": res})
F
fengjiayi 已提交
1366 1367 1368
    return res


1369
def lod_tensor_to_array(x, table):
1370
    """
F
fengjiayi 已提交
1371 1372
    Convert a LoDTensor to a LoDTensorArray.

1373 1374 1375 1376 1377
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1378
    Users should not use it directly.
1379 1380

    Args:
F
fengjiayi 已提交
1381
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1382 1383
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1384
                                descending order. It is generally generated
F
fengjiayi 已提交
1385
                                by `layers.lod_rank_table()` API.
1386 1387

    Returns:
F
fengjiayi 已提交
1388
        Variable: The LoDTensorArray that has been converted from the input tensor.
1389 1390 1391 1392

    Examples:
        .. code-block:: python

1393
          import paddle.fluid as fluid
1394 1395 1396
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1397
    """
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
    check_type(x, 'x', (Variable, list), 'lod_tensor_to_array')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
    check_type(table, 'table', (Variable, list), 'lod_tensor_to_array')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
1408 1409
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1410
        name=unique_name.generate("lod_tensor_to_array"),
1411
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1412
        dtype=x.dtype)
1413 1414 1415 1416 1417 1418
    helper.append_op(type='lod_tensor_to_array',
                     inputs={
                         'X': x,
                         'RankTable': table
                     },
                     outputs={'Out': array})
1419 1420 1421
    return array


1422
def array_to_lod_tensor(x, table):
1423
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1424 1425

    Args:
1426
        x (Variable|list): The lod tensor array to be converted to a tensor.
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1438
          import paddle.fluid as fluid
1439 1440 1441 1442
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1443
    """
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
    check_type(x, 'x', (Variable, list), 'array_to_lod_tensor')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')
    check_type(table, 'table', (Variable, list), 'array_to_lod_tensor')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')

1455
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1456
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1457 1458 1459 1460 1461 1462
    helper.append_op(type="array_to_lod_tensor",
                     inputs={
                         'X': x,
                         'RankTable': table
                     },
                     outputs={'Out': tmp})
1463 1464 1465
    return tmp


1466
def increment(x, value=1.0, in_place=True):
1467
    """
1468 1469
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1470

1471
    Parameters:
T
tianshuo78520a 已提交
1472
        x (Variable): A tensor that must always contain only one element, its data type supports
1473 1474 1475
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1476 1477

    Returns:
1478
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1479 1480 1481 1482

    Examples:
        .. code-block:: python

1483
          import paddle.fluid as fluid
1484 1485
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1486
    """
1487 1488
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
Y
Yu Yang 已提交
1489
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1490
    if not in_place:
X
Xin Pan 已提交
1491
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1492 1493
    else:
        out = x
1494 1495 1496 1497
    helper.append_op(type='increment',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={'step': float(value)})
Y
Yang Yu 已提交
1498
    return out
Y
Yu Yang 已提交
1499 1500


1501
def array_write(x, i, array=None):
1502
    """
1503 1504 1505 1506
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1507 1508

    Args:
1509 1510 1511 1512 1513 1514 1515
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written. 
            The default value is None, when a new LoDTensorArray will be created and returned 
            as a result.
1516

1517
    Returns:
1518
        Variable: The input ``array`` after ``x`` is written into.
1519 1520

    Examples:
D
dzhwinter 已提交
1521
        .. code-block:: python
1522

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1550
    """
J
Jiabin Yang 已提交
1551
    if _non_static_mode():
1552 1553 1554 1555 1556 1557 1558 1559 1560
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1561
        i = i.numpy().item(0)
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
        if array is None:
            array = create_array(x.dtype)
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1576 1577
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1578
    helper = LayerHelper('array_write', **locals())
1579 1580
    if array is not None:
        if not isinstance(
1581 1582
                array, Variable
        ) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
1583 1584
            raise TypeError(
                "array should be tensor array vairable in array_write Op")
Y
Yu Yang 已提交
1585 1586 1587 1588
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1589
            dtype=x.dtype)
1590 1591 1592 1593 1594 1595
    helper.append_op(type='write_to_array',
                     inputs={
                         'X': [x],
                         'I': [i]
                     },
                     outputs={'Out': [array]})
Y
Yu Yang 已提交
1596 1597 1598
    return array


1599
def create_array(dtype, initialized_list=None):
1600
    """
1601 1602 1603 1604
    This OP creates an LOD_TENSOR_ARRAY. It is used as
    the input of :ref:`api_fluid_layers_array_read` and 
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1605 1606

    Args:
1607 1608
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1609 1610
        initialized_list(list): Used to initialize as default value for created array.
                    All values in initialized list should be a Tensor.
1611 1612

    Returns:
1613
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1614 1615 1616 1617

    Examples:
        .. code-block:: python

1618
          import paddle.fluid as fluid
1619
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1620 1621

    """
1622 1623 1624 1625
    array = []
    if initialized_list is not None:
        if not isinstance(initialized_list, (list, tuple)):
            raise TypeError(
1626 1627
                "Require type(initialized_list) should be list/tuple, but received {}"
                .format(type(initialized_list)))
1628 1629 1630 1631 1632 1633
        array = list(initialized_list)

    # NOTE: Only support plain list like [x, y,...], not support nested list in static mode.
    for val in array:
        if not isinstance(val, Variable):
            raise TypeError(
1634 1635
                "All values in `initialized_list` should be Variable, but recevied {}."
                .format(type(val)))
1636

J
Jiabin Yang 已提交
1637
    if _non_static_mode():
1638
        return array
1639

Y
Yang Yang(Tony) 已提交
1640
    helper = LayerHelper("array", **locals())
1641
    tensor_array = helper.create_variable(
Y
Yang Yang(Tony) 已提交
1642 1643 1644 1645
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)

1646 1647 1648 1649 1650
    for val in array:
        array_write(x=val, i=array_length(tensor_array), array=tensor_array)

    return tensor_array

Y
Yang Yang(Tony) 已提交
1651

Y
yuyang18 已提交
1652
@templatedoc()
W
wawltor 已提交
1653
def less_than(x, y, force_cpu=None, cond=None, name=None):
1654
    """
1655

Y
yuyang18 已提交
1656
    ${comment}
1657 1658

    Args:
N
Noel 已提交
1659 1660
        x(Tensor): ${x_comment}.
        y(Tensor): ${y_comment}.
Y
yuyang18 已提交
1661
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
N
Noel 已提交
1662
        cond(Tensor, optional): Optional output which can be any created Tensor
1663
            that meets the requirements to store the result of *less_than*.
N
Noel 已提交
1664
            if cond is None, a new Tensor will be created to store the result.
W
wawltor 已提交
1665 1666
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1667
    Returns:
Y
yuyang18 已提交
1668
        ${out_comment}.
1669 1670 1671 1672

    Examples:
        .. code-block:: python

N
Noel 已提交
1673 1674 1675 1676 1677 1678 1679
            import paddle

            x = paddle.to_tensor([1, 2, 3, 4], dtype='float32')
            y = paddle.to_tensor([2, 2, 1, 3], dtype='float32')
            result = paddle.less_than(x, y)
            print(result) # [True, False, False, False]

1680
    """
1681 1682 1683 1684 1685 1686 1687 1688 1689
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_than")
    if cond is not None:
        check_type(cond, "cond", Variable, "less_than")
    if force_cpu != None:
        check_type(force_cpu, "force_cpu", bool, "less_than")

Y
Yang Yang(Tony) 已提交
1690 1691
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1692
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1693 1694
        cond.stop_gradient = True

Y
yuyang18 已提交
1695 1696 1697 1698
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

1699 1700 1701 1702 1703 1704 1705
    helper.append_op(type='less_than',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Y
Yang Yang(Tony) 已提交
1706 1707 1708
    return cond


Z
zhoukunsheng 已提交
1709
@templatedoc()
W
wawltor 已提交
1710
def less_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1711
    """
1712 1713 1714 1715
    :alias_main: paddle.less_equal
	:alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal
	:old_api: paddle.fluid.layers.less_equal

1716
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1717 1718

    Args:
1719 1720
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1721 1722
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *less_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1723 1724
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1725 1726

    Returns:
1727
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1728 1729 1730 1731

    Examples:
        .. code-block:: python

1732
          import paddle.fluid as fluid
1733 1734 1735 1736 1737 1738
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
1739
    """
1740 1741 1742 1743 1744
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    if cond is not None:
1745
        check_type(cond, "cond", Variable, "less_equal")
1746

Z
zhoukunsheng 已提交
1747 1748 1749 1750 1751 1752 1753
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1754 1755 1756 1757 1758 1759 1760
    helper.append_op(type='less_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Z
zhoukunsheng 已提交
1761 1762 1763 1764
    return cond


@templatedoc()
W
wawltor 已提交
1765
def greater_than(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1766
    """
1767 1768 1769 1770
    :alias_main: paddle.greater_than
	:alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than
	:old_api: paddle.fluid.layers.greater_than

1771
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
1772 1773

    Args:
1774 1775
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1776 1777
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_than*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1778 1779
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1780 1781

    Returns:
1782
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x` .
Z
zhoukunsheng 已提交
1783 1784 1785 1786

    Examples:
        .. code-block:: python

1787
          import paddle.fluid as fluid
1788 1789 1790 1791 1792
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
1793
    """
1794 1795 1796 1797 1798
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    if cond is not None:
1799
        check_type(cond, "cond", Variable, "greater_than")
1800

Z
zhoukunsheng 已提交
1801 1802 1803 1804 1805 1806 1807
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1808 1809 1810
    if in_dygraph_mode():
        return _C_ops.final_state_greater_than(x, y, -1)
    else:
1811 1812 1813 1814 1815 1816 1817
        helper.append_op(type='greater_than',
                         inputs={
                             'X': [x],
                             'Y': [y]
                         },
                         outputs={'Out': [cond]},
                         attrs=attrs)
1818
        return cond
Z
zhoukunsheng 已提交
1819 1820 1821


@templatedoc()
W
wawltor 已提交
1822
def greater_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1823
    """
1824 1825 1826 1827
    :alias_main: paddle.greater_equal
	:alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal
	:old_api: paddle.fluid.layers.greater_equal

1828
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
1829 1830

    Args:
1831 1832
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1833 1834
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1835 1836
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1837 1838

    Returns:
1839
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1840 1841 1842 1843

    Examples:
        .. code-block:: python

1844
          import paddle.fluid as fluid
1845 1846 1847 1848 1849 1850
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
1851

Z
zhoukunsheng 已提交
1852
    """
1853 1854 1855 1856 1857
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    if cond is not None:
1858
        check_type(cond, "cond", Variable, "greater_equal")
1859

Z
zhoukunsheng 已提交
1860 1861 1862 1863 1864 1865 1866
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1867 1868 1869 1870 1871 1872 1873
    helper.append_op(type='greater_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Z
zhoukunsheng 已提交
1874 1875 1876
    return cond


W
wawltor 已提交
1877
def equal(x, y, cond=None, name=None):
1878 1879 1880 1881
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
1882 1883 1884 1885 1886
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
        cond(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1887 1888
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1889 1890

    Returns:
W
wangchaochaohu 已提交
1891 1892
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
1893 1894 1895 1896

    Examples:
        .. code-block:: python

1897
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
1898 1899 1900 1901 1902 1903 1904
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
1905
    """
1906 1907 1908 1909 1910
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "equal")
    if cond is not None:
1911
        check_type(cond, "cond", Variable, "equal")
1912

1913 1914
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1915
        cond = helper.create_variable_for_type_inference(dtype='bool')
1916 1917
        cond.stop_gradient = True

1918 1919 1920 1921 1922 1923
    helper.append_op(type='equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]})
1924 1925 1926
    return cond


W
wawltor 已提交
1927
def not_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1928
    """
1929 1930 1931 1932
    :alias_main: paddle.not_equal
	:alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal
	:old_api: paddle.fluid.layers.not_equal

1933
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
1934 1935

    Args:
1936 1937
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1938 1939
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *not_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1940 1941
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1942 1943

    Returns:
1944
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1945 1946 1947 1948

    Examples:
        .. code-block:: python

1949 1950 1951 1952
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1953 1954
          out = fluid.layers.not_equal(x=label, y=limit)
    """
1955 1956 1957 1958 1959
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    if cond is not None:
1960
        check_type(cond, "cond", Variable, "not_equal")
1961

Z
zhoukunsheng 已提交
1962 1963 1964 1965 1966
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

1967 1968 1969 1970 1971 1972
    helper.append_op(type='not_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]})
Z
zhoukunsheng 已提交
1973 1974 1975
    return cond


1976
def array_read(array, i):
1977
    """
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
    This OP is used to read data at the specified position from the input array 
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
    is the specified read position. This OP is often used together with 
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
1993

K
kavyasrinet 已提交
1994
    Args:
1995 1996 1997
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
1998

K
kavyasrinet 已提交
1999
    Returns:
2000
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
2001

K
kavyasrinet 已提交
2002
    Examples:
2003 2004
        .. code-block:: python

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2036
    """
J
Jiabin Yang 已提交
2037
    if _non_static_mode():
2038 2039 2040 2041 2042 2043 2044 2045 2046
        assert isinstance(
            array,
            list), "The 'array' in array_read must be list in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
2047
        i = i.numpy().item(0)
2048 2049
        return array[i]

2050
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
2051 2052 2053 2054 2055
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
2056
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
2057 2058 2059 2060 2061 2062
    helper.append_op(type='read_from_array',
                     inputs={
                         'X': [array],
                         'I': [i]
                     },
                     outputs={'Out': [out]})
Y
Yu Yang 已提交
2063
    return out
Y
Yang Yu 已提交
2064 2065


2066
def shrink_memory(x, i, table):
2067
    """
Y
yuyang18 已提交
2068
    This function creates an operator to shrink rnn memory using the RankTable
2069
    as mentioned in the input parameter.
Y
yuyang18 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
2090
    """
Y
Yang Yu 已提交
2091
    helper = LayerHelper('shrink_memory', **locals())
2092 2093 2094
    check_type(x, 'x', Variable, 'shrink_memory')
    check_type(i, 'i', Variable, 'shrink_memory')
    check_type(table, 'table', Variable, 'shrink_memory')
X
Xin Pan 已提交
2095
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2096 2097 2098 2099 2100 2101 2102 2103
    helper.append_op(type='shrink_rnn_memory',
                     inputs={
                         'X': [x],
                         'I': [i],
                         'RankTable': [table]
                     },
                     outputs={'Out': [out]},
                     attrs={})
Y
Yang Yu 已提交
2104
    return out
Y
Yang Yu 已提交
2105 2106


2107
def array_length(array):
2108
    """
2109 2110
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` , 
T
tianshuo78520a 已提交
2111
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
2112

K
kavyasrinet 已提交
2113
    Args:
2114
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
2115 2116

    Returns:
2117
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
2118 2119

    Examples:
Q
qiaolongfei 已提交
2120
        .. code-block:: python
K
kavyasrinet 已提交
2121

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
2138

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
            
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2151
    """
2152

J
Jiabin Yang 已提交
2153
    if _non_static_mode():
2154 2155 2156 2157 2158
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        return len(array)

2159 2160 2161 2162 2163 2164
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError(
            "array should be tensor array vairable in array_length Op")

Y
Yang Yu 已提交
2165
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
2166
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
2167
    tmp.stop_gradient = True
2168 2169 2170
    helper.append_op(type='lod_array_length',
                     inputs={'X': [array]},
                     outputs={'Out': [tmp]})
Y
Yang Yu 已提交
2171
    return tmp
Y
Yu Yang 已提交
2172 2173 2174


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
2175
    """
2176 2177 2178
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
2179 2180 2181
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
2182
    def __init__(self, block):
2183
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
Y
Yu Yang 已提交
2184 2185 2186 2187 2188 2189 2190 2191
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
2192 2193
        return super(ConditionalBlockGuard,
                     self).__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
2194 2195 2196


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
2197 2198 2199 2200 2201 2202 2203 2204
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
2205
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
2206 2207 2208 2209 2210
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

2211
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

2223
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
2224
        for each_input in inputs:
2225
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
2226
        self.inputs = inputs
2227
        self.is_scalar_condition = is_scalar_condition
2228
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
2239 2240 2241 2242
        params, intermediate = get_inputs_outputs_in_block(inside_block,
                                                           params,
                                                           intermediate,
                                                           helper=self.helper)
Y
Yu Yang 已提交
2243

2244 2245 2246
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
2247
        param_list = [
W
Wu Yi 已提交
2248
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
2249 2250
        ]

X
Xin Pan 已提交
2251 2252 2253 2254 2255
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
2256 2257

        step_scope = parent_block.create_var(
2258
            type=core.VarDesc.VarType.STEP_SCOPES)
2259
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
2260 2261
            type='conditional_block',
            inputs={
2262 2263
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
2264
            },
2265 2266 2267 2268
            outputs={
                'Out': out_list,
                'Scope': [step_scope]
            },
2269 2270 2271 2272 2273
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })

2274 2275 2276 2277 2278 2279
        if self.need_append_conditional_block_grad(inside_block):
            self.append_conditional_block_grad(parent_block, inside_block,
                                               conditional_block_op)

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
2280
        inside_block_idx = inside_block.idx
2281

2282 2283 2284
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
        return grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325

    def append_conditional_block_grad(self, parent_block, inside_block,
                                      conditional_block_op):
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
                param_list.append(cpt.to_text(inner_var.name))

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
2326 2327
            conditional_block_op.desc, cpt.to_text(set()),
            [grad_sub_block.desc])
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
        new_op_desc.set_output('Input@GRAD',
                               [param + "@GRAD" for param in param_list])

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
2342 2343
            if grad_sub_block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
                continue
            grad_sub_block.desc.var(cpt.to_bytes(grad_var_name))
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2360

2361
def copy_var_to_parent_block(var, layer_helper):
2362 2363
    if not isinstance(var, Variable):
        return var
2364 2365 2366 2367 2368
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
    assert parent_idx >= 0, "Got wrong parent block index when assigning var to parent scope in control_flow"
    parent_block = prog.block(parent_idx)

2369 2370 2371 2372
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
            and parent_block._find_var_recursive(var.name):
        parent_block_var = var
    else:
2373 2374 2375
        parent_block_var = parent_block.create_var(dtype=var.dtype,
                                                   shape=var.shape,
                                                   type=var.type)
2376
        assign(var, parent_block_var)
2377 2378 2379 2380 2381
    return parent_block_var


def cond(pred, true_fn=None, false_fn=None, name=None):
    """
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
    
    Note: 
2393 2394 2395 2396
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

2397 2398 2399 2400 2401 2402 2403
        2. This API could be used under both static mode or dygraph mode. If it
        is in dygraph mode, the API only runs one branch based on condition.

        3. If it is in static mode, any tensors or operations created outside 
        or inside of ``true_fn`` and ``false_fn`` will be in net building
        regardless of which branch is selected at runtime. This has frequently
        surprised users who expected a lazy semantics. For example:
2404 2405

        .. code-block:: python
2406 2407 2408 2409 2410

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
2411
            c = a * b
2412
            out = paddle.static.nn.cond(a < b, lambda: a + c, lambda: b * b)
2413

2414 2415 2416
        No matter whether ``a < b`` , ``c = a * b`` will be in net building and
        run. ``a + c`` and ``b * b`` will be in net building, but only one
        branch will be executed during runtime.
2417 2418

    Args:
2419
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2420
            value determines whether to return the result of ``true_fn`` or
2421 2422 2423 2424 2425 2426
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2427
             don't have to set this parameter. For more information, please
2428 2429 2430
             refer to :ref:`api_guide_Name` .

    Returns:
2431
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2432
        predicate ``pred`` is true else ``false_fn()`` .
2433 2434 2435

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2436 2437
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2438 2439 2440 2441

    Examples:
        .. code-block:: python

2442
            import paddle
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
2453 2454 2455 2456
                return paddle.full(shape=[1, 2], dtype='int32',
                                   fill_value=1), paddle.full(shape=[2, 3],
                                                              dtype='bool',
                                                              fill_value=True)
2457

2458 2459

            def false_func():
2460 2461 2462 2463 2464
                return paddle.full(shape=[3, 4], dtype='float32',
                                   fill_value=3), paddle.full(shape=[4, 5],
                                                              dtype='int64',
                                                              fill_value=2)

2465

2466 2467
            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
2468
            pred = paddle.less_than(x=x, y=y, name=None)
2469
            ret = paddle.static.nn.cond(pred, true_func, false_func)
2470
            # ret is a tuple containing 2 tensors
2471 2472
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2473
            #           [ True  True  True]]            
2474

2475
    """
J
Jiabin Yang 已提交
2476
    if _non_static_mode():
2477
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
C
crystal 已提交
2478
        assert pred.size == 1, "condition input's numel should be 1"
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
                        "The true_fn in cond must be callable, but received {}".
                        format(type(true_fn).__name__))
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
2491 2492
                        "The false_fn in cond must be callable, but received {}"
                        .format(type(false_fn).__name__))
2493 2494 2495
                return false_fn()
        return None

2496 2497
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2498 2499 2500
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2501
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2502 2503
    if true_fn is not None:
        if not callable(true_fn):
2504 2505 2506
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
                    type(true_fn).__name__))
2507 2508 2509 2510
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2511
                true_output = map_structure(copy_to_parent_func,
2512 2513 2514
                                            origin_true_output)
    if false_fn is not None:
        if not callable(false_fn):
2515 2516 2517
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
                    type(false_fn).__name__))
2518 2519
        false_cond_block = ConditionalBlock([logical_not(pred)],
                                            is_scalar_condition=True)
2520 2521 2522
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2523
                false_output = map_structure(copy_to_parent_func,
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
                                             origin_false_output)

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns None while false_fn returns non-None")
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns non-None while false_fn returns None")

    # Merge ture and false output if they are not None
    try:
        assert_same_structure(true_output, false_output, check_types=False)
    except ValueError as e:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: {}".
            format(e))

    mask = cast(pred, dtype='int32')
2547 2548
    merge_func = lambda false_var, true_var: select_input_with_buildin_type(
        [false_var, true_var], mask)
2549 2550 2551 2552
    merged_output = map_structure(merge_func, false_output, true_output)
    return merged_output


L
liym27 已提交
2553
def _error_message(what, arg_name, op_name, right_value, error_value):
2554
    error_message = "{what} of '{arg_name}' in {op_name} must be " \
L
liym27 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
        "{right_value}, but received: {error_value}.".format(
        what=what,
        arg_name=arg_name,
        op_name=op_name,
        right_value=right_value,
        error_value=error_value)

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
2567 2568
    :api_attr: Static Graph

L
liym27 已提交
2569 2570 2571 2572 2573 2574 2575 2576
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2577
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
L
liym27 已提交
2578 2579 2580 2581 2582 2583 2584
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
2585
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
L
liym27 已提交
2586 2587 2588 2589 2590 2591
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

2592 2593 2594
            import paddle

            paddle.enable_static()
L
liym27 已提交
2595 2596

            def fn_1():
2597
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
2598 2599

            def fn_2():
2600
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
2601 2602

            def fn_3():
2603
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
2604

2605 2606 2607 2608
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
2609 2610 2611
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)
L
liym27 已提交
2612

2613 2614 2615
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1
L
liym27 已提交
2616 2617

                # Call fn_1 because pred_1 is True
2618
                out_1 = paddle.static.nn.case(
L
liym27 已提交
2619 2620 2621 2622
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
2623
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
L
liym27 已提交
2624

2625
                exe = paddle.static.Executor(paddle.CPUPlace())
L
liym27 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
2636
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
2637 2638 2639 2640 2641

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
                    _error_message("The elements' type", "pred_fn_pairs",
2642
                                   "case", tuple, type(pred_fn)))
L
liym27 已提交
2643 2644 2645
            if len(pred_fn) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "pred_fn_pairs", "case",
2646 2647
                                   "2",
                                   str(len(pred_fn)) + "-tuple"))
L
liym27 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
                    _error_message("The pred's type", "pred_fn_pairs", "case",
                                   "boolean Variable", type(pred)))

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
                    " be callable.".format(pred.name))

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


2680
class Switch(object):
Q
qiaolongfei 已提交
2681
    """
2682
    :api_attr: Static Graph
Q
qiaolongfei 已提交
2683

2684 2685 2686 2687 2688 2689 2690
    This class is used to implement Switch branch control function. 
    Switch branch contains several case branches and one default branch. 
    Switch control flow checks whether the case branch conditions are satisfied in turn, 
    and only executes the statement after the first case branch that satisfies the conditions. 
    If there is no case branch that satisfies the condition, 
    only the statement following the default branch is executed.

2691 2692 2693 2694
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

2695
    Member Functions:
2696
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
2697 2698 2699 2700 2701 2702
        
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
2703

2704 2705 2706 2707 2708 2709 2710 2711 2712
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
2713

2714 2715
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
2716 2717 2718

    Examples:
        .. code-block:: python
2719 2720
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
2721

2722
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
2723 2724 2725 2726 2727
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
2728
            zero_var = fluid.layers.fill_constant(
2729
                shape=[1], dtype='float32', value=0.0)
2730
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
2731
                shape=[1], dtype='float32', value=1.0)
2732
            two_var = fluid.layers.fill_constant(
2733
                shape=[1], dtype='float32', value=2.0)
2734

2735
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
2736 2737

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
2738
                with switch.case(global_step == zero_var):
2739
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
2740
                with switch.default():
2741
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
2742

2743 2744 2745 2746 2747
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
2748 2749
    """

2750 2751 2752 2753 2754 2755 2756 2757 2758
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

2759 2760 2761 2762
        check_variable_and_dtype(
            condition, 'condition', ['bool'],
            'the member function case of fluid.layers.Switch')

2763 2764 2765 2766 2767 2768 2769
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
2770 2771
            new_not_cond = logical_and(x=pre_not_cond,
                                       y=logical_not(x=condition))
2772 2773
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
2774
                [logical_and(x=pre_not_cond, y=condition)],
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
2802 2803 2804


class IfElseBlockGuard(object):
2805

Y
Yu Yang 已提交
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
2839
    """
2840 2841
    :api_attr: Static Graph

2842 2843 2844 2845
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

2846 2847 2848 2849
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
        
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
        
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)] 

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
2891
        print(res)
2892
        # [array([-1.], dtype=float32)] 
X
Xin Pan 已提交
2893 2894

    Args:
2895 2896
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
2897

2898 2899
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
2900

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
 
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
2911

X
Xin Pan 已提交
2912
    """
Y
Yu Yang 已提交
2913 2914 2915 2916
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

2917
    def __init__(self, cond, name=None):
2918 2919
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
2920
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
2932
            parent_block = self._parent_block()
Y
Yu Yang 已提交
2933
            out_true = parent_block.create_var(
2934 2935
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
2936
                dtype=x.dtype)
Y
Yu Yang 已提交
2937 2938

            out_false = parent_block.create_var(
2939 2940
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
2941
                dtype=x.dtype)
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
            parent_block.append_op(type='split_lod_tensor',
                                   inputs={
                                       'X': x,
                                       'Mask': self.cond,
                                   },
                                   outputs={
                                       'OutTrue': out_true,
                                       'OutFalse': out_false
                                   },
                                   attrs={'level': 0})
Y
Yu Yang 已提交
2952 2953 2954 2955 2956 2957 2958 2959 2960
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

2961
    def _parent_block(self):
Y
Yu Yang 已提交
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
2977
        parent_block = self._parent_block()
Y
Yu Yang 已提交
2978
        for each_out in outs:
2979 2980
            check_type(each_out, "each output", Variable,
                       "fluid.layers.IfElse.output")
Y
Yu Yang 已提交
2981 2982
            # create outside tensor
            outside_out = parent_block.create_var(
2983
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
2984
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
2985
                dtype=each_out.dtype)
Y
Yu Yang 已提交
2986 2987 2988
            out_table.append(outside_out)

            # assign local var to outside
2989
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
2990 2991 2992 2993

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
2994
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
3008 3009 3010 3011 3012
                merge_lod_tensor(in_true=true_var,
                                 in_false=false_var,
                                 mask=self.cond,
                                 x=self.cond,
                                 level=0))
Y
Yu Yang 已提交
3013
        return rlist
3014 3015 3016


class DynamicRNN(object):
Y
yuyang18 已提交
3017
    """
3018 3019
    :api_attr: Static Graph

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
T
tianshuo78520a 已提交
3032
    The input sequences will be shrank because only sequences of which the
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
3045

3046 3047 3048 3049
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
3050 3051 3052 3053

    Examples:
        .. code-block:: python

3054
            import paddle.fluid as fluid
3055

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
3082
    """
3083 3084 3085 3086
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

3087 3088
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
3089 3090 3091 3092
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
3093
        self.zero_idx = None
3094 3095 3096
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
3097
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
3098 3099 3100 3101 3102
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

3103
    def step_input(self, x, level=0):
3104
        r"""
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
3148

Y
yuyang18 已提交
3149
        Args:
3150 3151 3152 3153 3154 3155 3156
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
3157 3158

        Returns:
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3193
        """
3194
        self._assert_in_rnn_block_("step_input")
3195
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.step_input()')
3196 3197 3198
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
3199
                name=unique_name.generate('lod_rank_table'),
3200 3201
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
3202 3203 3204 3205
            parent_block.append_op(type='lod_rank_table',
                                   inputs={"X": x},
                                   outputs={"Out": self.lod_rank_table},
                                   attrs={"level": level})
3206
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
3207 3208
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
3209
            self.max_seq_len.stop_gradient = False
3210 3211 3212
            parent_block.append_op(type='max_sequence_len',
                                   inputs={'RankTable': self.lod_rank_table},
                                   outputs={"Out": self.max_seq_len})
3213
            self.cond.stop_gradient = True
3214 3215 3216 3217 3218 3219 3220
            parent_block.append_op(type='less_than',
                                   inputs={
                                       'X': self.step_idx,
                                       'Y': self.max_seq_len
                                   },
                                   outputs={'Out': self.cond},
                                   attrs={'force_cpu': True})
3221 3222

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
3223
            name=unique_name.generate('dynamic_rnn_input_array'),
3224 3225 3226
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
3227 3228 3229 3230 3231 3232
        parent_block.append_op(type='lod_tensor_to_array',
                               inputs={
                                   'X': x,
                                   'RankTable': self.lod_rank_table
                               },
                               outputs={'Out': input_array})
3233
        return array_read(array=input_array, i=self.step_idx)
3234

Y
yangyaming 已提交
3235
    def static_input(self, x):
3236
        r"""
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
3310

Y
yuyang18 已提交
3311
        Args:
3312 3313 3314 3315
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
3316 3317

        Returns:
T
tianshuo78520a 已提交
3318
            Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
3330 3331 3332 3333

        Examples:
            .. code-block:: python

3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3360
        """
Y
yangyaming 已提交
3361
        self._assert_in_rnn_block_("static_input")
3362
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.static_input()')
Y
yangyaming 已提交
3363 3364 3365 3366 3367
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3368
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
3369 3370
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
3371 3372 3373 3374 3375 3376
        parent_block.append_op(type='reorder_lod_tensor_by_rank',
                               inputs={
                                   'X': [x],
                                   'RankTable': [self.lod_rank_table]
                               },
                               outputs={'Out': [x_reordered]})
Y
yangyaming 已提交
3377 3378
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
3379
    @signature_safe_contextmanager
3380
    def block(self):
Y
yuyang18 已提交
3381
        """
3382 3383 3384 3385 3386 3387
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
3388
        """
3389 3390
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
3391 3392 3393 3394
        self.step_idx = fill_constant(shape=[1],
                                      dtype='int64',
                                      value=0,
                                      force_cpu=True)
3395 3396 3397 3398
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
3399
            increment(x=self.step_idx, value=1.0, in_place=True)
3400 3401

            for new_mem, mem_array in self.mem_link:
3402 3403
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

3404 3405 3406 3407
            less_than(x=self.step_idx,
                      y=self.max_seq_len,
                      force_cpu=True,
                      cond=self.cond)
3408 3409 3410 3411

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
3412
                array_to_lod_tensor(x=each_array, table=self.lod_rank_table))
3413 3414

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
3415
        """
T
tianshuo78520a 已提交
3416
        This function is used to get the output  sequences of DynamicRNN.
3417 3418 3419 3420 3421 3422 3423 3424 3425

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
3426
        """
3427
        if self.status != DynamicRNN.AFTER_RNN:
3428 3429
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
3430 3431 3432 3433 3434
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

3435 3436 3437 3438 3439 3440
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
3441
        r"""
3442 3443 3444
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
3445

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
T
tianshuo78520a 已提交
3458
            value (float, optional): When init is None, it is used as initialized value
3459 3460
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
T
tianshuo78520a 已提交
3461
                the memory needs to reorder like the RNN's input sequences. It should be
3462 3463 3464 3465 3466 3467 3468
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
T
tianshuo78520a 已提交
3469
            Variable: The memory LoDTensor after shrank.  If there are :code:`num_sequences` \
3470
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
T
tianshuo78520a 已提交
3471
                the memory Tensor also need to be shrank and will only retain data \
3472 3473 3474 3475 3476 3477
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3478

3479 3480 3481
        Examples:
            .. code-block:: python

3482
                import paddle.fluid as fluid
3483

3484 3485
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
3486

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
3498

3499 3500
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3501 3502


3503 3504
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
3505

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3525
        """
3526
        self._assert_in_rnn_block_('memory')
3527
        self._init_zero_idx_()
3528 3529 3530
        if shape is not None:
            check_type(shape, 'shape', (list, tuple),
                       'fluid.layers.DynamicRNN.memory()')
3531
        if init is not None:
3532 3533
            check_type(init, 'init', Variable,
                       'fluid.layers.DynamicRNN.memory()')
3534
            parent_block = self._parent_block_()
3535 3536 3537 3538 3539 3540 3541 3542
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3543
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
3544 3545
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
3546 3547 3548 3549 3550 3551
                parent_block.append_op(type='reorder_lod_tensor_by_rank',
                                       inputs={
                                           'X': [init_tensor],
                                           'RankTable': [self.lod_rank_table]
                                       },
                                       outputs={'Out': [init_reordered]})
3552
                init_tensor = init_reordered
3553
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
3554
                name=unique_name.generate('dynamic_rnn_mem_array'),
3555 3556
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
3557 3558 3559 3560 3561 3562
            parent_block.append_op(type='write_to_array',
                                   inputs={
                                       'X': init_tensor,
                                       'I': self.zero_idx
                                   },
                                   outputs={'Out': mem_array})
3563
            retv = array_read(array=mem_array, i=self.step_idx)
3564 3565 3566
            retv = shrink_memory(x=retv,
                                 i=self.step_idx,
                                 table=self.lod_rank_table)
3567 3568 3569 3570 3571 3572 3573 3574 3575
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
3576
                name=unique_name.generate('mem_init'), dtype=dtype)
3577
            arr, dtype = self.input_array[0]
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
            in0 = parent_block.create_var(name=unique_name.generate('in0'),
                                          dtype=dtype)
            parent_block.append_op(type='read_from_array',
                                   inputs={
                                       'X': [arr],
                                       'I': [self.zero_idx]
                                   },
                                   outputs={'Out': [in0]})
            parent_block.append_op(type='fill_constant_batch_size_like',
                                   inputs={'Input': [in0]},
                                   outputs={'Out': [init]},
                                   attrs={
                                       'shape': [-1] + shape,
                                       'value': float(value),
                                       'dtype': init.dtype
                                   })
3594 3595 3596
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
3597
        """
3598 3599
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
3600
        Args:
3601 3602 3603
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
3604 3605 3606

        Returns:
            None
3607 3608 3609 3610 3611 3612
        
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3613
        """
3614
        self._assert_in_rnn_block_('update_memory')
3615 3616 3617 3618
        check_type(ex_mem, 'ex_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
        check_type(new_mem, 'new_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
3629
        """
3630
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
3631 3632

        Args:
3633 3634
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
3635 3636 3637

        Returns:
            None
3638 3639 3640

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
3641
        """
3642 3643 3644
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
3645 3646
            check_type(each, "outputs", Variable,
                       "fluid.layers.DynamicRNN.output")
3647
            outside_array = parent_block.create_var(
3648
                name=unique_name.generate_with_ignorable_key("_".join(
3649 3650 3651 3652 3653 3654
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

3655 3656 3657 3658 3659
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
3660 3661 3662 3663 3664 3665 3666 3667 3668
            parent_block.append_op(type='fill_constant',
                                   inputs={},
                                   outputs={'Out': [self.zero_idx]},
                                   attrs={
                                       'shape': [1],
                                       'dtype': self.zero_idx.dtype,
                                       'value': float(0),
                                       'force_cpu': True
                                   })
3669

3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
3680 3681
            raise ValueError(
                "{0} can only be invoked inside rnn block.".format(method))
Y
Yang Yu 已提交
3682 3683


L
liym27 已提交
3684 3685
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
3686 3687
    :api_attr: Static Graph

L
liym27 已提交
3688 3689 3690
    This operator is like a C++ switch/case statement.

    Args:
3691
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
L
liym27 已提交
3692 3693 3694 3695 3696
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3697
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
L
liym27 已提交
3698 3699 3700 3701
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
3702
        TypeError: If the type of ``branch_index`` is not Tensor.
L
liym27 已提交
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

3714 3715 3716
            import paddle

            paddle.enable_static()
3717

L
liym27 已提交
3718
            def fn_1():
3719
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
3720 3721

            def fn_2():
3722
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
3723 3724

            def fn_3():
3725
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
3726

3727 3728 3729
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
3730 3731
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)
L
liym27 已提交
3732

3733
                out_1 = paddle.static.nn.switch_case(
L
liym27 已提交
3734 3735 3736 3737
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

3738
                out_2 = paddle.static.nn.switch_case(
L
liym27 已提交
3739 3740 3741 3742 3743
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
3744
                out_3 = paddle.static.nn.switch_case(
L
liym27 已提交
3745 3746 3747
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

3748
                exe = paddle.static.Executor(paddle.CPUPlace())
3749
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
3750 3751 3752 3753 3754 3755 3756 3757
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

3758 3759
        check_variable_and_dtype(branch_index, 'branch_index',
                                 ['uint8', 'int32', 'int64'], 'switch_case')
L
liym27 已提交
3760 3761 3762 3763

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

3764
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776

        branch_fns = branch_fns.items() if isinstance(branch_fns,
                                                      dict) else branch_fns

        branch_fns = list(enumerate(branch_fns)) if all(
            callable(fn) for fn in branch_fns) else branch_fns

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
                    _error_message("The elements' type", "branch_fns",
3777
                                   "switch_case", tuple, type(branch_fns)))
L
liym27 已提交
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789

            if len(index_fn_pair) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "branch_fns",
                                   "switch_case", "2",
                                   str(len(index_fn_pair)) + "-tuple"))

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
                    _error_message("The key's type", "branch_fns",
3790
                                   "switch_case", int, type(key)))
L
liym27 已提交
3791 3792 3793

            if key in keys_of_fns:
                raise ValueError(
3794 3795
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once."
                    .format(key))
L
liym27 已提交
3796 3797 3798 3799 3800
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
3801 3802 3803
                    _error_message(
                        "The type of function for key {}".format(key),
                        "branch_fns", "switch_case", "callable", type(fn)))
L
liym27 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


3828
@templatedoc()
Y
Yang Yu 已提交
3829
def reorder_lod_tensor_by_rank(x, rank_table):
3830 3831 3832 3833
    """
    ${comment}

    Args:
3834 3835
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
3836 3837
    
    Returns:
3838
        out(${out_type}): ${out_comment}.
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
3852 3853 3854 3855 3856 3857 3858

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
    check_type(rank_table, 'rank_table', (Variable),
               'reorder_lod_tensor_by_rank')
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
3859 3860
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
3861
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3862 3863 3864 3865 3866 3867
    helper.append_op(type='reorder_lod_tensor_by_rank',
                     inputs={
                         'X': [x],
                         'RankTable': [rank_table]
                     },
                     outputs={'Out': [out]})
Y
Yang Yu 已提交
3868
    return out
3869 3870


3871
def is_empty(x, name=None):
3872
    """
3873

3874
    Test whether a Tensor is empty.
3875 3876

    Args:
3877 3878 3879 3880
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .
3881 3882

    Returns:
3883
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.
3884 3885 3886 3887

    Examples:
        .. code-block:: python

3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])
3899

3900
    """
H
hong 已提交
3901 3902 3903
    if in_dygraph_mode():
        return _C_ops.final_state_is_empty(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3904
        return _C_ops.is_empty(x)
3905

3906 3907
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'is_empty')
3908 3909
    check_type(name, "name", (str, type(None)), "is_empty")

3910
    helper = LayerHelper("is_empty", **locals())
3911 3912
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
3913 3914 3915
    helper.append_op(type='is_empty',
                     inputs={'X': [x]},
                     outputs={'Out': [cond]})
3916
    return cond