control_flow.py 84.6 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
M
minqiyang 已提交
24
from .nn import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28
from functools import reduce
D
dzhwinter 已提交
29

Q
QI JUN 已提交
30
__all__ = [
W
Wu Yi 已提交
31
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
32 33
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
    'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
W
Wu Yi 已提交
34
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
D
dzhwinter 已提交
35 36
]

Y
Yu Yang 已提交
37

38
def split_lod_tensor(input, mask, level=0):
39 40 41 42
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
43 44
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
45 46 47 48 49

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
50
        level(int): The specific lod level to split.
51 52

    Returns:
Q
qiaolongfei 已提交
53 54 55 56
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
57 58 59 60

    Examples:
        .. code-block:: python

61
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
62
          x = fluid.layers.data(name='x', shape=[1])
63 64
          x.persistable = True

Q
qiaolongfei 已提交
65
          y = fluid.layers.data(name='y', shape=[1])
66 67
          y.persistable = True

Q
qiaolongfei 已提交
68
          out_true, out_false = fluid.layers.split_lod_tensor(
69
                input=x, mask=y, level=level)
70

71
    """
72
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
73 74
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
75 76 77 78 79 80 81 82 83 84 85 86
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


87
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
88 89 90 91 92
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
93 94 95
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
96 97 98 99 100 101 102

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
103
        level(int): The specific lod level to merge.
104 105 106 107 108 109 110

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

111
          import paddle.fluid as fluid
112 113 114 115 116 117 118 119 120 121 122 123
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
124
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
125
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
126 127 128 129 130 131 132 133 134 135 136
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
137 138 139
def Print(input,
          first_n=-1,
          message=None,
140
          summarize=20,
Y
Yan Chunwei 已提交
141 142 143
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
144 145
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
146 147 148 149 150 151 152 153 154 155
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
156 157 158 159 160 161 162 163 164
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
165
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
166 167
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
168 169

    Returns:
170
        Variable: Output tensor.
Y
Yan Chunwei 已提交
171

172 173 174 175
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
176

Y
Yan Chunwei 已提交
177 178
    Examples:
        .. code-block:: python
179 180 181
           
           import paddle.fluid as fluid
           
182 183 184 185 186 187
           input = fluid.layers.fill_constant(shape=[10,2], value=3, dtype='int64')
           input = fluid.layers.Print(input, message="The content of input layer:")
           
           main_program = fluid.default_main_program()
           exe = fluid.Executor(fluid.CPUPlace())
           exe.run(main_program)
Y
Yan Chunwei 已提交
188

189 190 191 192 193 194 195 196 197 198 199 200 201
    Output at runtime:
        .. code-block:: bash 
           
           1564546375   The content of input layer:     The place is:CPUPlace
           Tensor[fill_constant_0.tmp_0]
               shape: [10,2,]
               dtype: x
               data: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 
               
           # The information of dtype at runtime may vary in different environments.
           # Eg: 
           #    If the dtype='int64' of Tensor y, the corresponding c++ type is int64_t.
           #    The dtype of output is "x" ("x" is typeid(int64_t).name()) with MacOS and gcc4.8.2
Y
Yan Chunwei 已提交
202
    '''
203 204
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
Y
Yan Chunwei 已提交
205 206
    helper.append_op(
        type='print',
Y
yangyaming 已提交
207
        inputs={'In': input},
208
        outputs={'Out': output},
Y
Yan Chunwei 已提交
209 210 211 212 213 214 215 216
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
217
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
218
        })
219
    return output
Y
Yan Chunwei 已提交
220 221


Y
Yu Yang 已提交
222 223
class BlockGuard(object):
    """
224 225 226 227
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
228 229
    """

230 231
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
232
            raise TypeError("BlockGuard takes a program")
233
        self.main_program = main_program
Y
Yu Yang 已提交
234 235

    def __enter__(self):
W
Wu Yi 已提交
236
        self.main_program._create_block()
Y
Yu Yang 已提交
237 238

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
239
        self.main_program._rollback()
Y
Yu Yang 已提交
240 241 242 243 244
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
245 246 247 248 249
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
250 251
    """

Y
Yu Yang 已提交
252
    def __init__(self, rnn):
X
Xin Pan 已提交
253
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
254
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
255
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
256 257 258 259
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
260
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
261 262

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
263 264
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
265
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
266
        self.rnn._complete_op()
Y
Yang Yang 已提交
267 268
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
269 270 271 272


class StaticRNNMemoryLink(object):
    """
273 274 275 276
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
277 278 279 280 281 282 283 284 285


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
286 287 288 289 290 291 292 293 294
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
295 296 297
    """
    StaticRNN class.

C
chengduo 已提交
298 299 300 301 302 303 304
    The StaticRNN can process a batch of sequence data. The length of each
    sample sequence must be equal. The StaticRNN will have its own parameters
    like inputs, outputs, memories. **Note that the first dimension of inputs
    represents sequence length, and all the sequence length of inputs must be
    the same. And the meaning of each axis of input and output are the same.**

    Examples:
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
            x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
                word = rnn.step_input(x_emb)
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                rnn.update_memory(prev, hidden)  # set prev to hidden
                rnn.step_output(hidden)
326
                rnn.output(word)
327 328

            result = rnn()
C
chengduo 已提交
329 330 331 332 333 334 335 336 337 338

    The StaticRNN will unfold sequence into time steps. Users need to define
    how to process each time step during the :code:`with` step.

    The :code:`memory` is used as a staging data cross time step. The initial
    value of memory can be a variable that is filled with a constant value or
    a specified variable.

    The StaticRNN can mark multiple variables as its output. Use `rnn()` to
    get the output sequence.
339
    """
Y
Yu Yang 已提交
340 341 342 343
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

344 345
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
346 347 348 349 350 351 352 353
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
354 355 356
        """
        The block for user to define operators in RNN.
        """
Y
Yang Yang 已提交
357
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
358 359 360 361 362

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

363 364 365 366 367 368 369
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
370
        """
C
chengduo 已提交
371 372 373 374 375 376
        Create a memory variable for static rnn.

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
        must be set, and this function will initialize a :code:`init` Variable.

377
        Args:
C
chengduo 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
            init(Variable|None): The initialized variable. If it is not set,
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
            shape(list|tuple): The shape of the boot memory. NOTE the shape
                does not contain batch_size. Default: None.
            batch_ref(Variable|None): The batch size reference Variable.
                Default: None.
            init_value(float): the init value of boot memory. Default: 0.0.
            init_batch_dim_idx(int): the batch_size axis of the
                :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int): the batch_size axis of the
                :code:`batch_ref` Variable. Default: 1.

        Returns:
            The memory variable.
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
                x_emb = layers.embedding(
                    input=x,
                    size=[vocab_size, hidden_size],
                    dtype='float32',
                    is_sparse=False)
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                    word = rnn.step_input(x_emb)
                    prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                    hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                    rnn.update_memory(prev, hidden)
414
        """
Y
Yu Yang 已提交
415 416
        self._assert_in_rnn_block_('memory')
        if init is None:
417
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
418
                raise ValueError(
419
                    "if init is None, memory at least need shape and batch_ref")
420
            parent_block = self._parent_block()
421
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
422
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
423
            boot_var = parent_block.create_var(
424 425
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
426
                dtype=batch_ref.dtype,
427
                persistable=False)
Y
Yu Yang 已提交
428 429

            parent_block.append_op(
430 431
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
432 433 434
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
435
                    'shape': boot_var.shape,
F
fengjiayi 已提交
436
                    'dtype': boot_var.dtype,
437 438
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
439 440 441 442 443
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
444 445
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
446
                dtype=init.dtype,
Y
Yu Yang 已提交
447 448 449 450 451 452
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
453 454 455 456 457 458 459 460 461 462
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
            The current time step in the input sequence.
        """
Y
Yu Yang 已提交
463 464 465 466
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
467
            self.seq_len = x.shape[0]
468
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
469 470 471
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
472
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
473 474 475 476
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
477 478 479 480 481 482 483 484 485
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
        """
Y
Yu Yang 已提交
486 487 488 489
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
490
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
491 492 493 494
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
495
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
496

497
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
498 499
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
500
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
501 502 503 504

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
505 506 507 508 509 510 511 512 513
        """
        Mark the StaticRNN output variables.

        Args:
            outputs: The output Variables.

        Returns:
            None
        """
Y
Yu Yang 已提交
514 515 516 517
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
518 519 520 521 522 523 524 525 526 527 528
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.

        Args:
            mem(Variable): the memory variable.
            var(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
Y
Yu Yang 已提交
529 530 531 532
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

533
    def _parent_block(self):
534
        prog = self.helper.main_program
Y
Yu Yang 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

550
    def _complete_op(self):
551 552
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
553
        parent_block = self._parent_block()
Y
Yu Yang 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
568 569 570
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
571 572 573 574 575 576 577 578
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

579
        parameters = [parent_block.var(name) for name in set(params)]
Y
Yu Yang 已提交
580 581 582 583 584 585 586

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
587
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
588 589 590
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
591
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
592 593
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
594 595
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
596 597
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
598 599
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
600 601 602 603
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
604
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
618
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
619 620
                'ex_states': pre_memories,
                'states': memories,
621
                'sub_block': rnn_block
Y
Yu Yang 已提交
622
            })
Y
Yu Yang 已提交
623 624


Y
Yang Yang(Tony) 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
640
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
641 642 643 644
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
645
    """
646
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
647 648

    Args:
649 650 651
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is None.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
652 653 654

    Examples:
          .. code-block:: python
655 656
            
            import paddle.fluid as fluid
657 658 659 660 661
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
662

663
            cond = fluid.layers.less_than(x=i, y=loop_len)              
664
            while_op = fluid.layers.While(cond=cond)
665
            with while_op.block():  
666
                i = fluid.layers.increment(x=i, value=1, in_place=True)
667 668 669 670 671 672 673
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)      

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
            print(res) # [array([10])]           
X
Xin Pan 已提交
674 675
    """

Y
Yang Yang(Tony) 已提交
676 677 678 679
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
680
    def __init__(self, cond, is_test=False, name=None):
681
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
682 683 684 685
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
686
        if cond.dtype != core.VarDesc.VarType.BOOL:
687
            raise TypeError("condition should be a boolean variable")
Y
Yang Yang(Tony) 已提交
688
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
689 690 691
            raise TypeError(
                "condition expected shape as [], but given shape as {0}.".
                format(list(cond.shape)))
Y
Yang Yang(Tony) 已提交
692
        self.cond_var = cond
C
chengduo 已提交
693
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
694 695 696 697

    def block(self):
        return WhileGuard(self)

698
    def _complete(self):
Y
Yang Yang(Tony) 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
718 719 720
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
721 722 723 724 725 726 727

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
728 729 730 731
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
732 733 734 735
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
736 737
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
738 739


740
def lod_rank_table(x, level=0):
741 742
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
743 744
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
745
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
746 747 748
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
749 750 751 752

        .. code-block:: text

            x is a LoDTensor:
753 754
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
755 756
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
757 758 759
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
760

Y
yangyaming 已提交
761 762 763 764 765 766 767 768 769
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
770 771 772 773

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
774 775
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
776 777 778 779 780 781 782

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

783
            import paddle.fluid as fluid
Y
yangyaming 已提交
784
            x = fluid.layers.data(name='x', shape=[10],
785
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
786
            out = layers.lod_rank_table(x=x, level=0)
787
    """
Y
Yu Yang 已提交
788 789 790
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
791
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
792 793 794 795 796 797
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
798 799


Y
yuyang18 已提交
800
@templatedoc()
801
def max_sequence_len(rank_table):
Y
yuyang18 已提交
802 803 804 805 806 807 808 809
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
810 811

    Args:
Y
yuyang18 已提交
812
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
813 814

    Returns:
Y
yuyang18 已提交
815
        ${out_comment}.
F
fengjiayi 已提交
816 817
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
818
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
819 820 821 822 823 824 825
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


826
def lod_tensor_to_array(x, table):
827
    """
F
fengjiayi 已提交
828 829
    Convert a LoDTensor to a LoDTensorArray.

830 831 832 833 834
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
835
    Users should not use it directly.
836 837

    Args:
F
fengjiayi 已提交
838
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
839 840
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
841
                                descending order. It is generally generated
F
fengjiayi 已提交
842
                                by `layers.lod_rank_table()` API.
843 844

    Returns:
F
fengjiayi 已提交
845
        Variable: The LoDTensorArray that has been converted from the input tensor.
846 847 848 849

    Examples:
        .. code-block:: python

850
          import paddle.fluid as fluid
851 852 853
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
854
    """
855 856
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
857
        name=unique_name.generate("lod_tensor_to_array"),
858
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
859
        dtype=x.dtype)
860 861 862 863 864 865 866 867
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


868
def array_to_lod_tensor(x, table):
869
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
870 871

    Args:
872
        x (Variable|list): The lod tensor array to be converted to a tensor.
873 874 875 876 877 878 879 880 881 882 883
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

884
          import paddle.fluid as fluid
885 886 887 888
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
889
    """
890
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
891
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
892 893 894 895 896 897 898 899
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


900
def increment(x, value=1.0, in_place=True):
901
    """
S
sneaxiy 已提交
902
    This function performs an operation that increments the value in the
903
    input :math:`x` by an amount: :math:`value` as mentioned in the input
S
sneaxiy 已提交
904 905
    parameter. This operation is performed in-place by default. Notice that
    the number of elements in :math:`x` must be equal to 1.
906 907 908 909 910 911 912

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
913
        Variable: The elementwise-incremented object.
914 915 916 917

    Examples:
        .. code-block:: python

918
          import paddle.fluid as fluid
S
sneaxiy 已提交
919 920
          data = fluid.layers.data(name='data', shape=[1], dtype='float32',
                                   append_batch_size=False)
921
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
922
    """
Y
Yu Yang 已提交
923
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
924
    if not in_place:
X
Xin Pan 已提交
925
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
926 927
    else:
        out = x
Y
Yu Yang 已提交
928 929 930
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
931
        outputs={'Out': [out]},
932
        attrs={'step': float(value)})
Y
Yang Yu 已提交
933
    return out
Y
Yu Yang 已提交
934 935


936
def array_write(x, i, array=None):
937 938 939 940 941
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
942 943 944

    Args:
        x (Variable|list): The input tensor from which the data will be read.
945 946 947 948 949 950 951 952
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

953
    Returns:
954
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
955 956

    Examples:
D
dzhwinter 已提交
957
        .. code-block:: python
958

959
          import paddle.fluid as fluid
960 961
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
962
          arr = fluid.layers.array_write(tmp, i=i)
963
    """
Y
Yu Yang 已提交
964 965 966 967 968
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
969
            dtype=x.dtype)
Y
Yu Yang 已提交
970 971 972 973 974 975 976 977
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


978
def create_array(dtype):
979
    """
Q
qiaolongfei 已提交
980
    **Create LoDTensorArray**
981

Q
qiaolongfei 已提交
982 983
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
984 985

    Args:
Q
qiaolongfei 已提交
986
        dtype (int|float): The data type of the elements in the lod_tensor_array.
987 988

    Returns:
989
        Variable: The lod_tensor_array variable storing the elements of data type.
990 991 992 993

    Examples:
        .. code-block:: python

994
          import paddle.fluid as fluid
995 996 997
          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
998 999 1000 1001 1002 1003 1004
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
1005
@templatedoc()
1006
def less_than(x, y, force_cpu=None, cond=None):
1007
    """
Y
yuyang18 已提交
1008
    ${comment}
1009 1010

    Args:
Y
yuyang18 已提交
1011 1012 1013
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1014 1015 1016
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1017
        ${out_comment}.
1018 1019 1020 1021

    Examples:
        .. code-block:: python

1022
          import paddle.fluid as fluid
1023 1024 1025
          label = fluid.layers.data(name='y', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], dtype='int64', value=5)
          cond = fluid.layers.less_than(x=label, y=limit)
1026
    """
Y
Yang Yang(Tony) 已提交
1027 1028
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1029
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1030 1031
        cond.stop_gradient = True

Y
yuyang18 已提交
1032 1033 1034 1035 1036 1037
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1038
    helper.append_op(
J
JiayiFeng 已提交
1039 1040 1041 1042
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1043
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1044 1045 1046
    return cond


Z
zhoukunsheng 已提交
1047 1048 1049
@templatedoc()
def less_equal(x, y, cond=None):
    """
1050
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1051 1052

    Args:
1053 1054 1055 1056 1057
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the input shape and data type of \
            this tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the input shape \
            and data type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1058 1059

    Returns:
1060
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1061 1062 1063 1064

    Examples:
        .. code-block:: python

1065
          import paddle.fluid as fluid
1066 1067 1068 1069 1070 1071
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
    """
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_than(x, y, cond=None):
    """
1094
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
1095 1096

    Args:
1097 1098 1099 1100 1101
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \
            tensor is the same as input :attr:`x` . If is not :attr:`None`, the op will set the variable as output tensor, the shape and data type \
            of this tensor should be the same as input :attr:`x` . Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1102 1103

    Returns:
1104
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x` .
Z
zhoukunsheng 已提交
1105 1106 1107 1108

    Examples:
        .. code-block:: python

1109
          import paddle.fluid as fluid
1110 1111 1112 1113 1114
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
    """
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_equal(x, y, cond=None):
    """
1137
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
1138 1139

    Args:
1140 1141 1142 1143 1144
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None` , the op will create a variable as output tensor, the shape and data type of this \
            tensor is the same as input :attr:`x`. If is not :attr:`None` , the op will set the variable as output tensor, the shape and data \
            type of this tensor is the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1145 1146

    Returns:
1147
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1148 1149 1150 1151

    Examples:
        .. code-block:: python

1152
          import paddle.fluid as fluid
1153 1154 1155 1156 1157 1158
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
1159

Z
zhoukunsheng 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    """
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


1179
def equal(x, y, cond=None):
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

1194 1195 1196
          import paddle.fluid as fluid
          label = fluid.layers.data(name="label", shape=[3,10,32,32], dtype="float32")
          limit = fluid.layers.data(name="limit", shape=[3,10,32,32], dtype="float32")
1197 1198 1199 1200
          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1201
        cond = helper.create_variable_for_type_inference(dtype='bool')
1202 1203 1204 1205 1206 1207 1208 1209
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


Z
zhoukunsheng 已提交
1210 1211
def not_equal(x, y, cond=None):
    """
1212
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
1213 1214

    Args:
1215 1216 1217 1218 1219
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \
             tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the shape and data \
             type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1220 1221

    Returns:
1222
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1223 1224 1225 1226

    Examples:
        .. code-block:: python

1227 1228 1229 1230
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
          out = fluid.layers.not_equal(x=label, y=limit)
    """
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1244
def array_read(array, i):
1245 1246
    """
    This function performs the operation to read the data in as an
1247
    LOD_TENSOR_ARRAY.
1248 1249 1250 1251 1252 1253

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
1254

1255
        And:
1256

1257 1258 1259 1260 1261 1262
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1263
    Args:
1264 1265 1266
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1267 1268
    Returns:
        Variable: The tensor type variable that has the data written to it.
1269

K
kavyasrinet 已提交
1270
    Examples:
1271 1272
        .. code-block:: python

1273
          import paddle.fluid as fluid
Z
zhaoyuchen 已提交
1274
          array = fluid.layers.create_array(dtype='float32')
K
kavyasrinet 已提交
1275
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
Z
zhaoyuchen 已提交
1276
          item = fluid.layers.array_read(array, i)
1277
    """
Y
Yu Yang 已提交
1278 1279 1280 1281 1282
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1283
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1284 1285 1286 1287 1288 1289
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1290 1291


1292
def shrink_memory(x, i, table):
1293
    """
Y
yuyang18 已提交
1294
    This function creates an operator to shrink rnn memory using the RankTable
1295
    as mentioned in the input parameter.
Y
yuyang18 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1316
    """
Y
Yang Yu 已提交
1317
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1318
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1319
    helper.append_op(
Y
Yang Yu 已提交
1320
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1321 1322 1323 1324 1325 1326
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1327 1328


1329
def array_length(array):
1330
    """
Q
qiaolongfei 已提交
1331
    **Get the Length of Input LoDTensorArray**
1332 1333

    This function performs the operation to find the length of the input
1334
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1335

1336 1337
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1338 1339 1340 1341 1342 1343 1344 1345
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1346
        .. code-block:: python
K
kavyasrinet 已提交
1347

1348
          import paddle.fluid as fluid
K
kavyasrinet 已提交
1349 1350 1351 1352
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1353

1354
    """
Y
Yang Yu 已提交
1355
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1356
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1357 1358 1359 1360
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1361 1362 1363


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1364
    """
1365 1366 1367
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1368 1369 1370
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

1401
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1413
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1414 1415 1416 1417
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1418
        self.is_scalar_condition = is_scalar_condition
1419
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1444
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1445 1446 1447
            if each_name not in input_set
        ]

X
Xin Pan 已提交
1448 1449 1450 1451 1452
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1453 1454

        step_scope = parent_block.create_var(
1455
            type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
1456 1457 1458
        parent_block.append_op(
            type='conditional_block',
            inputs={
1459 1460
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1461 1462 1463
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1464 1465 1466 1467 1468 1469 1470
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1471 1472
    """

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
    This class is used to implement Switch branch control function. 
    Switch branch contains several case branches and one default branch. 
    Switch control flow checks whether the case branch conditions are satisfied in turn, 
    and only executes the statement after the first case branch that satisfies the conditions. 
    If there is no case branch that satisfies the condition, 
    only the statement following the default branch is executed.

    Member Functions:
        case(cond): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
        
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
        
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
1498

1499 1500
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
1501 1502 1503

    Examples:
        .. code-block:: python
1504 1505
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
1506

1507
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
1508 1509 1510 1511 1512
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
1513
            zero_var = fluid.layers.fill_constant(
1514
                shape=[1], dtype='float32', value=0.0)
1515
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
1516
                shape=[1], dtype='float32', value=1.0)
1517
            two_var = fluid.layers.fill_constant(
1518
                shape=[1], dtype='float32', value=2.0)
1519

1520
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
1521 1522

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1523
                with switch.case(global_step == zero_var):
1524
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
1525
                with switch.default():
1526
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1527

1528 1529 1530 1531 1532
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
1533 1534
    """

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1620
    """
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
        
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
        
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)] 

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
        print res
        # [array([-1.], dtype=float32)] 
X
Xin Pan 已提交
1668 1669

    Args:
1670 1671
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1672

1673 1674
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
 
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
1686

X
Xin Pan 已提交
1687
    """
Y
Yu Yang 已提交
1688 1689 1690 1691
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1692
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1693 1694
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1695
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1707
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1708
            out_true = parent_block.create_var(
1709 1710
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1711
                dtype=x.dtype)
Y
Yu Yang 已提交
1712 1713

            out_false = parent_block.create_var(
1714 1715
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1716
                dtype=x.dtype)
Y
Yu Yang 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1735
    def _parent_block(self):
Y
Yu Yang 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1751
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1752 1753 1754 1755 1756
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
1757
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
1758
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1759
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1760 1761 1762
            out_table.append(outside_out)

            # assign local var to outside
1763
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1764 1765 1766 1767

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1768
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1787
                    level=0))
Y
Yu Yang 已提交
1788
        return rlist
1789 1790 1791


class DynamicRNN(object):
Y
yuyang18 已提交
1792
    """
Y
yuyang18 已提交
1793 1794 1795
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1796

1797
    The input lod must be set. Please reference to `lod_tensor`.
Y
yuyang18 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
1807

C
chengduoZH 已提交
1808 1809 1810
    NOTES:
        Currently it is not supported that setting is_sparse to True of any 
        layers within DynamicRNN.
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          sentence = fluid.layers.data(name='sentence', shape=[1], dtype='int64', lod_level=1)
          embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)
    
          drnn = fluid.layers.DynamicRNN()
          with drnn.block():
              word = drnn.step_input(embedding)
              prev = drnn.memory(shape=[200])
              hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
              drnn.update_memory(prev, hidden)  # set prev to hidden
              drnn.output(hidden)

          # Get the last time step of rnn. It is the encoding result.
          rnn_output = drnn()
          last = fluid.layers.sequence_last_step(rnn_output)
Y
yuyang18 已提交
1831
    """
1832 1833 1834 1835
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1836 1837
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1838 1839 1840 1841
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1842
        self.zero_idx = None
1843 1844 1845
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
1846
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
1847 1848 1849 1850 1851
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

1852
    def step_input(self, x, level=0):
Y
yuyang18 已提交
1853 1854
        """
        Mark a sequence as a dynamic RNN input.
H
haowang101779990 已提交
1855

Y
yuyang18 已提交
1856
        Args:
1857 1858
            x (Variable): The input sequence which should have lod information.
            level (int): The level of lod used to split steps. Default: 0.
Y
yuyang18 已提交
1859 1860 1861 1862

        Returns:
            The current timestep in the input sequence.
        """
1863 1864 1865
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1866
                "step_input() can only take a Variable as its input.")
1867 1868 1869
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1870
                name=unique_name.generate('lod_rank_table'),
1871 1872 1873 1874 1875
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
1876 1877
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
1878
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1879 1880
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1891 1892
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1893 1894

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1895
            name=unique_name.generate('dynamic_rnn_input_array'),
1896 1897 1898 1899 1900 1901 1902 1903
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1904
        return array_read(array=input_array, i=self.step_idx)
1905

Y
yangyaming 已提交
1906
    def static_input(self, x):
Y
yuyang18 已提交
1907 1908
        """
        Mark a variable as a RNN input. The input will not be scattered into
1909
        time steps. It is optional.
H
haowang101779990 已提交
1910

Y
yuyang18 已提交
1911
        Args:
1912
            x (Variable): The input variable.
Y
yuyang18 已提交
1913 1914 1915

        Returns:
            The input variable that can access in RNN.
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              encoder_proj = fluid.layers.data(name='encoder_proj', dtype='float32', shape=[32], lod_level=1)
              decoder_boot = fluid.layers.data(name='boot', dtype='float32', shape=[10], lod_level=1)

              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  current_word = drnn.step_input(sentence)
                  encoder_word = drnn.static_input(encoder_proj)
                  hidden_mem = drnn.memory(init=decoder_boot, need_reorder=True)
                  fc_1 = fluid.layers.fc(input=encoder_word, size=30, bias_attr=False)
                  fc_2 = fluid.layers.fc(input=current_word, size=30, bias_attr=False)
                  decoder_inputs = fc_1 + fc_2
                  h, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=hidden_mem, size=30)
                  drnn.update_memory(hidden_mem, h)
                  out = fluid.layers.fc(input=h, size=10, bias_attr=True, act='softmax') 
                  drnn.output(out)

              rnn_output = drnn()
Y
yuyang18 已提交
1940
        """
Y
yangyaming 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1950
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
1960
    @signature_safe_contextmanager
1961
    def block(self):
Y
yuyang18 已提交
1962
        """
1963
        The block for user to define operators in RNN.
Y
yuyang18 已提交
1964
        """
1965 1966
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1967 1968
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1969 1970 1971 1972
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1973
            increment(x=self.step_idx, value=1.0, in_place=True)
1974 1975

            for new_mem, mem_array in self.mem_link:
1976 1977
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1978 1979 1980 1981 1982
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1983 1984 1985 1986 1987

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1988
                    x=each_array, table=self.lod_rank_table))
1989 1990

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1991 1992 1993
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1994
        if self.status != DynamicRNN.AFTER_RNN:
1995 1996
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1997 1998 1999 2000 2001
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

2002 2003 2004 2005 2006 2007
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
2008
        """
Y
yuyang18 已提交
2009
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
2010 2011 2012 2013 2014 2015

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', shape=[32], dtype='float32', lod_level=1)
              boot_memory = fluid.layers.data(name='boot', shape=[10], dtype='float32', lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(init=boot_memory, need_reorder=True)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)

              rnn_output = drnn()
Y
yuyang18 已提交
2033 2034 2035 2036 2037


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

2038 2039
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
2040

2041
              import paddle.fluid as fluid
Y
yuyang18 已提交
2042

2043 2044 2045 2046 2047 2048 2049 2050 2051
              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(shape=[10], dtype='float32', value=0)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)
Y
yuyang18 已提交
2052

2053
              rnn_output = drnn()
Y
yuyang18 已提交
2054 2055


2056 2057 2058
        Args:
            init(Variable|None): The initialized variable.
            shape(list|tuple): The memory shape. The shape does not contain batch_size.
Y
yuyang18 已提交
2059
            value(float): the initalized value.
H
haowang101779990 已提交
2060
            need_reorder(bool): True if the initialized memory depends on the input sample.
Y
yuyang18 已提交
2061 2062 2063
            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
2064
            The memory variable.
Y
yuyang18 已提交
2065
        """
2066
        self._assert_in_rnn_block_('memory')
2067
        self._init_zero_idx_()
2068 2069 2070 2071 2072
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
2073 2074 2075 2076 2077 2078 2079 2080
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
2081
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
2092
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
2093
                name=unique_name.generate('dynamic_rnn_mem_array'),
2094 2095 2096 2097
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
2098
                inputs={'X': init_tensor,
2099 2100
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
2101
            retv = array_read(array=mem_array, i=self.step_idx)
2102
            retv = shrink_memory(
2103
                x=retv, i=self.step_idx, table=self.lod_rank_table)
2104 2105 2106 2107 2108 2109 2110 2111 2112
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
2113
                name=unique_name.generate('mem_init'), dtype=dtype)
2114
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
2115 2116
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
2134 2135 2136
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
H
haowang101779990 已提交
2137
        
Y
yuyang18 已提交
2138 2139 2140 2141 2142 2143 2144
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
2162
        """
2163
        Mark the RNN output variables.
Y
yuyang18 已提交
2164 2165 2166 2167 2168 2169 2170

        Args:
            outputs: The output variables.

        Returns:
            None
        """
2171 2172 2173 2174
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
2175
                name=unique_name.generate_with_ignorable_key("_".join(
2176 2177 2178 2179 2180 2181
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
2210 2211


2212
@templatedoc()
Y
Yang Yu 已提交
2213
def reorder_lod_tensor_by_rank(x, rank_table):
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
    """
    ${comment}

    Args:
    
        x(${x_type}): ${x_comment}
        rank_table(${rank_table_type}): ${rank_table_type}
    
    Returns:
        out(${out_type}): ${out_comment} 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
Y
Yang Yu 已提交
2237 2238 2239 2240
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
2241
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
2242 2243 2244 2245 2246 2247
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
2248 2249


2250
def is_empty(x, cond=None):
2251
    """
F
fengjiayi 已提交
2252
    Test whether a Variable is empty.
2253 2254

    Args:
F
fengjiayi 已提交
2255
        x (Variable): The Variable to be tested.
2256
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
2257
                              of given 'x'. Default: None
2258 2259

    Returns:
F
fengjiayi 已提交
2260
        Variable: A bool scalar. True if 'x' is an empty Variable.
2261 2262 2263

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
2264
                   not bool.
2265 2266 2267 2268

    Examples:
        .. code-block:: python

2269 2270
          import paddle.fluid as fluid
          input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
F
fengjiayi 已提交
2271 2272
          res = fluid.layers.is_empty(x=input)
          # or:
2273 2274
          # fluid.layers.is_empty(x=input, cond=res)

2275 2276 2277
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
2278
        cond = helper.create_variable_for_type_inference(dtype='bool')
2279 2280 2281 2282 2283 2284 2285 2286 2287
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond