creation.py 76.7 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16
import numpy as np
17
import math
18
import re
19 20
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
Z
zhiboniu 已提交
21 22 23 24
from ..static import Variable, device_guard
from ..framework import _current_expected_place, _get_paddle_place
from ..framework import dygraph_only
from ..framework import core
25 26
from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
P
Pei Yang 已提交
27
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
Z
zhiboniu 已提交
28
from ..framework import convert_np_dtype_to_dtype_, _varbase_creator, OpProtoHolder
29
# TODO: define functions to get create a tensor
30
import paddle
31
from paddle import _C_ops, _legacy_C_ops
32 33
from ..fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check
import warnings
34

35 36
__all__ = []

W
wangchaochaohu 已提交
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


def linspace(start, stop, num, dtype=None, name=None):
    r"""
58
    Return fixed number of evenly spaced values within a given interval.
59 60 61 62 63 64 65 66 67 68

    Args:
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a Tensor of shape [1] with data type int32.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
69
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
95
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
96 97
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
98
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
99 100
    if not isinstance(num, Variable):
        with device_guard("cpu"):
101
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
102
    if in_dygraph_mode():
103
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, dtype)
104
    if _in_legacy_dygraph():
105 106
        return _legacy_C_ops.linspace(tensor_start, tensor_stop, tensor_num,
                                      'dtype', dtype)
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

    helper = LayerHelper("linspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(start, 'start', (int, float), 'linspace')

    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
128 129 130 131
    if ((stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]) or (
                (stop_dtype == "int64" or start_dtype == "int64")
                and out_dtype == "int32"):
132 133 134 135 136 137 138
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))

    out = helper.create_variable_for_type_inference(dtype=dtype)

139 140 141 142 143 144 145 146
    helper.append_op(type='linspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
147 148 149 150 151
    if isinstance(num, int):
        out.desc.set_shape((num, ))
    return out


152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
    
    Notes:
        This API does not compute the gradient.
    
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
174
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
        just has the value with exponential of :attr:`start` with base :attr:`base`. 

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
    if _non_static_mode():
214 215
        return _legacy_C_ops.logspace(tensor_start, tensor_stop, tensor_num,
                                      tensor_base, 'dtype', dtype)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

    helper = LayerHelper("logspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    base_dtype = convert_dtype(tensor_base.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(start, 'start', (int, float), 'logspace')

    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(stop, 'stop', (int, float), 'logspace')

    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'logspace')

    if isinstance(base, Variable):
        check_dtype(base.dtype, 'base',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(base, 'base', (int, float), 'logspace')

    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'logspace')
    if ((stop_dtype == "float64" or start_dtype == "float64"
                                 or base_dtype == "float64")
                                 and out_dtype in ["float32", "int32"]) or \
       ((stop_dtype == "int64" or start_dtype == "int64"
                               or base_dtype == "int64")
                               and out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of logspace."
            .format(start_dtype, stop_dtype, base_dtype, dtype))

    out = helper.create_variable_for_type_inference(dtype=dtype)

259 260 261 262 263 264 265 266 267
    helper.append_op(type='logspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num,
                         'Base': tensor_base
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
268 269 270 271 272
    if isinstance(num, int):
        out.desc.set_shape((num, ))
    return out


273
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
274 275

    if not isinstance(data, np.ndarray):
276

277
        def _handle_dtype(data, dtype):
278 279 280 281 282
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

283 284 285 286
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
287
            if data.dtype == np.object_:
288 289 290 291
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
292 293 294 295 296 297
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
298
            data = data._copy_to(place, False)
299
            data = _handle_dtype(data, dtype)
300
            data.stop_gradient = stop_gradient
301
            return data
302
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
303
            # should't expose it to users, just for internal use.
304 305
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
306 307 308 309
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
310 311 312 313
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
314
            return data
315 316
        else:
            raise TypeError(
317 318
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor"
                .format(type(data)))
319 320 321 322 323 324 325 326 327 328 329 330 331 332
        if not dtype:
            if data.dtype in [
                    'float16', 'float32', 'float64', 'complex64', 'complex128'
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
                    default_type = 'complex64' if default_type in [
                        'float16', 'float32'
                    ] else 'complex128'
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
333 334

    if dtype and convert_dtype(dtype) != data.dtype:
335
        data = data.astype(convert_dtype(dtype))
336

J
Jiabin Yang 已提交
337
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
338 339 340 341 342 343
        return core.eager.Tensor(value=data,
                                 place=place,
                                 persistable=False,
                                 zero_copy=False,
                                 name=None,
                                 stop_gradient=stop_gradient)
344
    else:
345 346 347 348 349
        return paddle.Tensor(value=data,
                             place=place,
                             persistable=False,
                             zero_copy=False,
                             stop_gradient=stop_gradient)
350 351


352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
        if dtype:
            target_dtype = dtype
        elif hasattr(data, 'dtype'):
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

        if isinstance(data, np.ndarray) and len(data.shape) > 0 and any(
                isinstance(x, Variable) for x in data):
            if not all(
                [x.shape == (1, ) for x in data if isinstance(x, Variable)]):
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
    Constructs a ``paddle.Tensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])        

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
455 456 457 458
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

459 460 461 462 463
    if _non_static_mode():
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
464
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
465 466 467
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
468
            return _to_tensor_static(data, dtype, stop_gradient)
469 470


471
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
472
    """
S
swtkiwi 已提交
473

474 475
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
476

P
Pei Yang 已提交
477
    Args:
478 479
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
480
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
481 482
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
483
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
484
    
P
Pei Yang 已提交
485
    Returns:
486
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
487
    
P
Pei Yang 已提交
488 489
    Examples:
        .. code-block:: python
490

P
Pei Yang 已提交
491
          import paddle
492 493
          
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
494
          output = paddle.full_like(input, 2.0)
495 496
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
497 498 499
    """

    if dtype is None:
500
        dtype = x.dtype
501
    else:
502 503 504
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

505
    if in_dygraph_mode():
506
        return _C_ops.full_like(x, fill_value, dtype, x.place)
507 508

    if _in_legacy_dygraph():
509 510
        return _legacy_C_ops.fill_any_like(x, 'value', fill_value, 'dtype',
                                           dtype)
P
Pei Yang 已提交
511

512
    helper = LayerHelper("full_like", **locals())
513
    check_variable_and_dtype(
514 515
        x, 'x',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
516
        'full_like')
517 518 519 520
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'full_like/zeros_like/ones_like')
521
    out = helper.create_variable_for_type_inference(dtype=dtype)
522

523 524 525 526 527 528 529
    helper.append_op(type='fill_any_like',
                     inputs={'X': [x]},
                     attrs={
                         'value': fill_value,
                         "dtype": dtype
                     },
                     outputs={'Out': [out]})
530
    out.stop_gradient = True
P
Pei Yang 已提交
531 532 533
    return out


534
def ones(shape, dtype=None, name=None):
535
    """
B
BrilliantYuKaimin 已提交
536
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
537 538

    Args:
B
BrilliantYuKaimin 已提交
539 540 541 542
        shape (tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape should be int32 or int64.
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
543
    
544
    Returns:
B
BrilliantYuKaimin 已提交
545
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
546 547 548 549

    Examples:
        .. code-block:: python

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
            import paddle 

            # default dtype for ones OP
            data1 = paddle.ones(shape=[3, 2]) 
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            data2 = paddle.ones(shape=[2, 2], dtype='int32') 
            # [[1 1]
            #  [1 1]]

            # shape is a Tensor
            shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
            data3 = paddle.ones(shape=shape, dtype='int32') 
            # [[1 1]
            #  [1 1]]
567
    """
568 569 570
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
571 572


573
def ones_like(x, dtype=None, name=None):
574
    """
C
Chen Long 已提交
575
    Returns a Tensor filled with the value 1, with the same shape and
576
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
577 578

    Args:
579 580
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
581
        dtype(str|np.dtype, optional): The data type of the
582 583 584
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
585
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
586

587
    Returns:
588 589 590
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

591 592 593
    Examples:
        .. code-block:: python

594
            import paddle
595

596
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
597 598
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
599

600 601
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
602 603


604
def zeros(shape, dtype=None, name=None):
605
    """
C
Chen Long 已提交
606
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
607 608

    Args:
609
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
610
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
611 612 613
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
614 615

    Returns:
616
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
617 618 619 620 621

    Examples:
        .. code-block:: python

          import paddle
622
          
623 624 625 626 627 628 629 630 631
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
632
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
633
          data3 = paddle.zeros(shape=shape, dtype='int32') 
634 635
          # [[0 0]
          #  [0 0]]
636
    """
637 638 639
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
640 641


642
def zeros_like(x, dtype=None, name=None):
643
    """
644
    Returns a Tensor filled with the value 0, with the same shape and
645
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
646 647

    Args:
648 649
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
650
        dtype(str|np.dtype, optional): The data type of the
651 652 653
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
654
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
655 656

    Returns:
657 658
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
659

660

661 662 663
    Examples:
        .. code-block:: python

664
            import paddle
665

Z
zhupengyang 已提交
666
            x = paddle.to_tensor([1, 2, 3])
667 668
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
669

670 671
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
672 673


674
def eye(num_rows, num_columns=None, dtype=None, name=None):
675
    """
676
    
677
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
678

679
    Args:
680 681
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
682
            If None, default: num_rows.
W
wangchaochaohu 已提交
683
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
684 685
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
686
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
687

688
    Returns:
689
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
690

691 692
    Examples:
        .. code-block:: python
693
          
694
          import paddle
695

696
          data = paddle.eye(3, dtype='int32')
697 698 699
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
700
          data = paddle.eye(2, 3, dtype='int32')
701 702
          # [[1 0 0]
          #  [0 1 0]]
703 704
    """

705 706 707
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
708
        num_columns = num_rows
709 710 711 712 713 714 715 716 717 718

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows

    if _non_static_mode():
719
        if in_dygraph_mode():
720 721
            out = _C_ops.eye(num_rows, num_columns, dtype,
                             _current_expected_place())
722
        elif _in_legacy_dygraph():
723 724
            out = _legacy_C_ops.eye('dtype', dtype, 'num_rows', num_rows,
                                    'num_columns', num_columns)
725 726 727 728 729 730 731 732

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
733 734 735 736 737 738 739 740 741
        helper.append_op(type='eye',
                         inputs={},
                         outputs={'Out': [out]},
                         attrs={
                             'num_rows': num_rows,
                             'num_columns': num_columns,
                             'dtype': dtype
                         },
                         stop_gradient=True)
742 743 744

    out.stop_gradient = True
    return out
745 746


747
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
748
    """
S
swtkiwi 已提交
749

750
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
751 752
    
    Args:
753
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
754 755
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
756
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
757 758
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
759
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
760
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
761 762
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
wangchaochaohu 已提交
763
    
764
    Returns:
765
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
766

W
wangchaochaohu 已提交
767 768 769
    Examples:
        .. code-block:: python

770
            import paddle
W
wangchaochaohu 已提交
771

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
            data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
            #[[0]
            # [0]]

            # attr shape is a list which contains Tensor.
            positive_2 = paddle.full([1], 2, "int32")
            data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
            # [[1.5 1.5]]

            # attr shape is a Tensor.
            shape = paddle.full([2], 2, "int32")
            data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
            # [[True True] 
            #  [True True]]
            
            # attr fill_value is a Tensor.
            val = paddle.full([1], 2.0, "float32")
            data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
            # [[2.0] 
            #  [2.0]]
W
wangchaochaohu 已提交
792 793 794 795 796
    """

    if dtype is None:
        dtype = 'float32'

797
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
798 799


800
def arange(start=0, end=None, step=1, dtype=None, name=None):
801
    """
802
    Returns a 1-D Tensor with spaced values within a given interval.
803

804 805
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
806

807 808
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
809 810

    Parameters:
811 812 813 814 815 816 817 818 819 820 821 822
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
823
        dtype(str|np.dtype, optional): The data type of the
824 825
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
826
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
827

828 829
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
830 831
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
832

Z
zhupengyang 已提交
833
    Examples:
834 835
        .. code-block:: python

Z
zhupengyang 已提交
836
            import paddle
837

Z
zhupengyang 已提交
838 839
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
840

Z
zhupengyang 已提交
841 842
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
843

Z
zhupengyang 已提交
844 845 846
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
847

Z
zhupengyang 已提交
848 849 850
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
851 852 853 854 855 856 857
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
858

859 860 861 862 863
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
886
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
887 888

    if _in_legacy_dygraph():
889
        out = _legacy_C_ops.range(start, end, step)
890 891 892 893 894 895 896
        out.stop_gradient = True
        return out

    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
897 898 899 900 901 902 903
    helper.append_op(type='range',
                     inputs={
                         'Start': start,
                         'End': end,
                         'Step': step
                     },
                     outputs={'Out': out})
904
    out.stop_gradient = True
905 906
    if out_shape is not None:
        out.desc.set_shape(out_shape)
907
    return out
W
WuHaobo 已提交
908 909 910 911 912 913


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
914
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
915 916

    assert x is not None, 'x cannot be None in {}'.format(op_type)
917 918
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
W
WuHaobo 已提交
919
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
920
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
921 922 923 924 925 926 927 928
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
929 930 931
        out = helper.create_variable(name=name,
                                     dtype=x.dtype,
                                     persistable=False)
W
WuHaobo 已提交
932 933 934 935 936 937 938 939

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
940 941
        outputs={"Out": out},
    )
W
WuHaobo 已提交
942 943 944 945

    return out


Y
yaoxuefeng 已提交
946
def tril(x, diagonal=0, name=None):
947
    r"""
948
    Returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
949
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
950 951 952 953
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
954
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
955
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
956 957 958 959 960 961 962
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
963
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
964 965

    Returns:
Y
yaoxuefeng 已提交
966
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
967
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
968 969 970 971

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
972
            import paddle
W
WuHaobo 已提交
973

974 975 976 977 978
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
979

980 981 982 983 984
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
985 986

            # example 2, positive diagonal value
987 988 989 990 991
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
992 993

            # example 3, negative diagonal value
994 995 996 997 998
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
999
    """
F
From00 已提交
1000
    if in_dygraph_mode():
1001
        return _C_ops.tril_triu(x, diagonal, True)
F
From00 已提交
1002 1003

    if _in_legacy_dygraph():
1004
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1005
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
1006 1007 1008 1009

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
1010
def triu(x, diagonal=0, name=None):
1011
    r"""
1012
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1013
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1014 1015 1016 1017
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1018
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1019 1020 1021 1022 1023 1024 1025 1026
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1027
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1028 1029

    Returns:
Y
yaoxuefeng 已提交
1030
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1031
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1032 1033 1034 1035 1036

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
1037
            import paddle
W
WuHaobo 已提交
1038 1039 1040 1041 1042

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
1043

W
WuHaobo 已提交
1044 1045

            # example 1, default diagonal
1046
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
1047
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
1048 1049 1050 1051 1052
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1053
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
1054 1055 1056 1057 1058
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1059
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
1060 1061 1062 1063 1064
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
F
From00 已提交
1065
    if in_dygraph_mode():
1066
        return _C_ops.tril_triu(x, diagonal, False)
F
From00 已提交
1067 1068

    if _in_legacy_dygraph():
1069
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1070
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
1071 1072

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1073 1074


1075
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1076
    """
C
Chen Long 已提交
1077
    Takes a list of N tensors as input *args, each of which is 1-dimensional vector, and creates N-dimensional grids.
S
suytingwan 已提交
1078 1079
    
    Args:
Y
yaoxuefeng 已提交
1080
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
1081
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
C
Chen Long 已提交
1082
        **kwargs (optional): Currently, only accept name in **kwargs 
1083
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1084 1085 1086
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
Y
yaoxuefeng 已提交
1087
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1088 1089 1090 1091 1092 1093

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1094 1095 1096 1097
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1098

Y
yaoxuefeng 已提交
1099 1100
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1101 1102 1103 1104 1105 1106

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1107 1108
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1109
    if _in_legacy_dygraph():
1110
        num = len(args)
1111
        out = _legacy_C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
1112
        return out
Y
YuanRisheng 已提交
1113
    if in_dygraph_mode():
1114
        return _C_ops.meshgrid(list(args))
S
suytingwan 已提交
1115

1116
    name = kwargs.get("name", None)
S
suytingwan 已提交
1117 1118
    helper = LayerHelper('meshgrid', **locals())

1119 1120
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
1121

1122
    for id, input_ in enumerate(args):
S
suytingwan 已提交
1123 1124 1125 1126
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

1127
    num = len(args)
S
suytingwan 已提交
1128
    out = [
1129
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
1130 1131
        for i in range(num)
    ]
1132 1133 1134
    helper.append_op(type='meshgrid',
                     inputs={'X': list(args)},
                     outputs={'Out': out})
S
suytingwan 已提交
1135 1136

    return out
1137 1138


L
Li Min 已提交
1139 1140
def diagflat(x, offset=0, name=None):
    """
1141
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1157
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1158 1159 1160 1161 1162 1163

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1164
            :name: code-example-1
L
Li Min 已提交
1165

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
            print(y.numpy())
            # [[1 0 0]
            #  [0 2 0]
            #  [0 0 3]]

            y = paddle.diagflat(x, offset=1)
            print(y.numpy())
            # [[0 1 0 0]
            #  [0 0 2 0]
            #  [0 0 0 3]
            #  [0 0 0 0]]

            y = paddle.diagflat(x, offset=-1)
            print(y.numpy())
            # [[0 0 0 0]
            #  [1 0 0 0]
            #  [0 2 0 0]
            #  [0 0 3 0]]
L
Li Min 已提交
1188 1189

        .. code-block:: python
1190
            :name: code-example-2
L
Li Min 已提交
1191

1192
            import paddle
L
Li Min 已提交
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
            print(y.numpy())
            # [[1 0 0 0]
            #  [0 2 0 0]
            #  [0 0 3 0]
            #  [0 0 0 4]]

            y = paddle.diagflat(x, offset=1)
            print(y.numpy())
            # [[0 1 0 0 0]
            #  [0 0 2 0 0]
            #  [0 0 0 3 0]
            #  [0 0 0 0 4]
            #  [0 0 0 0 0]]

            y = paddle.diagflat(x, offset=-1)
            print(y.numpy())
            # [[0 0 0 0 0]
            #  [1 0 0 0 0]
            #  [0 2 0 0 0]
            #  [0 0 3 0 0]
            #  [0 0 0 4 0]]
L
Li Min 已提交
1217 1218
    """
    padding_value = 0
1219 1220
    if in_dygraph_mode():
        if len(x.shape) == 1:
1221
            return _C_ops.diag(x, offset, padding_value)
1222
        else:
1223 1224
            y = _C_ops.flatten(x, 0, -1)
            return _C_ops.diag(y, offset, padding_value)
1225 1226

    if _in_legacy_dygraph():
L
Li Min 已提交
1227
        if len(x.shape) == 1:
1228 1229
            return _legacy_C_ops.diag_v2(x, "offset", offset, "padding_value",
                                         padding_value)
L
Li Min 已提交
1230
        else:
1231 1232 1233 1234
            y, _ = _legacy_C_ops.flatten_contiguous_range(
                x, "start_axis", 0, "stop_axis", -1)
            return _legacy_C_ops.diag_v2(y, "offset", offset, "padding_value",
                                         padding_value)
L
Li Min 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

    check_type(x, 'x', (Variable), 'diagflat')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diagflat')
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
1247 1248 1249 1250 1251 1252 1253
        helper.append_op(type='diag_v2',
                         inputs={'X': x},
                         outputs={'Out': out2},
                         attrs={
                             'offset': offset,
                             'padding_value': padding_value
                         })
L
Li Min 已提交
1254
    else:
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
        helper.append_op(type='flatten_contiguous_range',
                         inputs={'X': x},
                         outputs={
                             'Out': out1,
                             'XShape': out1_shape
                         },
                         attrs={
                             'start_axis': 0,
                             'stop_axis': -1
                         })
L
Li Min 已提交
1265 1266
        out1.stop_gradient = True

1267 1268 1269 1270 1271 1272 1273
        helper.append_op(type='diag_v2',
                         inputs={'X': out1},
                         outputs={'Out': out2},
                         attrs={
                             'offset': offset,
                             'padding_value': padding_value
                         })
L
Li Min 已提交
1274 1275 1276 1277
    out2.stop_gradient = True
    return out2


1278 1279
def diag(x, offset=0, padding_value=0, name=None):
    """
1280
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1296 1297
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
        
1298 1299 1300 1301 1302
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1303
            :name: code-example-1
1304

1305
            import paddle
1306

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
            print(y.numpy())
            # [[1 0 0]
            #  [0 2 0]
            #  [0 0 3]]

            y = paddle.diag(x, offset=1)
            print(y.numpy())
            # [[0 1 0 0]
            #  [0 0 2 0]
            #  [0 0 0 3]
            #  [0 0 0 0]]

            y = paddle.diag(x, padding_value=6)
            print(y.numpy())
            # [[1 6 6]
            #  [6 2 6]
            #  [6 6 3]]
1327 1328

        .. code-block:: python
1329
            :name: code-example-2
1330

1331
            import paddle
1332

1333 1334 1335 1336 1337
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
            print(y.numpy())
            # [1 5]
1338

1339 1340 1341
            y = paddle.diag(x, offset=1)
            print(y.numpy())
            # [2 6]
1342

1343 1344 1345
            y = paddle.diag(x, offset=-1)
            print(y.numpy())
            # [4]
1346
    """
J
Jiabin Yang 已提交
1347
    if in_dygraph_mode():
1348
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1349 1350
    else:
        if _in_legacy_dygraph():
1351 1352
            return _legacy_C_ops.diag_v2(x, "offset", offset, "padding_value",
                                         padding_value)
J
Jiabin Yang 已提交
1353 1354 1355 1356 1357 1358 1359 1360
        else:
            check_type(x, 'x', (Variable), 'diag_v2')
            check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                        'diag_v2')
            check_type(offset, 'offset', (int), 'diag_v2')
            check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
            if len(x.shape) != 1 and len(x.shape) != 2:
                raise ValueError(
1361 1362
                    "The dimension of input x must be either 1 or 2, but received {}"
                    .format(len(x.shape)))
1363

J
Jiabin Yang 已提交
1364
            helper = LayerHelper("diag_v2", **locals())
1365

J
Jiabin Yang 已提交
1366
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1367

1368 1369 1370 1371 1372 1373 1374
            helper.append_op(type='diag_v2',
                             inputs={'X': x},
                             outputs={'Out': out},
                             attrs={
                                 'offset': offset,
                                 'padding_value': padding_value
                             })
1375

J
Jiabin Yang 已提交
1376 1377
            out.stop_gradient = True
            return out
1378 1379 1380 1381


def empty(shape, dtype=None, name=None):
    """
1382
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1393
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1394 1395 1396 1397 1398 1399 1400
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1401
            import paddle
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
            paddle.set_device("cpu")  # and use cpu device

            # example 1: argument ``shape`` is a list which doesn't contain Tensor.
            data1 = paddle.empty(shape=[2, 3], dtype='float32')
            print(data1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.00000000, 0.        , 0.00000000],
            #         [0.        , 0.29652897, 0.09356152]])       # uninitialized

            # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
            shape_data = paddle.to_tensor([2, 3]).astype('int32')
            data2 = paddle.empty(shape=shape_data, dtype='float32')
            print(data2)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.50543123, -0.09872390, -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized

            # example 3: argument ``shape`` is a list which contains Tensor.
            dim2 = paddle.to_tensor([3]).astype('int32')
            data3 = paddle.empty(shape=[2, dim2], dtype='float32')
            print(data3)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.00000000,  0.        , -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized
1427 1428 1429 1430 1431 1432 1433
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1434 1435
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
1436 1437
        out = _C_ops.empty(shape, convert_np_dtype_to_dtype_(dtype),
                           _current_expected_place())
1438 1439 1440 1441
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1442
        shape = utils.convert_shape_to_list(shape)
1443 1444
        out = _legacy_C_ops.empty('shape', shape, 'dtype',
                                  convert_np_dtype_to_dtype_(dtype))
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
1460 1461 1462 1463
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='empty')
1464 1465 1466

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
1467 1468 1469 1470 1471
    helper.append_op(type='empty',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
1472 1473
    out.stop_gradient = True
    return out
1474 1475 1476 1477


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1478
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1479 1480 1481 1482 1483 1484 1485
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
    
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
1486
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
    
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1508
    if in_dygraph_mode():
1509 1510
        out = _C_ops.empty(x.shape, convert_np_dtype_to_dtype_(dtype),
                           _current_expected_place())
1511 1512 1513 1514
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1515 1516
        out = _legacy_C_ops.empty('shape', x.shape, 'dtype',
                                  convert_np_dtype_to_dtype_(dtype))
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='empty_like')

    helper.append_op(type='empty',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
1543 1544
    out.stop_gradient = True
    return out
1545 1546 1547 1548


def assign(x, output=None):
    """
1549

1550
    Copy value of the :attr:`x` to the :attr:`output`.
1551 1552
 
    Parameters:
1553 1554
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1555
            data limitation.
1556
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1557 1558
 
    Returns:
1559
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
1560 1561 1562
 
    Examples:
        .. code-block:: python
1563

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
1574
    """
1575 1576
    input = x
    helper = LayerHelper('assign', **locals())
1577 1578
    check_type(input, 'input',
               (Variable, np.ndarray, list, tuple, float, int, bool), 'assign')
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
1590
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
1591
        if in_dygraph_mode():
1592
            if output is None:
1593
                output = _C_ops.assign(input)
Z
zyfncg 已提交
1594
            else:
1595
                _C_ops.assign_out_(input, output)
Z
zyfncg 已提交
1596 1597 1598
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1599
            _legacy_C_ops.assign(input, output)
1600 1601 1602 1603 1604 1605 1606 1607
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
1608 1609 1610
            helper.append_op(type='assign',
                             inputs={'X': [input]},
                             outputs={'Out': [output]})
1611
    elif isinstance(input, np.ndarray):
1612
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
1613
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
1614
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
1615 1616 1617 1618
            if not all([
                    x.shape == (1, ) for x in input
                    if isinstance(x, (Variable, core.eager.Tensor))
            ]):
1619 1620 1621 1622 1623
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
1624
                if not isinstance(x, (Variable, core.eager.Tensor)):
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
            """ may be this form [[Var], [Var], [3], [4]], we reject them.
            """
1636
            raise TypeError(
1637
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
1638
            )
1639

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
                "received %s." % convert_dtype(dtype))
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
1669 1670 1671
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
1672 1673
            _C_ops.assign_value_(output, list(input.shape), dtype, values,
                                 _current_expected_place())
1674 1675 1676
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1677 1678
            _legacy_C_ops.assign_value(output, 'shape', list(input.shape),
                                       'dtype', dtype, value_name, values)
1679
        else:
1680 1681 1682
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
1683 1684 1685 1686 1687 1688 1689
            helper.append_op(type='assign_value',
                             outputs={'Out': [output]},
                             attrs={
                                 'dtype': dtype,
                                 'shape': list(input.shape),
                                 value_name: values
                             })
1690

Z
zyfncg 已提交
1691
    if is_inplace and _in_legacy_dygraph():
1692 1693 1694
        output._bump_inplace_version()

    return output
1695 1696


1697 1698 1699 1700 1701 1702 1703 1704
def clone(x, name=None):
    """
    Returns a copy of input Tensor. It will always have a Tensor copy. 
    
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
1705
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1706

1707 1708
    Returns: 
        Tensor, A Tensor copied from ``input``.
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


1727
#NOTE(zhiqiu): not public
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
1741
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
        check_dtype(input.dtype, 'input', [
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
        ], 'memcpy', '(When the type of input in memcpy is Variable.)')
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
1780 1781 1782 1783
    helper.append_op(type='memcpy',
                     inputs={'X': [input]},
                     outputs={'Out': [output]},
                     attrs=attrs)
1784
    return output
F
Feiyu Chan 已提交
1785 1786 1787 1788 1789 1790 1791 1792


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
1793
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

    **Note**:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
            print(z.numpy())

            # [[0.+0.j 0.+1.j 0.+2.j]
            #  [1.+0.j 1.+1.j 1.+2.j]]
    """
1813
    if in_dygraph_mode():
1814
        return _C_ops.complex(real, imag)
1815

Z
zhiboniu 已提交
1816
    if paddle.in_dynamic_mode():
1817
        return paddle._legacy_C_ops.complex(real, imag)
F
Feiyu Chan 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830

    check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
    check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')

    op_type = "complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": real, "Y": imag}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(real.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893


def tril_indices(row, col, offset=0, dtype='int64'):
    """
    Return the indices of the lower triangular part of the 2-D matrix 
    whose row and col is knowed.Indices are ordered based on row and then columns. 
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
    
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and below the main diagonal are retained.  
            - If offset > 0, include just as many diagonals above the main diagonal.  
            - If offset < 0, excludes just as many diagonals below the main diagonal.  
 
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3], 
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3], 
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a  int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
1894 1895
        out = _C_ops.tril_indices(row, col, offset, dtype,
                                  _current_expected_place())
1896 1897 1898
        return out

    if _in_legacy_dygraph():
1899 1900
        out = _legacy_C_ops.tril_indices('rows', row, 'cols', col, 'offset',
                                         offset, "dtype", dtype)
1901 1902 1903 1904 1905 1906 1907
        return out

    else:
        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

1908 1909 1910 1911 1912 1913 1914 1915 1916
        helper.append_op(type='tril_indices',
                         inputs={},
                         outputs={'out': [out]},
                         attrs={
                             'rows': row,
                             'cols': col,
                             'offset': offset,
                             'dtype': dtype
                         })
1917
    return out
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
1979 1980
        out = _C_ops.triu_indices(row, col, offset, dtype,
                                  _current_expected_place())
1981 1982 1983
        return out

    if _in_legacy_dygraph():
1984 1985
        out = _legacy_C_ops.triu_indices('row', row, 'col', col, 'offset',
                                         offset, "dtype", dtype)
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
        return out

    else:
        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

        helper.append_op(type='triu_indices',
                         inputs={},
                         outputs={'out': [out]},
                         attrs={
                             'row': row,
                             'col': col,
                             'offset': offset,
                             'dtype': dtype
                         })
    return out