creation.py 74.5 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16
import numpy as np
17
import math
18 19
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
Z
zhiboniu 已提交
20 21 22 23
from ..static import Variable, device_guard
from ..framework import _current_expected_place, _get_paddle_place
from ..framework import dygraph_only
from ..framework import core
24 25
from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
P
Pei Yang 已提交
26
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
Z
zhiboniu 已提交
27
from ..framework import convert_np_dtype_to_dtype_, _varbase_creator, OpProtoHolder
28
# TODO: define functions to get create a tensor
29
import paddle
W
wanghuancoder 已提交
30
from paddle import _C_ops
31 32
from ..fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check
import warnings
33

34 35
__all__ = []

W
wangchaochaohu 已提交
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


def linspace(start, stop, num, dtype=None, name=None):
    r"""
57
    Return fixed number of evenly spaced values within a given interval.
58 59 60 61 62 63 64 65 66 67

    Args:
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a Tensor of shape [1] with data type int32.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
68
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
94
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
95 96
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
97
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
98 99
    if not isinstance(num, Variable):
        with device_guard("cpu"):
100
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
101 102 103 104
    if in_dygraph_mode():
        return _C_ops.final_state_linspace(tensor_start, tensor_stop,
                                           tensor_num, dtype)
    if _in_legacy_dygraph():
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)

    helper = LayerHelper("linspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(start, 'start', (int, float), 'linspace')

    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
128 129 130 131
    if ((stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]) or (
                (stop_dtype == "int64" or start_dtype == "int64")
                and out_dtype == "int32"):
132 133 134 135 136 137 138
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))

    out = helper.create_variable_for_type_inference(dtype=dtype)

139 140 141 142 143 144 145 146
    helper.append_op(type='linspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
147 148 149 150 151
    if isinstance(num, int):
        out.desc.set_shape((num, ))
    return out


152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
    
    Notes:
        This API does not compute the gradient.
    
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
174
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
        just has the value with exponential of :attr:`start` with base :attr:`base`. 

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
    if _non_static_mode():
        return _C_ops.logspace(tensor_start, tensor_stop, tensor_num,
                               tensor_base, 'dtype', dtype)

    helper = LayerHelper("logspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    base_dtype = convert_dtype(tensor_base.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(start, 'start', (int, float), 'logspace')

    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(stop, 'stop', (int, float), 'logspace')

    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'logspace')

    if isinstance(base, Variable):
        check_dtype(base.dtype, 'base',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(base, 'base', (int, float), 'logspace')

    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'logspace')
    if ((stop_dtype == "float64" or start_dtype == "float64"
                                 or base_dtype == "float64")
                                 and out_dtype in ["float32", "int32"]) or \
       ((stop_dtype == "int64" or start_dtype == "int64"
                               or base_dtype == "int64")
                               and out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of logspace."
            .format(start_dtype, stop_dtype, base_dtype, dtype))

    out = helper.create_variable_for_type_inference(dtype=dtype)

259 260 261 262 263 264 265 266 267
    helper.append_op(type='logspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num,
                         'Base': tensor_base
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
268 269 270 271 272
    if isinstance(num, int):
        out.desc.set_shape((num, ))
    return out


273
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
274
    place = _get_paddle_place(place)
275 276
    if place is None:
        place = _current_expected_place()
277 278 279 280
    elif not isinstance(
            place,
        (core.Place, core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace,
         core.NPUPlace, core.XPUPlace, core.MLUPlace, core.CustomPlace)):
281
        raise ValueError(
F
fwenguang 已提交
282
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace, paddle.NPUPlace, paddle.XPUPlace, paddle.MLUPlace, paddle.CustomPlace"
283 284 285
        )

    if not isinstance(data, np.ndarray):
286

287
        def _handle_dtype(data, dtype):
288 289 290 291 292
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

293 294 295 296
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
297
            if data.dtype == np.object_:
298 299 300 301
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
302 303 304 305 306 307
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
308
            data = data._copy_to(place, False)
309
            data = _handle_dtype(data, dtype)
310
            data.stop_gradient = stop_gradient
311
            return data
312
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
313
            # should't expose it to users, just for internal use.
314 315
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
316 317 318 319
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
320 321 322 323
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
324
            return data
325 326
        else:
            raise TypeError(
327 328
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor"
                .format(type(data)))
329 330 331 332 333 334 335 336 337 338 339 340 341 342
        if not dtype:
            if data.dtype in [
                    'float16', 'float32', 'float64', 'complex64', 'complex128'
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
                    default_type = 'complex64' if default_type in [
                        'float16', 'float32'
                    ] else 'complex128'
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
343 344

    if dtype and convert_dtype(dtype) != data.dtype:
345
        data = data.astype(convert_dtype(dtype))
346

J
Jiabin Yang 已提交
347
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
348 349 350 351 352 353
        return core.eager.Tensor(value=data,
                                 place=place,
                                 persistable=False,
                                 zero_copy=False,
                                 name=None,
                                 stop_gradient=stop_gradient)
354
    else:
355 356 357 358 359
        return paddle.Tensor(value=data,
                             place=place,
                             persistable=False,
                             zero_copy=False,
                             stop_gradient=stop_gradient)
360 361


362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
    Constructs a ``paddle.Tensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])        

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
    if _non_static_mode():
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:

        def call_assign(data, dtype=None, stop_grandient=None):

            if isinstance(data,
                          (Variable, core.VarBase)) and (dtype is None or dtype
                                                         == data.dtype):
                output = data
            else:
                if dtype:
                    target_dtype = convert_dtype(dtype)
                elif hasattr(data, 'dtype'):
                    target_dtype = convert_dtype(data.dtype)
                else:
                    target_dtype = convert_dtype(paddle.get_default_dtype())

                if not isinstance(data, np.ndarray):
                    if np.isscalar(data) and not isinstance(data, str):
                        data = np.array([data])
                    elif isinstance(data, (list, tuple)):
                        if any(isinstance(x, Variable) for x in data):
                            to_stack_list = [None] * len(data)
                            for idx, d in enumerate(data):
                                to_stack_list[idx] = call_assign(
                                    d, dtype, stop_gradient)
                            data = paddle.stack(to_stack_list)
                            data = paddle.squeeze(data, -1)

                output = assign(data)
                if target_dtype is not None and convert_dtype(
                        output.dtype) != target_dtype:
                    output = paddle.cast(output, target_dtype)

            output.stop_gradient = stop_gradient

            return output

        place = _get_paddle_place(place)
        if place is None:
            place = _current_expected_place()
        elif not isinstance(
                place,
            (core.Place, core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace,
             core.NPUPlace, core.XPUPlace, core.MLUPlace, core.CustomPlace)):
            raise ValueError(
                "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace, paddle.NPUPlace, paddle.XPUPlace, paddle.MLUPlace, paddle.CustomPlace"
            )

        import re
        re_exp = re.compile(r'[(](.*?)[)]', re.S)
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
            return call_assign(data, dtype, stop_gradient)


480
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
481
    """
S
swtkiwi 已提交
482

483 484
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
485

P
Pei Yang 已提交
486
    Args:
487 488
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
489
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
490 491
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
492
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
493
    
P
Pei Yang 已提交
494
    Returns:
495
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
496
    
P
Pei Yang 已提交
497 498
    Examples:
        .. code-block:: python
499

P
Pei Yang 已提交
500
          import paddle
501 502
          
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
503
          output = paddle.full_like(input, 2.0)
504 505
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
506 507 508
    """

    if dtype is None:
509
        dtype = x.dtype
510
    else:
511 512 513
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

514 515 516 517
    if in_dygraph_mode():
        return _C_ops.final_state_full_like(x, fill_value, dtype, x.place)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
518
        return _C_ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
519

520
    helper = LayerHelper("full_like", **locals())
521
    check_variable_and_dtype(
522 523
        x, 'x',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
524
        'full_like')
525 526 527 528
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'full_like/zeros_like/ones_like')
529
    out = helper.create_variable_for_type_inference(dtype=dtype)
530

531 532 533 534 535 536 537
    helper.append_op(type='fill_any_like',
                     inputs={'X': [x]},
                     attrs={
                         'value': fill_value,
                         "dtype": dtype
                     },
                     outputs={'Out': [out]})
538
    out.stop_gradient = True
P
Pei Yang 已提交
539 540 541
    return out


542
def ones(shape, dtype=None, name=None):
543
    """
B
BrilliantYuKaimin 已提交
544
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
545 546

    Args:
B
BrilliantYuKaimin 已提交
547 548 549 550
        shape (tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape should be int32 or int64.
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
551
    
552
    Returns:
B
BrilliantYuKaimin 已提交
553
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
554 555 556 557

    Examples:
        .. code-block:: python

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
            import paddle 

            # default dtype for ones OP
            data1 = paddle.ones(shape=[3, 2]) 
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            data2 = paddle.ones(shape=[2, 2], dtype='int32') 
            # [[1 1]
            #  [1 1]]

            # shape is a Tensor
            shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
            data3 = paddle.ones(shape=shape, dtype='int32') 
            # [[1 1]
            #  [1 1]]
575
    """
576 577 578
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
579 580


581
def ones_like(x, dtype=None, name=None):
582
    """
C
Chen Long 已提交
583
    Returns a Tensor filled with the value 1, with the same shape and
584
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
585 586

    Args:
587 588
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
589
        dtype(str|np.dtype, optional): The data type of the
590 591 592
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
593
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
594

595
    Returns:
596 597 598
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

599 600 601
    Examples:
        .. code-block:: python

602
            import paddle
603

604
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
605 606
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
607

608 609
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
610 611


612
def zeros(shape, dtype=None, name=None):
613
    """
C
Chen Long 已提交
614
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
615 616

    Args:
617
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
618
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
619 620 621
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
622 623

    Returns:
624
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
625 626 627 628 629

    Examples:
        .. code-block:: python

          import paddle
630
          
631 632 633 634 635 636 637 638 639
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
640
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
641
          data3 = paddle.zeros(shape=shape, dtype='int32') 
642 643
          # [[0 0]
          #  [0 0]]
644
    """
645 646 647
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
648 649


650
def zeros_like(x, dtype=None, name=None):
651
    """
652
    Returns a Tensor filled with the value 0, with the same shape and
653
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
654 655

    Args:
656 657
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
658
        dtype(str|np.dtype, optional): The data type of the
659 660 661
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
662
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
663 664

    Returns:
665 666
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
667

668

669 670 671
    Examples:
        .. code-block:: python

672
            import paddle
673

Z
zhupengyang 已提交
674
            x = paddle.to_tensor([1, 2, 3])
675 676
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
677

678 679
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
680 681


682
def eye(num_rows, num_columns=None, dtype=None, name=None):
683
    """
684
    
685
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
686

687
    Args:
688 689
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
690
            If None, default: num_rows.
W
wangchaochaohu 已提交
691
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
692 693
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
694
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
695

696
    Returns:
697
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
698

699 700
    Examples:
        .. code-block:: python
701
          
702
          import paddle
703

704
          data = paddle.eye(3, dtype='int32')
705 706 707
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
708
          data = paddle.eye(2, 3, dtype='int32')
709 710
          # [[1 0 0]
          #  [0 1 0]]
711 712
    """

713 714 715
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
716
        num_columns = num_rows
717 718 719 720 721 722 723 724 725 726

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows

    if _non_static_mode():
727 728 729 730 731 732
        if in_dygraph_mode():
            out = _C_ops.final_state_eye(num_rows, num_columns, dtype,
                                         _current_expected_place())
        elif _in_legacy_dygraph():
            out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows,
                             'num_columns', num_columns)
733 734 735 736 737 738 739 740

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
741 742 743 744 745 746 747 748 749
        helper.append_op(type='eye',
                         inputs={},
                         outputs={'Out': [out]},
                         attrs={
                             'num_rows': num_rows,
                             'num_columns': num_columns,
                             'dtype': dtype
                         },
                         stop_gradient=True)
750 751 752

    out.stop_gradient = True
    return out
753 754


755
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
756
    """
S
swtkiwi 已提交
757

758
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
759 760
    
    Args:
761
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
762 763
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
764
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
765 766
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
767
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
768
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
769 770
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
wangchaochaohu 已提交
771
    
772
    Returns:
773
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
774

W
wangchaochaohu 已提交
775 776 777
    Examples:
        .. code-block:: python

778
            import paddle
W
wangchaochaohu 已提交
779

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
            data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
            #[[0]
            # [0]]

            # attr shape is a list which contains Tensor.
            positive_2 = paddle.full([1], 2, "int32")
            data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
            # [[1.5 1.5]]

            # attr shape is a Tensor.
            shape = paddle.full([2], 2, "int32")
            data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
            # [[True True] 
            #  [True True]]
            
            # attr fill_value is a Tensor.
            val = paddle.full([1], 2.0, "float32")
            data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
            # [[2.0] 
            #  [2.0]]
W
wangchaochaohu 已提交
800 801 802 803 804
    """

    if dtype is None:
        dtype = 'float32'

805
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
806 807


808
def arange(start=0, end=None, step=1, dtype=None, name=None):
809
    """
810
    Returns a 1-D Tensor with spaced values within a given interval.
811

812 813
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
814

815 816
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
817 818

    Parameters:
819 820 821 822 823 824 825 826 827 828 829 830
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
831
        dtype(str|np.dtype, optional): The data type of the
832 833
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
834
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
835

836 837
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
838 839
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
840

Z
zhupengyang 已提交
841
    Examples:
842 843
        .. code-block:: python

Z
zhupengyang 已提交
844
            import paddle
845

Z
zhupengyang 已提交
846 847
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
848

Z
zhupengyang 已提交
849 850
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
851

Z
zhupengyang 已提交
852 853 854
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
855

Z
zhupengyang 已提交
856 857 858
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
859 860 861 862 863 864 865
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
866

867 868 869 870 871
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
        return _C_ops.final_state_arange(start, end, step, dtype,
                                         _current_expected_place())

    if _in_legacy_dygraph():
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out

    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
906 907 908 909 910 911 912
    helper.append_op(type='range',
                     inputs={
                         'Start': start,
                         'End': end,
                         'Step': step
                     },
                     outputs={'Out': out})
913
    out.stop_gradient = True
914 915
    if out_shape is not None:
        out.desc.set_shape(out_shape)
916
    return out
W
WuHaobo 已提交
917 918 919 920 921 922


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
923
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
924 925

    assert x is not None, 'x cannot be None in {}'.format(op_type)
926 927
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
W
WuHaobo 已提交
928
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
929
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
930 931 932 933 934 935 936 937
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
938 939 940
        out = helper.create_variable(name=name,
                                     dtype=x.dtype,
                                     persistable=False)
W
WuHaobo 已提交
941 942 943 944 945 946 947 948

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
949 950
        outputs={"Out": out},
    )
W
WuHaobo 已提交
951 952 953 954

    return out


Y
yaoxuefeng 已提交
955
def tril(x, diagonal=0, name=None):
956
    r"""
957
    Returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
958
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
959 960 961 962
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
963
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
964
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
965 966 967 968 969 970 971
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
972
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
973 974

    Returns:
Y
yaoxuefeng 已提交
975
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
976
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
977 978 979 980

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
981
            import paddle
W
WuHaobo 已提交
982

983 984 985 986 987
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
988

989 990 991 992 993
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
994 995

            # example 2, positive diagonal value
996 997 998 999 1000
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1001 1002

            # example 3, negative diagonal value
1003 1004 1005 1006 1007
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1008
    """
F
From00 已提交
1009 1010 1011 1012
    if in_dygraph_mode():
        return _C_ops.final_state_tril_triu(x, diagonal, True)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1013
        op = getattr(_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1014
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
1015 1016 1017 1018

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
1019
def triu(x, diagonal=0, name=None):
1020
    r"""
1021
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1022
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1023 1024 1025 1026
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1027
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1028 1029 1030 1031 1032 1033 1034 1035
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1036
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1037 1038

    Returns:
Y
yaoxuefeng 已提交
1039
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1040
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1041 1042 1043 1044 1045

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
1046
            import paddle
W
WuHaobo 已提交
1047 1048 1049 1050 1051

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
1052

W
WuHaobo 已提交
1053 1054

            # example 1, default diagonal
1055
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
1056
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
1057 1058 1059 1060 1061
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1062
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
1063 1064 1065 1066 1067
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1068
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
1069 1070 1071 1072 1073
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
F
From00 已提交
1074 1075 1076 1077
    if in_dygraph_mode():
        return _C_ops.final_state_tril_triu(x, diagonal, False)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1078
        op = getattr(_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1079
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
1080 1081

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1082 1083


1084
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1085
    """
C
Chen Long 已提交
1086
    Takes a list of N tensors as input *args, each of which is 1-dimensional vector, and creates N-dimensional grids.
S
suytingwan 已提交
1087 1088
    
    Args:
Y
yaoxuefeng 已提交
1089
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
1090
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
C
Chen Long 已提交
1091
        **kwargs (optional): Currently, only accept name in **kwargs 
1092
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1093 1094 1095
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
Y
yaoxuefeng 已提交
1096
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1097 1098 1099 1100 1101 1102

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1103 1104 1105 1106
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1107

Y
yaoxuefeng 已提交
1108 1109
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1110 1111 1112 1113 1114 1115

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1116 1117
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1118
    if _in_legacy_dygraph():
1119
        num = len(args)
W
wanghuancoder 已提交
1120
        out = _C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
1121
        return out
Y
YuanRisheng 已提交
1122 1123
    if in_dygraph_mode():
        return _C_ops.final_state_meshgrid(list(args))
S
suytingwan 已提交
1124

1125
    name = kwargs.get("name", None)
S
suytingwan 已提交
1126 1127
    helper = LayerHelper('meshgrid', **locals())

1128 1129
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
1130

1131
    for id, input_ in enumerate(args):
S
suytingwan 已提交
1132 1133 1134 1135
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

1136
    num = len(args)
S
suytingwan 已提交
1137
    out = [
1138
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
1139 1140
        for i in range(num)
    ]
1141 1142 1143
    helper.append_op(type='meshgrid',
                     inputs={'X': list(args)},
                     outputs={'Out': out})
S
suytingwan 已提交
1144 1145

    return out
1146 1147


L
Li Min 已提交
1148 1149
def diagflat(x, offset=0, name=None):
    """
1150
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1166
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1167 1168 1169 1170 1171 1172

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1173
            :name: code-example-1
L
Li Min 已提交
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
            print(y.numpy())
            # [[1 0 0]
            #  [0 2 0]
            #  [0 0 3]]

            y = paddle.diagflat(x, offset=1)
            print(y.numpy())
            # [[0 1 0 0]
            #  [0 0 2 0]
            #  [0 0 0 3]
            #  [0 0 0 0]]

            y = paddle.diagflat(x, offset=-1)
            print(y.numpy())
            # [[0 0 0 0]
            #  [1 0 0 0]
            #  [0 2 0 0]
            #  [0 0 3 0]]
L
Li Min 已提交
1197 1198

        .. code-block:: python
1199
            :name: code-example-2
L
Li Min 已提交
1200

1201
            import paddle
L
Li Min 已提交
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
            print(y.numpy())
            # [[1 0 0 0]
            #  [0 2 0 0]
            #  [0 0 3 0]
            #  [0 0 0 4]]

            y = paddle.diagflat(x, offset=1)
            print(y.numpy())
            # [[0 1 0 0 0]
            #  [0 0 2 0 0]
            #  [0 0 0 3 0]
            #  [0 0 0 0 4]
            #  [0 0 0 0 0]]

            y = paddle.diagflat(x, offset=-1)
            print(y.numpy())
            # [[0 0 0 0 0]
            #  [1 0 0 0 0]
            #  [0 2 0 0 0]
            #  [0 0 3 0 0]
            #  [0 0 0 4 0]]
L
Li Min 已提交
1226 1227
    """
    padding_value = 0
1228 1229 1230 1231 1232 1233 1234 1235
    if in_dygraph_mode():
        if len(x.shape) == 1:
            return _C_ops.final_state_diag(x, offset, padding_value)
        else:
            y = _C_ops.final_state_flatten(x, 0, -1)
            return _C_ops.final_state_diag(y, offset, padding_value)

    if _in_legacy_dygraph():
L
Li Min 已提交
1236
        if len(x.shape) == 1:
W
wanghuancoder 已提交
1237 1238
            return _C_ops.diag_v2(x, "offset", offset, "padding_value",
                                  padding_value)
L
Li Min 已提交
1239
        else:
W
wanghuancoder 已提交
1240 1241 1242 1243
            y, _ = _C_ops.flatten_contiguous_range(x, "start_axis", 0,
                                                   "stop_axis", -1)
            return _C_ops.diag_v2(y, "offset", offset, "padding_value",
                                  padding_value)
L
Li Min 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

    check_type(x, 'x', (Variable), 'diagflat')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diagflat')
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
1256 1257 1258 1259 1260 1261 1262
        helper.append_op(type='diag_v2',
                         inputs={'X': x},
                         outputs={'Out': out2},
                         attrs={
                             'offset': offset,
                             'padding_value': padding_value
                         })
L
Li Min 已提交
1263
    else:
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
        helper.append_op(type='flatten_contiguous_range',
                         inputs={'X': x},
                         outputs={
                             'Out': out1,
                             'XShape': out1_shape
                         },
                         attrs={
                             'start_axis': 0,
                             'stop_axis': -1
                         })
L
Li Min 已提交
1274 1275
        out1.stop_gradient = True

1276 1277 1278 1279 1280 1281 1282
        helper.append_op(type='diag_v2',
                         inputs={'X': out1},
                         outputs={'Out': out2},
                         attrs={
                             'offset': offset,
                             'padding_value': padding_value
                         })
L
Li Min 已提交
1283 1284 1285 1286
    out2.stop_gradient = True
    return out2


1287 1288
def diag(x, offset=0, padding_value=0, name=None):
    """
1289
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1305 1306
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
        
1307 1308 1309 1310 1311
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1312
            :name: code-example-1
1313

1314
            import paddle
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
            print(y.numpy())
            # [[1 0 0]
            #  [0 2 0]
            #  [0 0 3]]

            y = paddle.diag(x, offset=1)
            print(y.numpy())
            # [[0 1 0 0]
            #  [0 0 2 0]
            #  [0 0 0 3]
            #  [0 0 0 0]]

            y = paddle.diag(x, padding_value=6)
            print(y.numpy())
            # [[1 6 6]
            #  [6 2 6]
            #  [6 6 3]]
1336 1337

        .. code-block:: python
1338
            :name: code-example-2
1339

1340
            import paddle
1341

1342 1343 1344 1345 1346
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
            print(y.numpy())
            # [1 5]
1347

1348 1349 1350
            y = paddle.diag(x, offset=1)
            print(y.numpy())
            # [2 6]
1351

1352 1353 1354
            y = paddle.diag(x, offset=-1)
            print(y.numpy())
            # [4]
1355
    """
J
Jiabin Yang 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
    if in_dygraph_mode():
        return _C_ops.final_state_diag(x, offset, padding_value)
    else:
        if _in_legacy_dygraph():
            return _C_ops.diag_v2(x, "offset", offset, "padding_value",
                                  padding_value)
        else:
            check_type(x, 'x', (Variable), 'diag_v2')
            check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                        'diag_v2')
            check_type(offset, 'offset', (int), 'diag_v2')
            check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
            if len(x.shape) != 1 and len(x.shape) != 2:
                raise ValueError(
1370 1371
                    "The dimension of input x must be either 1 or 2, but received {}"
                    .format(len(x.shape)))
1372

J
Jiabin Yang 已提交
1373
            helper = LayerHelper("diag_v2", **locals())
1374

J
Jiabin Yang 已提交
1375
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1376

1377 1378 1379 1380 1381 1382 1383
            helper.append_op(type='diag_v2',
                             inputs={'X': x},
                             outputs={'Out': out},
                             attrs={
                                 'offset': offset,
                                 'padding_value': padding_value
                             })
1384

J
Jiabin Yang 已提交
1385 1386
            out.stop_gradient = True
            return out
1387 1388 1389 1390


def empty(shape, dtype=None, name=None):
    """
1391
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1402
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1403 1404 1405 1406 1407 1408 1409
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1410
            import paddle
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
            paddle.set_device("cpu")  # and use cpu device

            # example 1: argument ``shape`` is a list which doesn't contain Tensor.
            data1 = paddle.empty(shape=[2, 3], dtype='float32')
            print(data1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.00000000, 0.        , 0.00000000],
            #         [0.        , 0.29652897, 0.09356152]])       # uninitialized

            # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
            shape_data = paddle.to_tensor([2, 3]).astype('int32')
            data2 = paddle.empty(shape=shape_data, dtype='float32')
            print(data2)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.50543123, -0.09872390, -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized

            # example 3: argument ``shape`` is a list which contains Tensor.
            dim2 = paddle.to_tensor([3]).astype('int32')
            data3 = paddle.empty(shape=[2, dim2], dtype='float32')
            print(data3)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.00000000,  0.        , -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized
1436 1437 1438 1439 1440 1441 1442
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1443 1444 1445 1446 1447 1448 1449 1450
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        out = _C_ops.final_state_empty(shape, convert_np_dtype_to_dtype_(dtype),
                                       _current_expected_place())
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1451
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
1452 1453
        out = _C_ops.empty('shape', shape, 'dtype',
                           convert_np_dtype_to_dtype_(dtype))
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
1469 1470 1471 1472
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='empty')
1473 1474 1475

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
1476 1477 1478 1479 1480
    helper.append_op(type='empty',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
1481 1482
    out.stop_gradient = True
    return out
1483 1484 1485 1486


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1487
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1488 1489 1490 1491 1492 1493 1494
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
    
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
1495
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
    
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1517 1518 1519 1520 1521 1522 1523 1524
    if in_dygraph_mode():
        out = _C_ops.final_state_empty(x.shape,
                                       convert_np_dtype_to_dtype_(dtype),
                                       _current_expected_place())
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1525 1526
        out = _C_ops.empty('shape', x.shape, 'dtype',
                           convert_np_dtype_to_dtype_(dtype))
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='empty_like')

    helper.append_op(type='empty',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
1553 1554
    out.stop_gradient = True
    return out
1555 1556 1557 1558


def assign(x, output=None):
    """
1559

1560
    Copy value of the :attr:`x` to the :attr:`output`.
1561 1562
 
    Parameters:
1563 1564
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1565
            data limitation.
1566
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1567 1568
 
    Returns:
1569
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
1570 1571 1572
 
    Examples:
        .. code-block:: python
1573

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
1584
    """
1585 1586
    input = x
    helper = LayerHelper('assign', **locals())
1587 1588
    check_type(input, 'input',
               (Variable, np.ndarray, list, tuple, float, int, bool), 'assign')
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
1600
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
1601
        if in_dygraph_mode():
1602
            if output is None:
Z
zyfncg 已提交
1603 1604 1605 1606 1607 1608
                output = _C_ops.final_state_assign(input)
            else:
                _C_ops.final_state_assign_out_(input, output)
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1609 1610 1611 1612 1613 1614 1615 1616 1617
            _C_ops.assign(input, output)
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
1618 1619 1620
            helper.append_op(type='assign',
                             inputs={'X': [input]},
                             outputs={'Out': [output]})
1621
    elif isinstance(input, np.ndarray):
1622
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
1623
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
1624
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
1625 1626 1627 1628
            if not all([
                    x.shape == (1, ) for x in input
                    if isinstance(x, (Variable, core.eager.Tensor))
            ]):
1629 1630 1631 1632 1633
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
1634
                if not isinstance(x, (Variable, core.eager.Tensor)):
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
            """ may be this form [[Var], [Var], [3], [4]], we reject them.
            """
1646
            raise TypeError(
1647
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
1648
            )
1649

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
                "received %s." % convert_dtype(dtype))
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
1679 1680 1681 1682 1683 1684 1685 1686
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
            _C_ops.final_state_assign_value_(output, list(input.shape), dtype,
                                             values, _current_expected_place())
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1687 1688
            _C_ops.assign_value(output, 'shape', list(input.shape), 'dtype',
                                dtype, value_name, values)
1689
        else:
1690 1691 1692
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
1693 1694 1695 1696 1697 1698 1699
            helper.append_op(type='assign_value',
                             outputs={'Out': [output]},
                             attrs={
                                 'dtype': dtype,
                                 'shape': list(input.shape),
                                 value_name: values
                             })
1700

Z
zyfncg 已提交
1701
    if is_inplace and _in_legacy_dygraph():
1702 1703 1704
        output._bump_inplace_version()

    return output
1705 1706


1707 1708 1709 1710 1711 1712 1713 1714
def clone(x, name=None):
    """
    Returns a copy of input Tensor. It will always have a Tensor copy. 
    
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
1715
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1716

1717 1718
    Returns: 
        Tensor, A Tensor copied from ``input``.
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


1737
#NOTE(zhiqiu): not public
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
1751
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
        check_dtype(input.dtype, 'input', [
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
        ], 'memcpy', '(When the type of input in memcpy is Variable.)')
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
1790 1791 1792 1793
    helper.append_op(type='memcpy',
                     inputs={'X': [input]},
                     outputs={'Out': [output]},
                     attrs=attrs)
1794
    return output
F
Feiyu Chan 已提交
1795 1796 1797 1798 1799 1800 1801 1802


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
1803
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

    **Note**:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
            print(z.numpy())

            # [[0.+0.j 0.+1.j 0.+2.j]
            #  [1.+0.j 1.+1.j 1.+2.j]]
    """
1823 1824 1825
    if in_dygraph_mode():
        return _C_ops.final_state_complex(real, imag)

Z
zhiboniu 已提交
1826
    if paddle.in_dynamic_mode():
F
Feiyu Chan 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
        return paddle._C_ops.complex(real, imag)

    check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
    check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')

    op_type = "complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": real, "Y": imag}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(real.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917


def tril_indices(row, col, offset=0, dtype='int64'):
    """
    Return the indices of the lower triangular part of the 2-D matrix 
    whose row and col is knowed.Indices are ordered based on row and then columns. 
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
    
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and below the main diagonal are retained.  
            - If offset > 0, include just as many diagonals above the main diagonal.  
            - If offset < 0, excludes just as many diagonals below the main diagonal.  
 
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3], 
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3], 
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a  int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        out = _C_ops.final_state_tril_indices(row, col, offset, dtype,
                                              _current_expected_place())
        return out

    if _in_legacy_dygraph():
        out = _C_ops.tril_indices('rows', row, 'cols', col, 'offset', offset,
                                  "dtype", dtype)
        return out

    else:
        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

1918 1919 1920 1921 1922 1923 1924 1925 1926
        helper.append_op(type='tril_indices',
                         inputs={},
                         outputs={'out': [out]},
                         attrs={
                             'rows': row,
                             'cols': col,
                             'offset': offset,
                             'dtype': dtype
                         })
1927
    return out