conv_op.cc 38.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21 22
#include "paddle/fluid/framework/op_version_registry.h"

23
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
24

25 26 27
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

33 34
std::vector<int64_t> ConvOp::ComputeOutputShape(
    framework::InferShapeContext* ctx) const {
35 36
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");
C
chengduoZH 已提交
37 38 39

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
40

C
chengduoZH 已提交
41 42
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
43 44
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
45
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
46
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
47 48 49 50 51 52 53 54 55
  int dilation_size = dilations.size();
  for (int i = 0; i < dilation_size; ++i) {
    PADDLE_ENFORCE_GT(
        dilations[i], 0,
        platform::errors::InvalidArgument(
            "The dilation of Op(Conv) should be larget than 0, but received "
            "dilation is %d.",
            dilations[i]));
  }
L
liym27 已提交
56
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
57 58 59

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
60
  const bool channel_last = (ctx->IsRunMKLDNNKernel() == false) &&
61
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
62

63 64
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5, true,
65
      platform::errors::InvalidArgument(
66 67
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
68
          in_dims.size(), in_dims));
69

C
chengduoZH 已提交
70 71
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
72
      platform::errors::InvalidArgument(
73 74 75 76
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
77
          in_dims, in_dims.size(), filter_dims, filter_dims.size()));
78

79 80 81 82 83 84 85 86 87 88 89
  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
        strides[i], 0,
        platform::errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = in_dims.size() - stride_size;
90 91 92
  PADDLE_ENFORCE_EQ(
      in_dims.size(), strides.size() + 2U,
      platform::errors::InvalidArgument(
93 94 95 96 97 98 99
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
          in_dims.size(), in_dims, strides.size(),
          framework::make_ddim(strides), in_sub_stride_size));
L
liym27 已提交
100 101 102

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
103

104 105
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
106
      platform::errors::InvalidArgument(
107 108 109 110 111
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
112 113
          input_channels, in_dims, filter_dims[1], filter_dims, groups,
          data_format));
C
chengduoZH 已提交
114
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
115
      filter_dims[0] % groups, 0,
116
      platform::errors::InvalidArgument(
117 118 119 120
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
121
          filter_dims[0], filter_dims, groups));
W
wangxinxin08 已提交
122 123 124 125 126 127 128

  if (ctx->IsRuntime()) {
    PADDLE_ENFORCE_GT(
        filter_dims[0], 0,
        platform::errors::InvalidArgument(
            "the size of filter at axis 0 should be greater than 0"));
  }
C
chengduoZH 已提交
129

L
liym27 已提交
130 131 132 133 134 135
  framework::DDim in_data_dims;
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
136

137 138
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
139

L
liym27 已提交
140 141 142 143 144 145 146 147
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
148
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
149
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
150
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
151 152
      output_shape.push_back(-1);
    } else {
153 154 155
      output_shape.push_back(
          ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                         paddings[2 * i], paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
156
    }
C
chengduoZH 已提交
157
  }
L
liym27 已提交
158 159 160 161
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

162
  return output_shape;
C
chengduoZH 已提交
163 164
}

165 166
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
167 168
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
169
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
170
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
171
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
172 173
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
174 175
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

176
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
177
  if (platform::CanCUDNNBeUsed(ctx)) {
178
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
179 180
  }
#endif
181
#ifdef PADDLE_WITH_MKLDNN
182 183
  if (library == framework::LibraryType::kPlain &&
      this->CanMKLDNNBeUsed(ctx, input_data_type)) {
184
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
185
    layout = framework::DataLayout::kMKLDNN;
186
    customized_type_value =
187 188
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
189 190
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
191
  }
192
#endif
193

194
  if (input_data_type != framework::proto::VarType::INT8 &&
195 196
      input_data_type != framework::proto::VarType::UINT8 &&
      input_data_type != framework::proto::VarType::BF16) {
197
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
198 199 200 201 202 203 204 205
    PADDLE_ENFORCE_EQ(
        input_data_type, filter_data_type,
        platform::errors::InvalidArgument(
            "input and filter data type should be consistent, "
            "but received input data type is %s and filter type "
            "is %s",
            paddle::framework::DataTypeToString(input_data_type),
            paddle::framework::DataTypeToString(filter_data_type)));
206
  }
207
#ifndef PADDLE_WITH_ASCEND_CL
K
Kexin Zhao 已提交
208
  if (input_data_type == framework::proto::VarType::FP16) {
209 210 211 212
    PADDLE_ENFORCE_EQ(
        library, framework::LibraryType::kCUDNN,
        platform::errors::InvalidArgument(
            "float16 can only be used when CUDNN or NPU is used"));
K
Kexin Zhao 已提交
213
  }
214
#endif
W
wuhuanzhou 已提交
215 216 217 218
#if PADDLE_WITH_CUDA
  if (input_data_type == framework::proto::VarType::BF16 &&
      library == framework::LibraryType::kCUDNN) {
    PADDLE_ENFORCE_GE(
219
        platform::DnnVersion(), 8100,
W
wuhuanzhou 已提交
220 221 222 223
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
224

225 226 227
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
  return type;
228 229
}

230 231 232 233 234 235 236 237 238 239 240 241 242
framework::OpKernelType ConvOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
243
    // Some models may have intentionally set "AnyLayout" for conv
244 245
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
246 247
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
248 249 250 251 252 253 254
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
255
void Conv2DOpMaker::Make() {
256 257 258
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
259 260
      .SetDefault(false)
      .AsExtra();
L
liym27 已提交
261 262 263 264 265 266
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
267
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
268
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
269 270
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
271 272
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
273
           "input image channels divided by the groups.");
274 275 276 277
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
278 279
      .AsDispensable()
      .AsExtra();
280 281 282
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
283
           "Used with fuse_residual_connection fusion.")
284 285
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
286 287
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
288
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
289 290 291 292
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
293
      .SetDefault({1, 1});
C
chengduoZH 已提交
294 295
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
296 297
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
298
                            "convolution operator.")
C
chengduoZH 已提交
299
      .SetDefault({0, 0});
L
liym27 已提交
300 301 302 303 304 305
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
306 307
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
308
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
309 310 311 312
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
313
      .SetDefault(1);
C
chengduoZH 已提交
314
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
315 316
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
317
                            "convolution operator.")
C
chengduoZH 已提交
318
      .SetDefault({1, 1});
319 320 321
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
322 323
      .SetDefault(false)
      .AsExtra();
324 325
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
326 327
      .SetDefault(false)
      .AsExtra();
328 329
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
330 331
      .SetDefault(false)
      .AsExtra();
332 333 334 335
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
336 337
      .SetDefault(false)
      .AsExtra();
338 339 340 341
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
342 343
      .InEnum({"float32", "int8", "bfloat16"})
      .AsExtra();
M
Michal Gallus 已提交
344
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
345 346
      .SetDefault(false)
      .AsExtra();
347 348
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
349 350
      .SetDefault(false)
      .AsExtra();
351 352
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
353 354
      .SetDefault(6.0f)
      .AsExtra();
355 356
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
357 358
      .SetDefault("")
      .AsExtra();
359 360
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
361 362
      .SetDefault(0.0f)
      .AsExtra();
363
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
364 365
      .SetDefault(0.0f)
      .AsExtra();
366 367 368 369
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
370 371
      .SetDefault(false)
      .AsExtra();
372
  AddAttr<bool>("fuse_residual_connection",
373
                "(bool, default false) Only used in mkldnn kernel. Used "
374 375
                "whenever convolution output is as an input to residual "
                "connection.")
376 377
      .SetDefault(false)
      .AsExtra();
378 379 380
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
381 382
      .SetDefault(1.0f)
      .AsExtra();
383 384 385
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
386 387
      .SetDefault(1.0f)
      .AsExtra();
388 389 390
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
391 392
      .SetDefault(1.0f)
      .AsExtra();
393 394 395
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
396 397
      .SetDefault({1.0f})
      .AsExtra();
398 399 400
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
401 402
      .SetDefault(false)
      .AsExtra();
403 404 405 406 407 408
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
409
      .SetDefault("NCHW");
410 411 412 413 414 415 416 417
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
418 419
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB())
      .AsExtra();
420 421
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
422
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
423
                "for cuDNN convolution or not, default is False.")
424 425
      .SetDefault(false)
      .AsExtra();
L
liym27 已提交
426

C
chengduoZH 已提交
427
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
428 429
Convolution Operator.

C
chengduoZH 已提交
430
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
431
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
432
parameters is checked in the infer-shape.
L
liym27 已提交
433
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
434
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
435
the width of the feature.
436
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
437 438 439 440
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
441 442 443 444
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
445 446
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
447
  Output:
C
chengduoZH 已提交
448 449 450
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
451 452
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
453
$$
C
chengduoZH 已提交
454
)DOC");
Q
qingqing01 已提交
455
  Apply();
C
chengduoZH 已提交
456 457
}

Y
Yu Yang 已提交
458
void Conv3DOpMaker::Make() {
459 460 461
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
462 463
      .SetDefault(false)
      .AsExtra();
C
chengduoZH 已提交
464 465
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
466
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
467 468
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
469 470 471
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
472
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
473
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
474 475
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
476 477 478
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
479
           "input image channels divided by the groups.");
480 481 482 483
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
484 485
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
486 487
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
488
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
489 490 491 492
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
493
      .SetDefault({1, 1, 1});
L
liym27 已提交
494 495 496 497 498 499
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
500
      .SetDefault({0, 0, 0});
L
liym27 已提交
501 502 503 504 505 506
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
507 508
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
509
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
510 511 512 513
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
514
      .SetDefault(1);
C
chengduoZH 已提交
515
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
516 517
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
518
                            "convolution operator.")
C
chengduoZH 已提交
519
      .SetDefault({1, 1, 1});
520 521 522
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
523 524
      .SetDefault(false)
      .AsExtra();
525 526
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
527 528
      .SetDefault(false)
      .AsExtra();
529 530 531 532
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
533 534
      .InEnum({"float32", "int8", "bfloat16"})
      .AsExtra();
535
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
536 537
      .SetDefault(false)
      .AsExtra();
538 539
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
540 541
      .SetDefault("")
      .AsExtra();
542 543
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
544 545
      .SetDefault(0.0f)
      .AsExtra();
546
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
547 548
      .SetDefault(0.0f)
      .AsExtra();
549 550 551 552
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
553 554
      .SetDefault(false)
      .AsExtra();
555 556 557 558
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
559 560
      .SetDefault(false)
      .AsExtra();
561 562
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
563 564 565
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
566
      "the input will be transformed automatically. ")
L
liym27 已提交
567
      .SetDefault("NCDHW");
568 569
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
570 571
      .SetDefault(false)
      .AsExtra();
572 573 574 575 576 577 578
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
579 580
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB())
      .AsExtra();
581 582
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
583
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
584
                "for cuDNN convolution or not, default is False.")
585 586
      .SetDefault(false)
      .AsExtra();
C
chengduoZH 已提交
587
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
588 589
Convolution3D Operator.

C
chengduoZH 已提交
590
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
591
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
592
parameters is checked in the infer-shape.
L
liym27 已提交
593
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
594
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
595 596 597 598 599 600
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
601 602 603 604
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
605 606
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
607
  Output:
C
chengduoZH 已提交
608 609 610
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
611 612 613
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
614
  $$
C
chengduoZH 已提交
615
)DOC");
Q
qingqing01 已提交
616
  Apply();
C
chengduoZH 已提交
617 618
}

C
chengduoZH 已提交
619 620 621 622 623 624 625 626 627 628 629
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

630 631
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
632 633
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
634
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
635
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
636
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
637
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
638
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
M
mozga-intel 已提交
639

640
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
641 642
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
643 644
  }
#endif
645 646
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
647
      this->CanMKLDNNBeUsed(ctx, data_type)) {
648
    const std::string data_format = ctx.Attr<std::string>("data_format");
649
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
650
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
651
    customized_type_value = kConvMKLDNNFP32;
652
  }
653
#endif
654

655 656
  auto type = framework::OpKernelType(data_type, ctx.GetPlace(), layout_,
                                      library_, customized_type_value);
657
  return type;
658 659
}

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

H
hong 已提交
686 687
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
688
 public:
H
hong 已提交
689
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
690

691
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
692
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
693 694 695
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
696

H
hong 已提交
697 698
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
699 700 701 702 703

    if (this->HasInput("Bias")) {
      op->SetInput("Bias", this->Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    }
H
hong 已提交
704
    op->SetAttrMap(this->Attrs());
705
  }
S
sneaxiy 已提交
706 707
};

H
hong 已提交
708 709
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
710
 public:
H
hong 已提交
711
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
712

713
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
714
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
715 716 717
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
718

H
hong 已提交
719 720
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
721

H
hong 已提交
722 723
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
724 725
    }

H
hong 已提交
726
    op->SetAttrMap(this->Attrs());
727 728 729
  }
};

Q
qingqing01 已提交
730 731 732 733
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
734 735
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
736
 public:
H
hong 已提交
737
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
738

739
  void Apply(GradOpPtr<T> op) const override {
Q
qingqing01 已提交
740 741
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
742 743 744 745 746 747
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
748 749 750 751

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
752 753
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
754

L
lvmengsi 已提交
755
    op->SetOutput("DDOutput",
H
hong 已提交
756
                  ddx.empty()
757
                      ? this->EmptyInputGrad()
H
hong 已提交
758
                      : this->InputGrad(framework::GradVarName("Output")));
759 760 761 762
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
763

H
hong 已提交
764
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
765 766 767
  }
};

L
lvmengsi 已提交
768 769 770 771
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
772 773
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
774
 public:
H
hong 已提交
775
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
776

777
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
778 779
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
780 781 782 783 784 785
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
786

H
hong 已提交
787 788
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
789

L
lvmengsi 已提交
790
    op->SetOutput("DDOutput",
H
hong 已提交
791
                  ddx.empty()
792
                      ? this->EmptyInputGrad()
H
hong 已提交
793
                      : this->InputGrad(framework::GradVarName("Output")));
794 795 796 797
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
L
lvmengsi 已提交
798

H
hong 已提交
799
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
800 801 802
  }
};

Q
qingqing01 已提交
803 804 805 806 807
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
808 809
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
810 811
    ctx->SetOutputDim("DDOutput", do_dims);
  }
812
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
813 814
    ctx->SetOutputDim("DFilter", w_dims);
  }
815
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
816 817 818 819 820 821 822 823 824
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
825
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
826 827
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

828
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
qingqing01 已提交
829 830
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
831
  }
Q
qingqing01 已提交
832
#endif
833 834 835
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
836 837 838
  return type;
}

C
chengduoZH 已提交
839 840 841 842
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
843
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
844 845 846 847 848 849
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
850
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
851 852

// depthwise convolution op
Y
Yang Yang 已提交
853
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
854 855 856
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
857 858 859 860
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(depthwise_conv2d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduo 已提交
861

Y
Yang Yang 已提交
862
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
H
hong 已提交
863 864 865 866 867 868
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad,
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
869
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
870

871 872
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
873
REGISTER_OP_CPU_KERNEL(
874
    depthwise_conv2d,
X
xzl 已提交
875 876 877 878
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
879
    depthwise_conv2d_grad,
X
xzl 已提交
880 881
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
882

C
chengduoZH 已提交
883
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
884 885 886 887 888 889
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
890 891 892 893
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
894 895

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
896 897 898 899 900 901
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
902 903 904 905
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938

REGISTER_OP_VERSION(conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

REGISTER_OP_VERSION(depthwise_conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade depthwise_conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

REGISTER_OP_VERSION(conv3d)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv3d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));