conv_op.cc 22.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16 17 18 19

#include <string>
#include <vector>

20
#ifdef PADDLE_WITH_CUDA
21
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
22 23 24 25 26
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
C
chengduoZH 已提交
27 28 29 30

namespace paddle {
namespace operators {

C
chengduoZH 已提交
31
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
32
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
33
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
34
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
35
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
36
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
37
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
38 39 40

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
41

C
chengduoZH 已提交
42 43 44
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
45
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
46

C
chengduoZH 已提交
47
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
48 49 50
                 "Conv intput should be 4-D or 5-D tensor, get %u",
                 in_dims.size());

C
chengduoZH 已提交
51 52 53 54 55 56 57 58 59
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
60

Y
Yang Yu 已提交
61
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
62
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
63
                    "channels * groups.");
C
chengduoZH 已提交
64
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
65
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
66 67 68
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
69
  for (size_t i = 0; i < strides.size(); ++i) {
Y
Yang Yang 已提交
70 71 72
    output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                          dilations[i], paddings[i],
                                          strides[i]));
C
chengduoZH 已提交
73
  }
74
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
75
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
76 77
}

78 79
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
80 81
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
82
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
83
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
84
  auto input_data_type = ctx.Input<Tensor>("Input")->type();
85
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
86 87
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
88
#ifdef PADDLE_WITH_CUDA
89
  if (platform::CanCUDNNBeUsed(ctx)) {
90
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
91 92
  }
#endif
93
#ifdef PADDLE_WITH_MKLDNN
94
  if (library == framework::LibraryType::kPlain &&
95
      platform::CanMKLDNNBeUsed(ctx)) {
96
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
97
    layout = framework::DataLayout::kMKLDNN;
98 99 100 101 102
    customized_type_value =
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType)
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
103
  }
104
#endif
105

106 107 108 109 110 111
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                      "input and filter data type should be consistent");
  }
K
Kexin Zhao 已提交
112
  if (input_data_type == framework::proto::VarType::FP16) {
113
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
114 115 116
                      "float16 can only be used when CUDNN is used");
  }

117 118 119 120 121 122 123 124 125 126 127 128 129 130
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
#ifdef PADDLE_WITH_CUDA
  std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
  // TODO(dangqingqing): Currently conv_fusion_op use cudnn but sets use_cudnn
  // to false. It should be fixed and then here should only create if library
  // is kCUDNN.
  if (configs.empty()) {
    std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p(
        new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
    configs.push_back(p);
  }
#endif
  return type;
131 132
}

Y
Yu Yang 已提交
133
void Conv2DOpMaker::Make() {
134 135 136 137
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
138 139
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
140 141 142 143
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
144
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
145
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
146 147
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
148 149
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
150
           "input image channels divided by the groups.");
151 152 153 154 155
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
156 157 158
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
159
           "Used with fuse_residual_connection fusion.")
160
      .AsDispensable();
Y
Yihua Xu 已提交
161 162 163
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
164 165 166 167
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
168
      .SetDefault({1, 1});
C
chengduoZH 已提交
169 170 171 172
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
173 174 175
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
176
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
177 178 179 180
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
181
      .SetDefault(1);
C
chengduoZH 已提交
182
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
183 184
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
185
                            "convolution operator.")
C
chengduoZH 已提交
186
      .SetDefault({1, 1});
187 188 189 190
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
191 192 193
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
194 195 196
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
M
Michal Gallus 已提交
197 198
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
199
  AddAttr<bool>("fuse_residual_connection",
200
                "(bool, default false) Only used in mkldnn kernel. Used "
201 202
                "whenever convolution output is as an input to residual "
                "connection.")
203
      .SetDefault(false);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
240 241
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
242
                "convolution, whether enable exhaustive search "
243 244
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
245
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
246 247
Convolution Operator.

C
chengduoZH 已提交
248
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
249
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
250
parameters is checked in the infer-shape.
C
chengduoZH 已提交
251
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
252
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
253 254 255 256 257 258
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
259 260 261 262
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
263 264
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
265
  Output:
C
chengduoZH 已提交
266 267 268 269 270 271
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
272
)DOC");
Q
qingqing01 已提交
273
  Apply();
C
chengduoZH 已提交
274 275
}

Y
Yu Yang 已提交
276
void Conv3DOpMaker::Make() {
277 278 279 280
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
281 282
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
283
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
284
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
285 286 287
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
288
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
289
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
290 291
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
292 293 294
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
295
           "input image channels divided by the groups.");
296 297 298 299 300
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
301 302 303
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
304 305 306 307
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
308
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
309 310 311 312
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
313 314 315
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
316
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
317 318 319 320
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
321
      .SetDefault(1);
C
chengduoZH 已提交
322
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
323 324
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
325
                            "convolution operator.")
C
chengduoZH 已提交
326
      .SetDefault({1, 1, 1});
327 328 329 330
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
331 332 333
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
334 335 336 337 338 339 340
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
341 342 343 344 345 346 347
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
348 349 350
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
351 352 353 354 355 356 357 358
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
359 360
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
361
                "convolution, whether enable exhaustive search "
362 363
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
364
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
365 366
Convolution3D Operator.

C
chengduoZH 已提交
367
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
368
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
369
parameters is checked in the infer-shape.
C
chengduoZH 已提交
370
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
371
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
372 373 374 375 376 377
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
378 379 380 381
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
382 383
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
384
  Output:
C
chengduoZH 已提交
385 386 387 388 389 390 391
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
392
)DOC");
Q
qingqing01 已提交
393
  Apply();
C
chengduoZH 已提交
394 395
}

C
chengduoZH 已提交
396 397 398 399 400 401 402 403 404 405 406
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

407 408
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
409 410
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
411
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
412 413 414 415
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
416
#ifdef PADDLE_WITH_CUDA
417 418
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
419 420
  }
#endif
421 422 423 424
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
425
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
426
    customized_type_value = kConvMKLDNNFP32;
427
  }
428
#endif
429

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
  auto type = framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                      ctx.GetPlace(), layout_, library_,
                                      customized_type_value);
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
449 450
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
class Conv2dGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(GradOpType());
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("Bias", Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }

  virtual std::string GradOpType() const {
    return this->ForwardOpType() + "_grad";
  }
};

C
chengduoZH 已提交
477 478 479 480
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
481
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
482
                  ops::ConvOpInferVarType, ops::Conv2dGradMaker);
483
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad);
484 485

// depthwise convolution op
Y
Yang Yang 已提交
486
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
487
                  ops::ConvOpInferVarType, ops::Conv2dGradMaker);
488
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
489

Y
Yang Yang 已提交
490
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
C
chengduo 已提交
491
                  ops::ConvOpInferVarType,
492 493
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
494

495 496
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
497
REGISTER_OP_CPU_KERNEL(
498
    depthwise_conv2d,
X
xzl 已提交
499 500 501 502
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
503
    depthwise_conv2d_grad,
X
xzl 已提交
504 505
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
506

C
chengduoZH 已提交
507
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
508 509 510 511 512 513
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
514 515

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
516 517 518 519 520 521
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);