conv_op.cc 37.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21 22
#include "paddle/fluid/framework/op_version_registry.h"

23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
26 27 28 29 30

#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif

31 32 33
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
34
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
35 36 37 38

namespace paddle {
namespace operators {

39 40
std::vector<int64_t> ConvOp::ComputeOutputShape(
    framework::InferShapeContext* ctx) const {
41 42
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");
C
chengduoZH 已提交
43 44 45

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
46

C
chengduoZH 已提交
47 48
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
49 50
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
51
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
52
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
L
liym27 已提交
53
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
54 55 56 57 58

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
59

60 61
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5, true,
62
      platform::errors::InvalidArgument(
63 64
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
65
          in_dims.size(), in_dims));
66

C
chengduoZH 已提交
67 68
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
69
      platform::errors::InvalidArgument(
70 71 72 73
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
74
          in_dims, in_dims.size(), filter_dims, filter_dims.size()));
75

76 77 78 79 80 81 82 83 84 85 86
  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
        strides[i], 0,
        platform::errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = in_dims.size() - stride_size;
87 88 89
  PADDLE_ENFORCE_EQ(
      in_dims.size(), strides.size() + 2U,
      platform::errors::InvalidArgument(
90 91 92 93 94 95 96
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
          in_dims.size(), in_dims, strides.size(),
          framework::make_ddim(strides), in_sub_stride_size));
L
liym27 已提交
97 98 99

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
100

101 102
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
103
      platform::errors::InvalidArgument(
104 105 106 107 108
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
109 110
          input_channels, in_dims, filter_dims[1], filter_dims, groups,
          data_format));
C
chengduoZH 已提交
111
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
112
      filter_dims[0] % groups, 0,
113
      platform::errors::InvalidArgument(
114 115 116 117
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
118
          filter_dims[0], filter_dims, groups));
W
wangxinxin08 已提交
119 120 121 122 123 124 125

  if (ctx->IsRuntime()) {
    PADDLE_ENFORCE_GT(
        filter_dims[0], 0,
        platform::errors::InvalidArgument(
            "the size of filter at axis 0 should be greater than 0"));
  }
C
chengduoZH 已提交
126

L
liym27 已提交
127 128 129 130 131 132
  framework::DDim in_data_dims;
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
133

134 135
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
136

L
liym27 已提交
137 138 139 140 141 142 143 144
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
145
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
146
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
147
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
148 149
      output_shape.push_back(-1);
    } else {
150 151 152
      output_shape.push_back(
          ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                         paddings[2 * i], paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
153
    }
C
chengduoZH 已提交
154
  }
L
liym27 已提交
155 156 157 158
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

159
  return output_shape;
C
chengduoZH 已提交
160 161
}

162 163
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
164 165
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
166
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
167
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
168
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
169 170
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
171 172
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

173
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
174
  if (platform::CanCUDNNBeUsed(ctx)) {
175
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
176 177
  }
#endif
178
#ifdef PADDLE_WITH_MKLDNN
179 180
  if (library == framework::LibraryType::kPlain &&
      this->CanMKLDNNBeUsed(ctx, input_data_type)) {
181
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
182
    layout = framework::DataLayout::kMKLDNN;
183
    customized_type_value =
184 185
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
186 187
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
188
  }
189
#endif
190

191
  if (input_data_type != framework::proto::VarType::INT8 &&
192 193
      input_data_type != framework::proto::VarType::UINT8 &&
      input_data_type != framework::proto::VarType::BF16) {
194
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
195 196 197 198 199 200 201 202
    PADDLE_ENFORCE_EQ(
        input_data_type, filter_data_type,
        platform::errors::InvalidArgument(
            "input and filter data type should be consistent, "
            "but received input data type is %s and filter type "
            "is %s",
            paddle::framework::DataTypeToString(input_data_type),
            paddle::framework::DataTypeToString(filter_data_type)));
203
  }
204
#ifndef PADDLE_WITH_ASCEND_CL
K
Kexin Zhao 已提交
205
  if (input_data_type == framework::proto::VarType::FP16) {
206 207 208 209
    PADDLE_ENFORCE_EQ(
        library, framework::LibraryType::kCUDNN,
        platform::errors::InvalidArgument(
            "float16 can only be used when CUDNN or NPU is used"));
K
Kexin Zhao 已提交
210
  }
211
#endif
W
wuhuanzhou 已提交
212 213 214 215 216 217 218 219 220
#if PADDLE_WITH_CUDA
  if (input_data_type == framework::proto::VarType::BF16 &&
      library == framework::LibraryType::kCUDNN) {
    PADDLE_ENFORCE_GE(
        platform::CudnnVersion(), 8100,
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
221

222 223 224
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
  return type;
225 226
}

227 228 229 230 231 232 233 234 235 236 237 238 239
framework::OpKernelType ConvOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
240
    // Some models may have intentionally set "AnyLayout" for conv
241 242
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
243 244
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
245 246 247 248 249 250 251
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
252
void Conv2DOpMaker::Make() {
253 254 255
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
256 257
      .SetDefault(false)
      .AsExtra();
L
liym27 已提交
258 259 260 261 262 263
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
264
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
265
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
266 267
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
268 269
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
270
           "input image channels divided by the groups.");
271 272 273 274
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
275 276
      .AsDispensable()
      .AsExtra();
277 278 279
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
280
           "Used with fuse_residual_connection fusion.")
281 282
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
283 284
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
285
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
286 287 288 289
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
290
      .SetDefault({1, 1});
C
chengduoZH 已提交
291 292
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
293 294
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
295
                            "convolution operator.")
C
chengduoZH 已提交
296
      .SetDefault({0, 0});
L
liym27 已提交
297 298 299 300 301 302
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
303 304
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
305
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
306 307 308 309
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
310
      .SetDefault(1);
C
chengduoZH 已提交
311
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
312 313
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
314
                            "convolution operator.")
C
chengduoZH 已提交
315
      .SetDefault({1, 1});
316 317 318
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
319 320
      .SetDefault(false)
      .AsExtra();
321 322
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
323 324
      .SetDefault(false)
      .AsExtra();
325 326
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
327 328
      .SetDefault(false)
      .AsExtra();
329 330 331 332
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
333 334
      .SetDefault(false)
      .AsExtra();
335 336 337 338
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
339 340
      .InEnum({"float32", "int8", "bfloat16"})
      .AsExtra();
M
Michal Gallus 已提交
341
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
342 343
      .SetDefault(false)
      .AsExtra();
344 345
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
346 347
      .SetDefault(false)
      .AsExtra();
348 349
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
350 351
      .SetDefault(6.0f)
      .AsExtra();
352 353
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
354 355
      .SetDefault("")
      .AsExtra();
356 357
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
358 359
      .SetDefault(0.0f)
      .AsExtra();
360
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
361 362
      .SetDefault(0.0f)
      .AsExtra();
363 364 365 366
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
367 368
      .SetDefault(false)
      .AsExtra();
369
  AddAttr<bool>("fuse_residual_connection",
370
                "(bool, default false) Only used in mkldnn kernel. Used "
371 372
                "whenever convolution output is as an input to residual "
                "connection.")
373 374
      .SetDefault(false)
      .AsExtra();
375 376 377
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
378 379
      .SetDefault(1.0f)
      .AsExtra();
380 381 382
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
383 384
      .SetDefault(1.0f)
      .AsExtra();
385 386 387
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
388 389
      .SetDefault(1.0f)
      .AsExtra();
390 391 392
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
393 394
      .SetDefault({1.0f})
      .AsExtra();
395 396 397
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
398 399
      .SetDefault(false)
      .AsExtra();
400 401 402 403 404 405
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
406
      .SetDefault("NCHW");
407 408 409 410 411 412 413 414
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
415 416
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB())
      .AsExtra();
417 418
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
419
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
420
                "for cuDNN convolution or not, default is False.")
421 422
      .SetDefault(false)
      .AsExtra();
L
liym27 已提交
423

C
chengduoZH 已提交
424
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
425 426
Convolution Operator.

C
chengduoZH 已提交
427
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
428
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
429
parameters is checked in the infer-shape.
L
liym27 已提交
430
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
431
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
432
the width of the feature.
433
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
434 435 436 437
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
438 439 440 441
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
442 443
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
444
  Output:
C
chengduoZH 已提交
445 446 447
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
448 449
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
450
$$
C
chengduoZH 已提交
451
)DOC");
Q
qingqing01 已提交
452
  Apply();
C
chengduoZH 已提交
453 454
}

Y
Yu Yang 已提交
455
void Conv3DOpMaker::Make() {
456 457 458
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
459 460
      .SetDefault(false)
      .AsExtra();
C
chengduoZH 已提交
461 462
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
463
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
464 465
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
466 467 468
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
469
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
470
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
471 472
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
473 474 475
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
476
           "input image channels divided by the groups.");
477 478 479 480
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
481 482
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
483 484
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
485
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
486 487 488 489
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
490
      .SetDefault({1, 1, 1});
L
liym27 已提交
491 492 493 494 495 496
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
497
      .SetDefault({0, 0, 0});
L
liym27 已提交
498 499 500 501 502 503
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
504 505
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
506
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
507 508 509 510
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
511
      .SetDefault(1);
C
chengduoZH 已提交
512
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
513 514
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
515
                            "convolution operator.")
C
chengduoZH 已提交
516
      .SetDefault({1, 1, 1});
517 518 519
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
520 521
      .SetDefault(false)
      .AsExtra();
522 523
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
524 525
      .SetDefault(false)
      .AsExtra();
526 527 528 529
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
530 531
      .InEnum({"float32", "int8", "bfloat16"})
      .AsExtra();
532
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
533 534
      .SetDefault(false)
      .AsExtra();
535 536
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
537 538
      .SetDefault("")
      .AsExtra();
539 540
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
541 542
      .SetDefault(0.0f)
      .AsExtra();
543
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
544 545
      .SetDefault(0.0f)
      .AsExtra();
546 547 548 549
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
550 551
      .SetDefault(false)
      .AsExtra();
552 553 554 555
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
556 557
      .SetDefault(false)
      .AsExtra();
558 559
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
560 561 562
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
563
      "the input will be transformed automatically. ")
L
liym27 已提交
564
      .SetDefault("NCDHW");
565 566
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
567 568
      .SetDefault(false)
      .AsExtra();
569 570 571 572 573 574 575
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
576 577
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB())
      .AsExtra();
578 579
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
580
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
581
                "for cuDNN convolution or not, default is False.")
582 583
      .SetDefault(false)
      .AsExtra();
C
chengduoZH 已提交
584
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
585 586
Convolution3D Operator.

C
chengduoZH 已提交
587
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
588
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
589
parameters is checked in the infer-shape.
L
liym27 已提交
590
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
591
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
592 593 594 595 596 597
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
598 599 600 601
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
602 603
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
604
  Output:
C
chengduoZH 已提交
605 606 607
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
608 609 610
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
611
  $$
C
chengduoZH 已提交
612
)DOC");
Q
qingqing01 已提交
613
  Apply();
C
chengduoZH 已提交
614 615
}

C
chengduoZH 已提交
616 617 618 619 620 621 622 623 624 625 626
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

627 628
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
629 630
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
631
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
632
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
633
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
634
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
635
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
M
mozga-intel 已提交
636

637
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
638 639
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
640 641
  }
#endif
642 643
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
644
      this->CanMKLDNNBeUsed(ctx, data_type)) {
645
    const std::string data_format = ctx.Attr<std::string>("data_format");
646
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
647
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
648
    customized_type_value = kConvMKLDNNFP32;
649
  }
650
#endif
651

652 653
  auto type = framework::OpKernelType(data_type, ctx.GetPlace(), layout_,
                                      library_, customized_type_value);
654
  return type;
655 656
}

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

H
hong 已提交
683 684
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
685
 public:
H
hong 已提交
686
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
687

688
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
689
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
690 691 692
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
693

H
hong 已提交
694 695
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
696 697 698 699 700

    if (this->HasInput("Bias")) {
      op->SetInput("Bias", this->Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    }
H
hong 已提交
701
    op->SetAttrMap(this->Attrs());
702
  }
S
sneaxiy 已提交
703 704
};

H
hong 已提交
705 706
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
707
 public:
H
hong 已提交
708
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
709

710
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
711
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
712 713 714
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
715

H
hong 已提交
716 717
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
718

H
hong 已提交
719 720
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
721 722
    }

H
hong 已提交
723
    op->SetAttrMap(this->Attrs());
724 725 726
  }
};

Q
qingqing01 已提交
727 728 729 730
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
731 732
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
733
 public:
H
hong 已提交
734
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
735

736
  void Apply(GradOpPtr<T> op) const override {
Q
qingqing01 已提交
737 738
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
739 740 741 742 743 744
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
745 746 747 748

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
749 750
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
751

L
lvmengsi 已提交
752
    op->SetOutput("DDOutput",
H
hong 已提交
753
                  ddx.empty()
754
                      ? this->EmptyInputGrad()
H
hong 已提交
755
                      : this->InputGrad(framework::GradVarName("Output")));
756 757 758 759
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
760

H
hong 已提交
761
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
762 763 764
  }
};

L
lvmengsi 已提交
765 766 767 768
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
769 770
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
771
 public:
H
hong 已提交
772
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
773

774
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
775 776
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
777 778 779 780 781 782
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
783

H
hong 已提交
784 785
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
786

L
lvmengsi 已提交
787
    op->SetOutput("DDOutput",
H
hong 已提交
788
                  ddx.empty()
789
                      ? this->EmptyInputGrad()
H
hong 已提交
790
                      : this->InputGrad(framework::GradVarName("Output")));
791 792 793 794
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
L
lvmengsi 已提交
795

H
hong 已提交
796
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
797 798 799
  }
};

Q
qingqing01 已提交
800 801 802 803 804
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
805 806
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
807 808
    ctx->SetOutputDim("DDOutput", do_dims);
  }
809
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
810 811
    ctx->SetOutputDim("DFilter", w_dims);
  }
812
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
813 814 815 816 817 818 819 820 821
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
822
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
823 824
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

825
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
qingqing01 已提交
826 827
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
828
  }
Q
qingqing01 已提交
829
#endif
830 831 832
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
833 834 835
  return type;
}

C
chengduoZH 已提交
836 837 838 839
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
840
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
841 842 843 844 845 846
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
847
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
848 849

// depthwise convolution op
Y
Yang Yang 已提交
850
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
851 852 853
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
854 855 856 857
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(depthwise_conv2d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduo 已提交
858

Y
Yang Yang 已提交
859
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
H
hong 已提交
860 861 862 863 864 865
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad,
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
866
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
867

868 869
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
870
REGISTER_OP_CPU_KERNEL(
871
    depthwise_conv2d,
X
xzl 已提交
872 873 874 875
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
876
    depthwise_conv2d_grad,
X
xzl 已提交
877 878
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
879

C
chengduoZH 已提交
880
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
881 882 883 884 885 886
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
887 888 889 890
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
891 892

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
893 894 895 896 897 898
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
899 900 901 902
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935

REGISTER_OP_VERSION(conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

REGISTER_OP_VERSION(depthwise_conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade depthwise_conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

REGISTER_OP_VERSION(conv3d)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv3d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));