conv_op.cc 34.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

33 34
std::vector<int64_t> ConvOp::ComputeOutputShape(
    framework::InferShapeContext* ctx) const {
35 36
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");
C
chengduoZH 已提交
37 38 39

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
40

C
chengduoZH 已提交
41 42
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
43 44
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
45
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
46
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
L
liym27 已提交
47
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
48 49 50 51 52

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
53

54 55
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5, true,
56
      platform::errors::InvalidArgument(
57 58
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
59
          in_dims.size(), in_dims));
60

C
chengduoZH 已提交
61 62
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
63
      platform::errors::InvalidArgument(
64 65 66 67
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
68
          in_dims, in_dims.size(), filter_dims, filter_dims.size()));
69 70

  int in_sub_stride_size = in_dims.size() - strides.size();
71 72 73
  PADDLE_ENFORCE_EQ(
      in_dims.size(), strides.size() + 2U,
      platform::errors::InvalidArgument(
74 75 76 77 78 79 80
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
          in_dims.size(), in_dims, strides.size(),
          framework::make_ddim(strides), in_sub_stride_size));
L
liym27 已提交
81 82 83

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
84

85 86
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
87
      platform::errors::InvalidArgument(
88 89 90 91 92
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
93 94
          input_channels, in_dims, filter_dims[1], filter_dims, groups,
          data_format));
C
chengduoZH 已提交
95
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
96
      filter_dims[0] % groups, 0,
97
      platform::errors::InvalidArgument(
98 99 100 101
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
102
          filter_dims[0], filter_dims, groups));
C
chengduoZH 已提交
103

L
liym27 已提交
104 105 106 107 108 109
  framework::DDim in_data_dims;
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
110

111 112
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
113

L
liym27 已提交
114 115 116 117 118 119 120 121
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
122
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
123
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
124
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
125 126
      output_shape.push_back(-1);
    } else {
127 128 129
      output_shape.push_back(
          ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                         paddings[2 * i], paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
130
    }
C
chengduoZH 已提交
131
  }
L
liym27 已提交
132 133 134 135
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

136
  return output_shape;
C
chengduoZH 已提交
137 138
}

139 140
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
141 142
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
143
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
144
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
145
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
146 147
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
148 149
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
150
#ifdef PADDLE_WITH_CUDA
151
  if (platform::CanCUDNNBeUsed(ctx)) {
152
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
153 154
  }
#endif
155
#ifdef PADDLE_WITH_MKLDNN
156
  if (library == framework::LibraryType::kPlain &&
157
      platform::CanMKLDNNBeUsed(ctx)) {
158
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
159
    layout = framework::DataLayout::kMKLDNN;
160
    customized_type_value =
161 162
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
163 164
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
165
  }
166
#endif
167

168 169 170 171
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
172 173
                      platform::errors::InvalidArgument(
                          "input and filter data type should be consistent"));
174
  }
K
Kexin Zhao 已提交
175
  if (input_data_type == framework::proto::VarType::FP16) {
176
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
177 178
                      platform::errors::InvalidArgument(
                          "float16 can only be used when CUDNN is used"));
K
Kexin Zhao 已提交
179 180
  }

181 182 183
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
  return type;
184 185
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
framework::OpKernelType ConvOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
202 203
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
204 205 206 207 208 209 210
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
211
void Conv2DOpMaker::Make() {
212 213 214 215
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
L
liym27 已提交
216 217 218 219 220 221
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
222
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
223
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
224 225
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
226 227
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
228
           "input image channels divided by the groups.");
229 230 231 232 233
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
234 235 236
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
237
           "Used with fuse_residual_connection fusion.")
238
      .AsDispensable();
Y
Yihua Xu 已提交
239 240
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
241
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
242 243 244 245
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
246
      .SetDefault({1, 1});
C
chengduoZH 已提交
247 248
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
249 250
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
251
                            "convolution operator.")
C
chengduoZH 已提交
252
      .SetDefault({0, 0});
L
liym27 已提交
253 254 255 256 257 258
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
259 260
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
261
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
262 263 264 265
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
266
      .SetDefault(1);
C
chengduoZH 已提交
267
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
268 269
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
270
                            "convolution operator.")
C
chengduoZH 已提交
271
      .SetDefault({1, 1});
272 273 274 275
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
276 277 278
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
279 280 281
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
282 283 284 285
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
286
      .SetDefault(false);
287 288 289 290 291
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
M
Michal Gallus 已提交
292 293
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
294 295 296 297 298 299
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
      .SetDefault(6.0f);
300 301 302 303 304 305 306 307
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
308
  AddAttr<bool>("fuse_residual_connection",
309
                "(bool, default false) Only used in mkldnn kernel. Used "
310 311
                "whenever convolution output is as an input to residual "
                "connection.")
312
      .SetDefault(false);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
333 334 335 336 337 338
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
339
      .SetDefault("NCHW");
340 341 342 343 344 345 346 347
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
348
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
349 350
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
351
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
352
                "for cuDNN convolution or not, default is False.")
353
      .SetDefault(false);
L
liym27 已提交
354

C
chengduoZH 已提交
355
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
356 357
Convolution Operator.

C
chengduoZH 已提交
358
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
359
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
360
parameters is checked in the infer-shape.
L
liym27 已提交
361
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
362
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
363
the width of the feature.
364
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
365 366 367 368
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
369 370 371 372
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
373 374
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
375
  Output:
C
chengduoZH 已提交
376 377 378
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
379 380
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
381
$$
C
chengduoZH 已提交
382
)DOC");
Q
qingqing01 已提交
383
  Apply();
C
chengduoZH 已提交
384 385
}

Y
Yu Yang 已提交
386
void Conv3DOpMaker::Make() {
387 388 389 390
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
391 392
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
393
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
394 395
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
396 397 398
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
399
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
400
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
401 402
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
403 404 405
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
406
           "input image channels divided by the groups.");
407 408 409 410 411
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
412 413
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
414
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
415 416 417 418
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
419
      .SetDefault({1, 1, 1});
L
liym27 已提交
420 421 422 423 424 425
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
426
      .SetDefault({0, 0, 0});
L
liym27 已提交
427 428 429 430 431 432
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
433 434
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
435
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
436 437 438 439
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
440
      .SetDefault(1);
C
chengduoZH 已提交
441
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
442 443
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
444
                            "convolution operator.")
C
chengduoZH 已提交
445
      .SetDefault({1, 1, 1});
446 447 448 449
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
450 451 452
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
453 454
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
455 456 457 458 459 460 461 462
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
463 464 465 466 467
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
468 469
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
470 471 472
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
473
      "the input will be transformed automatically. ")
L
liym27 已提交
474
      .SetDefault("NCDHW");
475 476 477
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
478 479 480 481 482 483 484
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
485
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
486 487
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
488
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
489
                "for cuDNN convolution or not, default is False.")
490
      .SetDefault(false);
C
chengduoZH 已提交
491
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
492 493
Convolution3D Operator.

C
chengduoZH 已提交
494
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
495
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
496
parameters is checked in the infer-shape.
L
liym27 已提交
497
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
498
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
499 500 501 502 503 504
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
505 506 507 508
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
509 510
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
511
  Output:
C
chengduoZH 已提交
512 513 514
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
515 516 517
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
518
  $$
C
chengduoZH 已提交
519
)DOC");
Q
qingqing01 已提交
520
  Apply();
C
chengduoZH 已提交
521 522
}

C
chengduoZH 已提交
523 524 525 526 527 528 529 530 531 532 533
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

534 535
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
536 537
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
538
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
539
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
540
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
541 542
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
543
#ifdef PADDLE_WITH_CUDA
544 545
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
546 547
  }
#endif
548 549 550
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
551
    const std::string data_format = ctx.Attr<std::string>("data_format");
552
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
553
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
554
    customized_type_value = kConvMKLDNNFP32;
555
  }
556
#endif
557

558 559 560
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
561
  return type;
562 563
}

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

H
hong 已提交
590 591
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
592
 public:
H
hong 已提交
593
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
594

595
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
596
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
597 598 599 600
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
601

H
hong 已提交
602 603 604 605
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
606
  }
S
sneaxiy 已提交
607 608
};

H
hong 已提交
609 610
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
611
 public:
H
hong 已提交
612
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
613

614
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
615
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
616 617 618
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
619

H
hong 已提交
620 621
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
622

H
hong 已提交
623 624
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
625 626
    }

H
hong 已提交
627
    op->SetAttrMap(this->Attrs());
628 629 630
  }
};

Q
qingqing01 已提交
631 632 633 634
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
635 636
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
637
 public:
H
hong 已提交
638
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
639

640
  void Apply(GradOpPtr<T> op) const override {
Q
qingqing01 已提交
641 642
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
643 644 645 646 647 648
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
649 650 651 652

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
653 654
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
655

L
lvmengsi 已提交
656
    op->SetOutput("DDOutput",
H
hong 已提交
657
                  ddx.empty()
658
                      ? this->EmptyInputGrad()
H
hong 已提交
659
                      : this->InputGrad(framework::GradVarName("Output")));
660 661 662 663
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
664

H
hong 已提交
665
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
666 667 668
  }
};

L
lvmengsi 已提交
669 670 671 672
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
673 674
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
675
 public:
H
hong 已提交
676
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
677

678
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
679 680
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
681 682 683 684 685 686
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
687

H
hong 已提交
688 689
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
690

L
lvmengsi 已提交
691
    op->SetOutput("DDOutput",
H
hong 已提交
692
                  ddx.empty()
693
                      ? this->EmptyInputGrad()
H
hong 已提交
694
                      : this->InputGrad(framework::GradVarName("Output")));
695 696 697 698
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
L
lvmengsi 已提交
699

H
hong 已提交
700
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
701 702 703
  }
};

Q
qingqing01 已提交
704 705 706 707 708
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
709 710
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
711 712
    ctx->SetOutputDim("DDOutput", do_dims);
  }
713
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
714 715
    ctx->SetOutputDim("DFilter", w_dims);
  }
716
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
717 718 719 720 721 722 723 724 725
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
726
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
727 728 729 730 731
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

#ifdef PADDLE_WITH_CUDA
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
732
  }
Q
qingqing01 已提交
733
#endif
734 735 736
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
737 738 739
  return type;
}

C
chengduoZH 已提交
740 741 742 743
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
744
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
745 746 747 748 749 750
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
751
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
752 753

// depthwise convolution op
Y
Yang Yang 已提交
754
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
755 756 757
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
758
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
759

Y
Yang Yang 已提交
760
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
H
hong 已提交
761 762 763 764 765 766
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad,
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
767
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
768

769 770
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
771
REGISTER_OP_CPU_KERNEL(
772
    depthwise_conv2d,
X
xzl 已提交
773 774 775 776
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
777
    depthwise_conv2d_grad,
X
xzl 已提交
778 779
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
780

C
chengduoZH 已提交
781
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
782 783 784 785 786 787
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
788 789 790 791
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
792 793

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
794 795 796 797 798 799
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
800 801 802 803
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);