conv_op.cc 33.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
L
liym27 已提交
34 35 36 37 38 39
  PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                    "Input(Input) of ConvOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Filter"), true,
                    "Input(Filter) of ConvOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true,
                    "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
40 41 42

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
43

C
chengduoZH 已提交
44 45
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
46 47
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
48
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
49
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
L
liym27 已提交
50 51
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
52

53 54 55 56 57
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5, true,
      "ShapeError: the input of Op(conv) should be 4-D or 5-D Tensor. But "
      "received: %u-D Tensor, the shape of input is [%s].",
      in_dims.size(), in_dims);
58

C
chengduoZH 已提交
59 60
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
61 62 63 64
      "ShapeError: the input's dimension size and filter's dimension size of "
      "Op(conv) should be equal. But received: the shape of input is [%s], "
      "the dimension size of input is [%d], the shape of filter is [%s],  "
      "the dimension size of filter is [%d].",
65 66 67 68
      in_dims, in_dims.size(), filter_dims, filter_dims.size());

  int in_sub_stride_size = in_dims.size() - strides.size();
  PADDLE_ENFORCE_EQ(in_dims.size() - strides.size() == 2U, true,
69 70 71 72 73 74
                    "ShapeError: the dimension size of input minus the size of "
                    "Attr(stride) must be euqal to 2 for Op(conv)."
                    "But received: the dimension size of input minus the size "
                    "of Attr(stride) is [%d], the "
                    "input's dimension size is [%d], the shape of input "
                    "is [%s], the Attr(stride)'s size is [%d].",
75 76
                    in_sub_stride_size, in_dims.size(), in_dims,
                    strides.size());
L
liym27 已提交
77 78 79

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
80

81 82 83
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
      "ShapeError: The number of input channels should be equal to filter "
84 85 86 87 88 89 90
      "channels * groups for Op(conv). But received: the input's channels is "
      "[%d], the shape "
      "of input is [%s], the filter's channel is [%d], the shape of filter is "
      "[%s], the groups is [%d], the data_format is %s. The error may come "
      "from wrong data_format setting.",
      input_channels, in_dims, filter_dims[1], filter_dims, groups,
      data_format);
C
chengduoZH 已提交
91
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
92
      filter_dims[0] % groups, 0,
93 94 95 96
      "ShapeError: The number of output channels of Op(conv) should be divided "
      "by groups. "
      "But received: the output channels is [%d], the shape of filter is [%s] "
      "(the first dimension of filter is output channel), the groups is [%d].",
97
      filter_dims[0], filter_dims, groups);
C
chengduoZH 已提交
98

L
liym27 已提交
99
  framework::DDim in_data_dims;
100
  framework::DDim filter_data_dims;
L
liym27 已提交
101 102 103 104 105
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
106 107 108

  filter_data_dims = framework::slice_ddim(filter_dims, 2, filter_dims.size());

L
liym27 已提交
109 110 111 112 113 114 115 116 117
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
  for (size_t i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
118
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
119
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
120 121
      output_shape.push_back(-1);
    } else {
122 123 124
      output_shape.push_back(
          ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                         paddings[2 * i], paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
125
    }
C
chengduoZH 已提交
126
  }
L
liym27 已提交
127 128 129 130
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

131
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
132
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
133 134
}

135 136
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
137 138
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
139
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
140
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
141
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
142 143
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
144 145
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
146
#ifdef PADDLE_WITH_CUDA
147
  if (platform::CanCUDNNBeUsed(ctx)) {
148
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
149 150
  }
#endif
151
#ifdef PADDLE_WITH_MKLDNN
152
  if (library == framework::LibraryType::kPlain &&
153
      platform::CanMKLDNNBeUsed(ctx)) {
154
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
155
    layout = framework::DataLayout::kMKLDNN;
156
    customized_type_value =
157 158
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
159 160
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
161
  }
162
#endif
163

164 165 166 167 168 169
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                      "input and filter data type should be consistent");
  }
K
Kexin Zhao 已提交
170
  if (input_data_type == framework::proto::VarType::FP16) {
171
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
172 173 174
                      "float16 can only be used when CUDNN is used");
  }

175 176 177 178 179 180 181 182 183 184 185 186 187 188
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
#ifdef PADDLE_WITH_CUDA
  std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
  // TODO(dangqingqing): Currently conv_fusion_op use cudnn but sets use_cudnn
  // to false. It should be fixed and then here should only create if library
  // is kCUDNN.
  if (configs.empty()) {
    std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p(
        new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
    configs.push_back(p);
  }
#endif
  return type;
189 190
}

Y
Yu Yang 已提交
191
void Conv2DOpMaker::Make() {
192 193 194 195
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
L
liym27 已提交
196 197 198 199 200 201
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
202
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
203
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
204 205
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
206 207
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
208
           "input image channels divided by the groups.");
209 210 211 212 213
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
214 215 216
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
217
           "Used with fuse_residual_connection fusion.")
218
      .AsDispensable();
Y
Yihua Xu 已提交
219 220
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
221
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
222 223 224 225
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
226
      .SetDefault({1, 1});
C
chengduoZH 已提交
227 228
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
229 230
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
231
                            "convolution operator.")
C
chengduoZH 已提交
232
      .SetDefault({0, 0});
L
liym27 已提交
233 234 235 236 237 238
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
239 240
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
241
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
242 243 244 245
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
246
      .SetDefault(1);
C
chengduoZH 已提交
247
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
248 249
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
250
                            "convolution operator.")
C
chengduoZH 已提交
251
      .SetDefault({1, 1});
252 253 254 255
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
256 257 258
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
259 260 261
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
262 263 264 265 266 267
  AddAttr<bool>("use_quantizer",
                "(bool, default false) "
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
                "Only used on CPU.")
      .SetDefault(false);
M
Michal Gallus 已提交
268 269
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
270 271 272 273 274 275
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
      .SetDefault(6.0f);
276 277 278 279 280 281 282 283
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
284
  AddAttr<bool>("fuse_residual_connection",
285
                "(bool, default false) Only used in mkldnn kernel. Used "
286 287
                "whenever convolution output is as an input to residual "
                "connection.")
288
      .SetDefault(false);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
309 310 311 312 313 314
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
315
      .SetDefault("NCHW");
316 317 318 319 320 321 322 323
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
324
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
325 326
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
327
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
328
                "for cuDNN convolution or not, default is False.")
329
      .SetDefault(false);
L
liym27 已提交
330

C
chengduoZH 已提交
331
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
332 333
Convolution Operator.

C
chengduoZH 已提交
334
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
335
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
336
parameters is checked in the infer-shape.
L
liym27 已提交
337
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
338
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
339
the width of the feature.
340
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
341 342 343 344
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
345 346 347 348
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
349 350
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
351
  Output:
C
chengduoZH 已提交
352 353 354
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
355 356
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
357
$$
C
chengduoZH 已提交
358
)DOC");
Q
qingqing01 已提交
359
  Apply();
C
chengduoZH 已提交
360 361
}

Y
Yu Yang 已提交
362
void Conv3DOpMaker::Make() {
363 364 365 366
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
367 368
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
369
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
370 371
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
372 373 374
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
375
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
376
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
377 378
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
379 380 381
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
382
           "input image channels divided by the groups.");
383 384 385 386 387
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
388 389
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
390
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
391 392 393 394
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
395
      .SetDefault({1, 1, 1});
L
liym27 已提交
396 397 398 399 400 401
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
402
      .SetDefault({0, 0, 0});
L
liym27 已提交
403 404 405 406 407 408
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
409 410
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
411
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
412 413 414 415
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
416
      .SetDefault(1);
C
chengduoZH 已提交
417
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
418 419
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
420
                            "convolution operator.")
C
chengduoZH 已提交
421
      .SetDefault({1, 1, 1});
422 423 424 425
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
426 427 428
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
429 430
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
431 432 433 434 435 436 437 438
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
439 440 441 442 443
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
444 445
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
446 447 448
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
449
      "the input will be transformed automatically. ")
L
liym27 已提交
450
      .SetDefault("NCDHW");
451 452 453
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
454 455 456 457 458 459 460
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
461
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
462 463
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
464
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
465
                "for cuDNN convolution or not, default is False.")
466
      .SetDefault(false);
C
chengduoZH 已提交
467
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
468 469
Convolution3D Operator.

C
chengduoZH 已提交
470
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
471
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
472
parameters is checked in the infer-shape.
L
liym27 已提交
473
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
474
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
475 476 477 478 479 480
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
481 482 483 484
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
485 486
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
487
  Output:
C
chengduoZH 已提交
488 489 490
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
491 492 493
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
494
  $$
C
chengduoZH 已提交
495
)DOC");
Q
qingqing01 已提交
496
  Apply();
C
chengduoZH 已提交
497 498
}

C
chengduoZH 已提交
499 500 501 502 503 504 505 506 507 508 509
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

510 511
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
512 513
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
514
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
515
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
516
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
517 518
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
519
#ifdef PADDLE_WITH_CUDA
520 521
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
522 523
  }
#endif
524 525 526 527
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
528
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
529
    customized_type_value = kConvMKLDNNFP32;
530
  }
531
#endif
532

533 534 535
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
552 553
}

H
hong 已提交
554 555
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
556
 public:
H
hong 已提交
557
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
558

H
hong 已提交
559 560
  std::unique_ptr<T> Apply() const override {
    auto* op = new T();
S
sneaxiy 已提交
561
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
562 563 564 565
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
566

H
hong 已提交
567 568 569 570
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
571

H
hong 已提交
572
    return std::unique_ptr<T>(op);
573
  }
S
sneaxiy 已提交
574 575
};

H
hong 已提交
576 577
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
578
 public:
H
hong 已提交
579
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
580

H
hong 已提交
581 582
  std::unique_ptr<T> Apply() const override {
    auto* op = new T();
S
sneaxiy 已提交
583
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
584 585 586
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
587

H
hong 已提交
588 589
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
590

H
hong 已提交
591 592
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
593 594
    }

H
hong 已提交
595
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
596

H
hong 已提交
597
    return std::unique_ptr<T>(op);
598 599 600
  }
};

Q
qingqing01 已提交
601 602 603 604
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
605 606
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
607
 public:
H
hong 已提交
608
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
609

H
hong 已提交
610 611
  std::unique_ptr<T> Apply() const override {
    auto* op = new T();
Q
qingqing01 已提交
612 613
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
614 615 616 617 618 619
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
620 621 622 623

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
624 625
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
626

L
lvmengsi 已提交
627
    op->SetOutput("DDOutput",
H
hong 已提交
628 629 630 631 632 633 634
                  ddx.empty()
                      ? this->Empty()
                      : this->InputGrad(framework::GradVarName("Output")));
    op->SetOutput("DFilter",
                  ddx.empty() ? this->Empty() : this->InputGrad("Filter"));
    op->SetOutput("DInput",
                  ddw.empty() ? this->Empty() : this->InputGrad("Input"));
635

H
hong 已提交
636
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
637

H
hong 已提交
638
    return std::unique_ptr<T>(op);
Q
qingqing01 已提交
639 640 641
  }
};

L
lvmengsi 已提交
642 643 644 645
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
646 647
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
648
 public:
H
hong 已提交
649
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
650

H
hong 已提交
651 652
  std::unique_ptr<T> Apply() const override {
    auto* op = new T();
L
lvmengsi 已提交
653 654
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
655 656 657 658 659 660
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
661

H
hong 已提交
662 663
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
664

L
lvmengsi 已提交
665
    op->SetOutput("DDOutput",
H
hong 已提交
666 667 668 669 670 671 672
                  ddx.empty()
                      ? this->Empty()
                      : this->InputGrad(framework::GradVarName("Output")));
    op->SetOutput("DFilter",
                  ddx.empty() ? this->Empty() : this->InputGrad("Filter"));
    op->SetOutput("DInput",
                  ddw.empty() ? this->Empty() : this->InputGrad("Input"));
L
lvmengsi 已提交
673

H
hong 已提交
674
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
675

H
hong 已提交
676
    return std::unique_ptr<T>(op);
L
lvmengsi 已提交
677 678 679
  }
};

Q
qingqing01 已提交
680 681 682 683 684
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
685 686
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
687 688
    ctx->SetOutputDim("DDOutput", do_dims);
  }
689
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
690 691
    ctx->SetOutputDim("DFilter", w_dims);
  }
692
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
693 694 695 696 697 698 699 700 701
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
702
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
703 704 705 706 707
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

#ifdef PADDLE_WITH_CUDA
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
708 709 710 711 712 713 714 715
  }
#endif
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
    customized_type_value = kConvMKLDNNFP32;
Q
qingqing01 已提交
716 717
  }
#endif
718 719 720
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p0(
          new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
      configs.push_back(p0);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p1(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p1);

      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
}

C
chengduoZH 已提交
743 744 745 746
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
747
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
748 749 750 751 752 753
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
754
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
755 756

// depthwise convolution op
Y
Yang Yang 已提交
757
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
758 759 760
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
761
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
762

Y
Yang Yang 已提交
763
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
H
hong 已提交
764 765 766 767 768 769
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad,
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
770
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
771

772 773
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
774
REGISTER_OP_CPU_KERNEL(
775
    depthwise_conv2d,
X
xzl 已提交
776 777 778 779
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
780
    depthwise_conv2d_grad,
X
xzl 已提交
781 782
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
783

C
chengduoZH 已提交
784
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
785 786 787 788 789 790
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
791 792 793 794
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
795 796

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
797 798 799 800 801 802
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
803 804 805 806
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);