conv_op.cc 31.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
L
liym27 已提交
34 35 36 37 38 39
  PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                    "Input(Input) of ConvOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Filter"), true,
                    "Input(Filter) of ConvOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true,
                    "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
40 41 42

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
43

C
chengduoZH 已提交
44 45
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
46 47
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
48
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
49
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
L
liym27 已提交
50 51
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
52

L
liym27 已提交
53 54 55
  PADDLE_ENFORCE_EQ(in_dims.size() == 4 || in_dims.size() == 5, true,
                    "Conv intput should be 4-D or 5-D tensor, get %u",
                    in_dims.size());
56

C
chengduoZH 已提交
57 58 59 60
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE_EQ(
L
liym27 已提交
61 62 63 64 65
      in_dims.size() - strides.size() == 2U, true,
      "Conv input dimension and strides dimension should be consistent.");

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
66

L
liym27 已提交
67
  PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
C
chengduoZH 已提交
68
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
69
                    "channels * groups.");
C
chengduoZH 已提交
70
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
71
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
72 73
      "The number of output channels should be divided by groups.");

L
liym27 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  framework::DDim in_data_dims;
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
  for (size_t i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
91
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
92
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
93 94
      output_shape.push_back(-1);
    } else {
L
liym27 已提交
95 96 97
      output_shape.push_back(ConvOutputSize(in_data_dims[i], filter_dims[i + 2],
                                            dilations[i], paddings[2 * i],
                                            paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
98
    }
C
chengduoZH 已提交
99
  }
L
liym27 已提交
100 101 102 103
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

104
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
105
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
106 107
}

108 109
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
110 111
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
112
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
113
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
114
  auto input_data_type = ctx.Input<Tensor>("Input")->type();
L
liym27 已提交
115 116
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
117 118
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
119
#ifdef PADDLE_WITH_CUDA
120
  if (platform::CanCUDNNBeUsed(ctx)) {
121
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
122 123
  }
#endif
124
#ifdef PADDLE_WITH_MKLDNN
125
  if (library == framework::LibraryType::kPlain &&
126
      platform::CanMKLDNNBeUsed(ctx)) {
127
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
128
    layout = framework::DataLayout::kMKLDNN;
129
    customized_type_value =
130 131
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
132 133
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
134
  }
135
#endif
136

137 138 139 140 141 142
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                      "input and filter data type should be consistent");
  }
K
Kexin Zhao 已提交
143
  if (input_data_type == framework::proto::VarType::FP16) {
144
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
145 146 147
                      "float16 can only be used when CUDNN is used");
  }

148 149 150 151 152 153 154 155 156 157 158 159 160 161
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
#ifdef PADDLE_WITH_CUDA
  std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
  // TODO(dangqingqing): Currently conv_fusion_op use cudnn but sets use_cudnn
  // to false. It should be fixed and then here should only create if library
  // is kCUDNN.
  if (configs.empty()) {
    std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p(
        new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
    configs.push_back(p);
  }
#endif
  return type;
162 163
}

Y
Yu Yang 已提交
164
void Conv2DOpMaker::Make() {
165 166 167 168
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
L
liym27 已提交
169 170 171 172 173 174
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
175
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
176
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
177 178
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
179 180
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
181
           "input image channels divided by the groups.");
182 183 184 185 186
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
187 188 189
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
190
           "Used with fuse_residual_connection fusion.")
191
      .AsDispensable();
Y
Yihua Xu 已提交
192 193
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
194
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
195 196 197 198
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
199
      .SetDefault({1, 1});
C
chengduoZH 已提交
200 201
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
202 203
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
204
                            "convolution operator.")
C
chengduoZH 已提交
205
      .SetDefault({0, 0});
L
liym27 已提交
206 207 208 209 210 211
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
212 213
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
214
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
215 216 217 218
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
219
      .SetDefault(1);
C
chengduoZH 已提交
220
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
221 222
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
223
                            "convolution operator.")
C
chengduoZH 已提交
224
      .SetDefault({1, 1});
225 226 227 228
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
229 230 231
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
232 233 234
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
235 236 237 238 239 240
  AddAttr<bool>("use_quantizer",
                "(bool, default false) "
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
                "Only used on CPU.")
      .SetDefault(false);
M
Michal Gallus 已提交
241 242
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
243 244 245 246 247 248
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
      .SetDefault(6.0f);
249 250 251 252 253 254 255 256
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
257
  AddAttr<bool>("fuse_residual_connection",
258
                "(bool, default false) Only used in mkldnn kernel. Used "
259 260
                "whenever convolution output is as an input to residual "
                "connection.")
261
      .SetDefault(false);
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
282 283 284 285 286 287
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
288
      .SetDefault("NCHW");
289 290 291 292 293 294 295 296
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
297
      .SetDefault(platform::kDefaultConvWorkspaceSizeLimitMB);
298 299
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
300
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
301
                "for cuDNN convolution or not, default is False.")
302
      .SetDefault(false);
L
liym27 已提交
303

C
chengduoZH 已提交
304
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
305 306
Convolution Operator.

C
chengduoZH 已提交
307
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
308
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
309
parameters is checked in the infer-shape.
L
liym27 已提交
310
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
311
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
312 313 314 315 316 317
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
318 319 320 321
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
322 323
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
324
  Output:
C
chengduoZH 已提交
325 326 327
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
328 329
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
330
$$
C
chengduoZH 已提交
331
)DOC");
Q
qingqing01 已提交
332
  Apply();
C
chengduoZH 已提交
333 334
}

Y
Yu Yang 已提交
335
void Conv3DOpMaker::Make() {
336 337 338 339
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
340 341
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
342
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
343 344
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
345 346 347
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
348
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
349
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
350 351
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
352 353 354
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
355
           "input image channels divided by the groups.");
356 357 358 359 360
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
361 362
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
363
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
364 365 366 367
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
368
      .SetDefault({1, 1, 1});
L
liym27 已提交
369 370 371 372 373 374
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
375
      .SetDefault({0, 0, 0});
L
liym27 已提交
376 377 378 379 380 381
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
382 383
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
384
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
385 386 387 388
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
389
      .SetDefault(1);
C
chengduoZH 已提交
390
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
391 392
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
393
                            "convolution operator.")
C
chengduoZH 已提交
394
      .SetDefault({1, 1, 1});
395 396 397 398
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
399 400 401
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
402 403
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
404 405 406 407 408 409 410 411
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
412 413 414 415 416
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
417 418
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
419 420 421
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
422
      "the input will be transformed automatically. ")
L
liym27 已提交
423
      .SetDefault("NCDHW");
424 425 426
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
427 428 429 430 431 432 433
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
434
      .SetDefault(platform::kDefaultConvWorkspaceSizeLimitMB);
435 436
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
437
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
438
                "for cuDNN convolution or not, default is False.")
439
      .SetDefault(false);
C
chengduoZH 已提交
440
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
441 442
Convolution3D Operator.

C
chengduoZH 已提交
443
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
444
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
445
parameters is checked in the infer-shape.
L
liym27 已提交
446
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
447
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
448 449 450 451 452 453
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
454 455 456 457
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
458 459
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
460
  Output:
C
chengduoZH 已提交
461 462 463
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
464 465 466
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
467
  $$
C
chengduoZH 已提交
468
)DOC");
Q
qingqing01 已提交
469
  Apply();
C
chengduoZH 已提交
470 471
}

C
chengduoZH 已提交
472 473 474 475 476 477 478 479 480 481 482
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

483 484
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
485 486
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
487
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
488
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
489
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
490 491
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
492
#ifdef PADDLE_WITH_CUDA
493 494
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
495 496
  }
#endif
497 498 499 500
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
501
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
502
    customized_type_value = kConvMKLDNNFP32;
503
  }
504
#endif
505

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
  auto type = framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                      ctx.GetPlace(), layout_, library_,
                                      customized_type_value);
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
525 526
}

S
sneaxiy 已提交
527
class Conv2DGradMaker : public framework::SingleGradOpDescMaker {
528 529 530 531 532
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
S
sneaxiy 已提交
533
    op->SetType(this->ForwardOpType() + "_grad");
534 535 536 537 538 539 540 541 542 543 544 545
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("Bias", Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
S
sneaxiy 已提交
546 547 548 549 550
};

class Conv3DGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
551

S
sneaxiy 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));

    if (ForwardOp().Inputs().count("ResidualData") != 0) {
      op->SetInput("ResidualData", Input("ResidualData"));
    }

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
569 570 571
  }
};

Q
qingqing01 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
class Conv2DDoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("DOutput", Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter", OutputGrad(framework::GradVarName("Filter")));

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
593 594 595 596
    auto ddx = OutputGrad(framework::GradVarName("Input"));
    auto ddw = OutputGrad(framework::GradVarName("Filter"));
    std::vector<std::string> empty_str = {};

L
lvmengsi 已提交
597 598 599 600
    op->SetOutput("DDOutput",
                  (ddx.empty() && ddw.empty())
                      ? empty_str
                      : InputGrad(framework::GradVarName("Output")));
601 602 603
    op->SetOutput("DFilter", ddx.empty() ? empty_str : InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? empty_str : InputGrad("Input"));

Q
qingqing01 已提交
604 605 606 607 608 609
    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

L
lvmengsi 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
class Conv3DDoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("DOutput", Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter", OutputGrad(framework::GradVarName("Filter")));

    auto ddx = OutputGrad(framework::GradVarName("Input"));
    auto ddw = OutputGrad(framework::GradVarName("Filter"));
    std::vector<std::string> empty_str = {};

L
lvmengsi 已提交
632 633 634 635
    op->SetOutput("DDOutput",
                  (ddx.empty() && ddw.empty())
                      ? empty_str
                      : InputGrad(framework::GradVarName("Output")));
L
lvmengsi 已提交
636 637 638 639 640 641 642 643 644
    op->SetOutput("DFilter", ddx.empty() ? empty_str : InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? empty_str : InputGrad("Input"));

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

Q
qingqing01 已提交
645 646 647 648 649
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
650 651
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
652 653
    ctx->SetOutputDim("DDOutput", do_dims);
  }
654
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
655 656
    ctx->SetOutputDim("DFilter", w_dims);
  }
657
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
658 659 660 661 662 663 664 665 666
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
667
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
668 669 670 671 672
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

#ifdef PADDLE_WITH_CUDA
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
673 674 675 676 677 678 679 680
  }
#endif
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
    customized_type_value = kConvMKLDNNFP32;
Q
qingqing01 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
  }
#endif
  auto type = framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                      ctx.GetPlace(), layout_, library_,
                                      customized_type_value);
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p0(
          new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
      configs.push_back(p0);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p1(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p1);

      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
}

C
chengduoZH 已提交
708 709 710 711
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
712
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
713
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
Q
qingqing01 已提交
714 715
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad, ops::Conv2DDoubleGradMaker);
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
716 717

// depthwise convolution op
Y
Yang Yang 已提交
718
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
719
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
720
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
721

Y
Yang Yang 已提交
722
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
S
sneaxiy 已提交
723
                  ops::ConvOpInferVarType, ops::Conv3DGradMaker);
L
lvmengsi 已提交
724 725
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad, ops::Conv3DDoubleGradMaker);
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
726

727 728
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
729
REGISTER_OP_CPU_KERNEL(
730
    depthwise_conv2d,
X
xzl 已提交
731 732 733 734
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
735
    depthwise_conv2d_grad,
X
xzl 已提交
736 737
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
738

C
chengduoZH 已提交
739
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
740 741 742 743 744 745
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
746 747 748 749
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
750 751

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
752 753 754 755 756 757
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
758 759 760 761
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);