conv_op.cc 36.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21 22
#include "paddle/fluid/framework/op_version_registry.h"

23
#ifdef PADDLE_WITH_CUDA
24
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
25 26 27 28 29
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
30
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
31 32 33 34

namespace paddle {
namespace operators {

35 36
std::vector<int64_t> ConvOp::ComputeOutputShape(
    framework::InferShapeContext* ctx) const {
37 38
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");
C
chengduoZH 已提交
39 40 41

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
42

C
chengduoZH 已提交
43 44
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
45 46
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
47
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
48
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
L
liym27 已提交
49
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
50 51 52 53 54

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
55

56 57
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5, true,
58
      platform::errors::InvalidArgument(
59 60
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
61
          in_dims.size(), in_dims));
62

C
chengduoZH 已提交
63 64
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
65
      platform::errors::InvalidArgument(
66 67 68 69
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
70
          in_dims, in_dims.size(), filter_dims, filter_dims.size()));
71 72

  int in_sub_stride_size = in_dims.size() - strides.size();
73 74 75
  PADDLE_ENFORCE_EQ(
      in_dims.size(), strides.size() + 2U,
      platform::errors::InvalidArgument(
76 77 78 79 80 81 82
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
          in_dims.size(), in_dims, strides.size(),
          framework::make_ddim(strides), in_sub_stride_size));
L
liym27 已提交
83 84 85

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
86

87 88
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
89
      platform::errors::InvalidArgument(
90 91 92 93 94
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
95 96
          input_channels, in_dims, filter_dims[1], filter_dims, groups,
          data_format));
C
chengduoZH 已提交
97
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
98
      filter_dims[0] % groups, 0,
99
      platform::errors::InvalidArgument(
100 101 102 103
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
104
          filter_dims[0], filter_dims, groups));
C
chengduoZH 已提交
105

L
liym27 已提交
106 107 108 109 110 111
  framework::DDim in_data_dims;
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
112

113 114
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
115

L
liym27 已提交
116 117 118 119 120 121 122 123
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
124
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
125
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
126
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
127 128
      output_shape.push_back(-1);
    } else {
129 130 131
      output_shape.push_back(
          ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                         paddings[2 * i], paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
132
    }
C
chengduoZH 已提交
133
  }
L
liym27 已提交
134 135 136 137
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

138
  return output_shape;
C
chengduoZH 已提交
139 140
}

141 142
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
143 144
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
145
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
146
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
147
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
148 149
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
150 151
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
152
#ifdef PADDLE_WITH_CUDA
153
  if (platform::CanCUDNNBeUsed(ctx)) {
154
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
155 156
  }
#endif
157
#ifdef PADDLE_WITH_MKLDNN
158
  if (library == framework::LibraryType::kPlain && this->CanMKLDNNBeUsed(ctx)) {
159
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
160
    layout = framework::DataLayout::kMKLDNN;
161
    customized_type_value =
162 163
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
164 165
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
166
  }
167
#endif
168

169
  if (input_data_type != framework::proto::VarType::INT8 &&
170 171
      input_data_type != framework::proto::VarType::UINT8 &&
      input_data_type != framework::proto::VarType::BF16) {
172 173
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
174 175
                      platform::errors::InvalidArgument(
                          "input and filter data type should be consistent"));
176
  }
K
Kexin Zhao 已提交
177
  if (input_data_type == framework::proto::VarType::FP16) {
178
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
179 180
                      platform::errors::InvalidArgument(
                          "float16 can only be used when CUDNN is used"));
K
Kexin Zhao 已提交
181 182
  }

183 184 185
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
  return type;
186 187
}

188 189 190 191 192 193 194 195 196 197 198 199 200
framework::OpKernelType ConvOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
201
    // Some models may have intentionally set "AnyLayout" for conv
202 203
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
204 205
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
206 207 208 209 210 211 212
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
213
void Conv2DOpMaker::Make() {
214 215 216 217
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
L
liym27 已提交
218 219 220 221 222 223
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
224
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
225
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
226 227
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
228 229
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
230
           "input image channels divided by the groups.");
231 232 233 234 235
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
236 237 238
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
239
           "Used with fuse_residual_connection fusion.")
240
      .AsDispensable();
Y
Yihua Xu 已提交
241 242
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
243
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
244 245 246 247
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
248
      .SetDefault({1, 1});
C
chengduoZH 已提交
249 250
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
251 252
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
253
                            "convolution operator.")
C
chengduoZH 已提交
254
      .SetDefault({0, 0});
L
liym27 已提交
255 256 257 258 259 260
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
261 262
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
263
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
264 265 266 267
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
268
      .SetDefault(1);
C
chengduoZH 已提交
269
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
270 271
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
272
                            "convolution operator.")
C
chengduoZH 已提交
273
      .SetDefault({1, 1});
274 275 276 277
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
278 279 280
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
281 282 283
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
284 285 286 287
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
288
      .SetDefault(false);
289 290 291 292 293
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
M
Michal Gallus 已提交
294 295
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
296 297 298 299 300 301
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
      .SetDefault(6.0f);
302 303 304 305 306 307 308 309
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
310 311 312 313 314
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
      .SetDefault(false);
315
  AddAttr<bool>("fuse_residual_connection",
316
                "(bool, default false) Only used in mkldnn kernel. Used "
317 318
                "whenever convolution output is as an input to residual "
                "connection.")
319
      .SetDefault(false);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
340 341 342 343 344 345
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
346
      .SetDefault("NCHW");
347 348 349 350 351 352 353 354
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
355
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
356 357
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
358
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
359
                "for cuDNN convolution or not, default is False.")
360
      .SetDefault(false);
L
liym27 已提交
361

C
chengduoZH 已提交
362
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
363 364
Convolution Operator.

C
chengduoZH 已提交
365
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
366
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
367
parameters is checked in the infer-shape.
L
liym27 已提交
368
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
369
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
370
the width of the feature.
371
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
372 373 374 375
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
376 377 378 379
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
380 381
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
382
  Output:
C
chengduoZH 已提交
383 384 385
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
386 387
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
388
$$
C
chengduoZH 已提交
389
)DOC");
Q
qingqing01 已提交
390
  Apply();
C
chengduoZH 已提交
391 392
}

Y
Yu Yang 已提交
393
void Conv3DOpMaker::Make() {
394 395 396 397
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
398 399
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
400
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
401 402
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
403 404 405
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
406
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
407
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
408 409
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
410 411 412
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
413
           "input image channels divided by the groups.");
414 415 416 417 418
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
419 420
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
421
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
422 423 424 425
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
426
      .SetDefault({1, 1, 1});
L
liym27 已提交
427 428 429 430 431 432
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
433
      .SetDefault({0, 0, 0});
L
liym27 已提交
434 435 436 437 438 439
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
440 441
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
442
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
443 444 445 446
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
447
      .SetDefault(1);
C
chengduoZH 已提交
448
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
449 450
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
451
                            "convolution operator.")
C
chengduoZH 已提交
452
      .SetDefault({1, 1, 1});
453 454 455 456
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
457 458 459
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
460 461 462 463 464
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
465 466
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
467 468 469 470 471 472 473 474
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
475 476 477 478 479
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
      .SetDefault(false);
480 481 482 483 484
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
485 486
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
487 488 489
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
490
      "the input will be transformed automatically. ")
L
liym27 已提交
491
      .SetDefault("NCDHW");
492 493 494
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
495 496 497 498 499 500 501
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
502
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
503 504
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
505
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
506
                "for cuDNN convolution or not, default is False.")
507
      .SetDefault(false);
C
chengduoZH 已提交
508
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
509 510
Convolution3D Operator.

C
chengduoZH 已提交
511
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
512
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
513
parameters is checked in the infer-shape.
L
liym27 已提交
514
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
515
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
516 517 518 519 520 521
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
522 523 524 525
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
526 527
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
528
  Output:
C
chengduoZH 已提交
529 530 531
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
532 533 534
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
535
  $$
C
chengduoZH 已提交
536
)DOC");
Q
qingqing01 已提交
537
  Apply();
C
chengduoZH 已提交
538 539
}

C
chengduoZH 已提交
540 541 542 543 544 545 546 547 548 549 550
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

551 552
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
553 554
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
555
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
556
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
557
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
558 559
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
560
#ifdef PADDLE_WITH_CUDA
561 562
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
563 564
  }
#endif
565 566
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
567
      this->CanMKLDNNBeUsed(ctx)) {
568
    const std::string data_format = ctx.Attr<std::string>("data_format");
569
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
570
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
571
    customized_type_value = kConvMKLDNNFP32;
572
  }
573
#endif
574

575 576 577
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
578
  return type;
579 580
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

H
hong 已提交
607 608
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
609
 public:
H
hong 已提交
610
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
611

612
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
613
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
614 615 616 617
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
618

H
hong 已提交
619 620 621 622
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
623
  }
S
sneaxiy 已提交
624 625
};

H
hong 已提交
626 627
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
628
 public:
H
hong 已提交
629
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
630

631
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
632
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
633 634 635
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
636

H
hong 已提交
637 638
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
639

H
hong 已提交
640 641
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
642 643
    }

H
hong 已提交
644
    op->SetAttrMap(this->Attrs());
645 646 647
  }
};

Q
qingqing01 已提交
648 649 650 651
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
652 653
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
654
 public:
H
hong 已提交
655
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
656

657
  void Apply(GradOpPtr<T> op) const override {
Q
qingqing01 已提交
658 659
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
660 661 662 663 664 665
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
666 667 668 669

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
670 671
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
672

L
lvmengsi 已提交
673
    op->SetOutput("DDOutput",
H
hong 已提交
674
                  ddx.empty()
675
                      ? this->EmptyInputGrad()
H
hong 已提交
676
                      : this->InputGrad(framework::GradVarName("Output")));
677 678 679 680
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
681

H
hong 已提交
682
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
683 684 685
  }
};

L
lvmengsi 已提交
686 687 688 689
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
690 691
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
692
 public:
H
hong 已提交
693
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
694

695
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
696 697
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
698 699 700 701 702 703
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
704

H
hong 已提交
705 706
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
707

L
lvmengsi 已提交
708
    op->SetOutput("DDOutput",
H
hong 已提交
709
                  ddx.empty()
710
                      ? this->EmptyInputGrad()
H
hong 已提交
711
                      : this->InputGrad(framework::GradVarName("Output")));
712 713 714 715
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
L
lvmengsi 已提交
716

H
hong 已提交
717
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
718 719 720
  }
};

Q
qingqing01 已提交
721 722 723 724 725
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
726 727
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
728 729
    ctx->SetOutputDim("DDOutput", do_dims);
  }
730
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
731 732
    ctx->SetOutputDim("DFilter", w_dims);
  }
733
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
734 735 736 737 738 739 740 741 742
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
743
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
744 745 746 747 748
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

#ifdef PADDLE_WITH_CUDA
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
749
  }
Q
qingqing01 已提交
750
#endif
751 752 753
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
754 755 756
  return type;
}

C
chengduoZH 已提交
757 758 759 760
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
761
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
762 763 764 765 766 767
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
768
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
769 770

// depthwise convolution op
Y
Yang Yang 已提交
771
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
772 773 774
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
775 776 777 778
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(depthwise_conv2d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduo 已提交
779

Y
Yang Yang 已提交
780
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
H
hong 已提交
781 782 783 784 785 786
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad,
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
787
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
788

789 790
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
791
REGISTER_OP_CPU_KERNEL(
792
    depthwise_conv2d,
X
xzl 已提交
793 794 795 796
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
797
    depthwise_conv2d_grad,
X
xzl 已提交
798 799
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
800

C
chengduoZH 已提交
801
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
802 803 804 805 806 807
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
808 809 810 811
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
812 813

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
814 815 816 817 818 819
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
820 821 822 823
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856

REGISTER_OP_VERSION(conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

REGISTER_OP_VERSION(depthwise_conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade depthwise_conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

REGISTER_OP_VERSION(conv3d)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv3d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));