conv_op.cc 34.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

33 34
std::vector<int64_t> ConvOp::ComputeOutputShape(
    framework::InferShapeContext* ctx) const {
35 36
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");
C
chengduoZH 已提交
37 38 39

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
40

C
chengduoZH 已提交
41 42
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
43 44
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
45
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
46
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
L
liym27 已提交
47
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
48 49 50 51 52

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
53

54 55
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5, true,
56
      platform::errors::InvalidArgument(
57 58
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
59
          in_dims.size(), in_dims));
60

C
chengduoZH 已提交
61 62
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
63
      platform::errors::InvalidArgument(
64 65 66 67
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
68
          in_dims, in_dims.size(), filter_dims, filter_dims.size()));
69 70

  int in_sub_stride_size = in_dims.size() - strides.size();
71 72 73
  PADDLE_ENFORCE_EQ(
      in_dims.size(), strides.size() + 2U,
      platform::errors::InvalidArgument(
74 75 76 77 78 79 80
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
          in_dims.size(), in_dims, strides.size(),
          framework::make_ddim(strides), in_sub_stride_size));
L
liym27 已提交
81 82 83

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
84

85 86
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
87
      platform::errors::InvalidArgument(
88 89 90 91 92
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
93 94
          input_channels, in_dims, filter_dims[1], filter_dims, groups,
          data_format));
C
chengduoZH 已提交
95
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
96
      filter_dims[0] % groups, 0,
97
      platform::errors::InvalidArgument(
98 99 100 101
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
102
          filter_dims[0], filter_dims, groups));
C
chengduoZH 已提交
103

L
liym27 已提交
104 105 106 107 108 109
  framework::DDim in_data_dims;
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
110

111 112
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
113

L
liym27 已提交
114 115 116 117 118 119 120 121
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
122
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
123
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
124
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
125 126
      output_shape.push_back(-1);
    } else {
127 128 129
      output_shape.push_back(
          ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                         paddings[2 * i], paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
130
    }
C
chengduoZH 已提交
131
  }
L
liym27 已提交
132 133 134 135
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

136
  return output_shape;
C
chengduoZH 已提交
137 138
}

139 140
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
141 142
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
143
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
144
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
145
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
146 147
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
148 149
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
150
#ifdef PADDLE_WITH_CUDA
151
  if (platform::CanCUDNNBeUsed(ctx)) {
152
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
153 154
  }
#endif
155
#ifdef PADDLE_WITH_MKLDNN
156
  if (library == framework::LibraryType::kPlain &&
157
      platform::CanMKLDNNBeUsed(ctx)) {
158
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
159
    layout = framework::DataLayout::kMKLDNN;
160
    customized_type_value =
161 162
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
163 164
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
165
  }
166
#endif
167

168 169 170 171
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
172 173
                      platform::errors::InvalidArgument(
                          "input and filter data type should be consistent"));
174
  }
K
Kexin Zhao 已提交
175
  if (input_data_type == framework::proto::VarType::FP16) {
176
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
177 178
                      platform::errors::InvalidArgument(
                          "float16 can only be used when CUDNN is used"));
K
Kexin Zhao 已提交
179 180
  }

181 182 183
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
  return type;
184 185
}

186 187 188 189 190 191 192 193 194 195 196 197 198
framework::OpKernelType ConvOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
199
    // Some models may have intentionally set "AnyLayout" for conv
200 201
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
202 203
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
204 205 206 207 208 209 210
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
211
void Conv2DOpMaker::Make() {
212 213 214 215
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
L
liym27 已提交
216 217 218 219 220 221
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
222
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
223
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
224 225
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
226 227
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
228
           "input image channels divided by the groups.");
229 230 231 232 233
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
234 235 236
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
237
           "Used with fuse_residual_connection fusion.")
238
      .AsDispensable();
Y
Yihua Xu 已提交
239 240
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
241
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
242 243 244 245
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
246
      .SetDefault({1, 1});
C
chengduoZH 已提交
247 248
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
249 250
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
251
                            "convolution operator.")
C
chengduoZH 已提交
252
      .SetDefault({0, 0});
L
liym27 已提交
253 254 255 256 257 258
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
259 260
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
261
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
262 263 264 265
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
266
      .SetDefault(1);
C
chengduoZH 已提交
267
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
268 269
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
270
                            "convolution operator.")
C
chengduoZH 已提交
271
      .SetDefault({1, 1});
272 273 274 275
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
276 277 278
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
279 280 281
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
282 283 284 285
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
286
      .SetDefault(false);
287 288 289 290 291
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
M
Michal Gallus 已提交
292 293
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
294 295 296 297 298 299
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
      .SetDefault(6.0f);
300 301 302 303 304 305 306 307
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
308 309 310 311 312
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
      .SetDefault(false);
313
  AddAttr<bool>("fuse_residual_connection",
314
                "(bool, default false) Only used in mkldnn kernel. Used "
315 316
                "whenever convolution output is as an input to residual "
                "connection.")
317
      .SetDefault(false);
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
338 339 340 341 342 343
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
344
      .SetDefault("NCHW");
345 346 347 348 349 350 351 352
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
353
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
354 355
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
356
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
357
                "for cuDNN convolution or not, default is False.")
358
      .SetDefault(false);
L
liym27 已提交
359

C
chengduoZH 已提交
360
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
361 362
Convolution Operator.

C
chengduoZH 已提交
363
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
364
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
365
parameters is checked in the infer-shape.
L
liym27 已提交
366
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
367
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
368
the width of the feature.
369
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
370 371 372 373
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
374 375 376 377
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
378 379
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
380
  Output:
C
chengduoZH 已提交
381 382 383
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
384 385
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
386
$$
C
chengduoZH 已提交
387
)DOC");
Q
qingqing01 已提交
388
  Apply();
C
chengduoZH 已提交
389 390
}

Y
Yu Yang 已提交
391
void Conv3DOpMaker::Make() {
392 393 394 395
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
396 397
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
398
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
399 400
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
401 402 403
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
404
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
405
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
406 407
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
408 409 410
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
411
           "input image channels divided by the groups.");
412 413 414 415 416
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
417 418
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
419
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
420 421 422 423
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
424
      .SetDefault({1, 1, 1});
L
liym27 已提交
425 426 427 428 429 430
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
431
      .SetDefault({0, 0, 0});
L
liym27 已提交
432 433 434 435 436 437
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
438 439
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
440
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
441 442 443 444
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
445
      .SetDefault(1);
C
chengduoZH 已提交
446
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
447 448
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
449
                            "convolution operator.")
C
chengduoZH 已提交
450
      .SetDefault({1, 1, 1});
451 452 453 454
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
455 456 457
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
458 459
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
460 461 462 463 464 465 466 467
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
468 469 470 471 472
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
      .SetDefault(false);
473 474 475 476 477
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
478 479
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
480 481 482
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
483
      "the input will be transformed automatically. ")
L
liym27 已提交
484
      .SetDefault("NCDHW");
485 486 487
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
488 489 490 491 492 493 494
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
495
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
496 497
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
498
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
499
                "for cuDNN convolution or not, default is False.")
500
      .SetDefault(false);
C
chengduoZH 已提交
501
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
502 503
Convolution3D Operator.

C
chengduoZH 已提交
504
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
505
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
506
parameters is checked in the infer-shape.
L
liym27 已提交
507
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
508
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
509 510 511 512 513 514
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
515 516 517 518
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
519 520
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
521
  Output:
C
chengduoZH 已提交
522 523 524
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
525 526 527
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
528
  $$
C
chengduoZH 已提交
529
)DOC");
Q
qingqing01 已提交
530
  Apply();
C
chengduoZH 已提交
531 532
}

C
chengduoZH 已提交
533 534 535 536 537 538 539 540 541 542 543
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

544 545
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
546 547
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
548
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
549
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
550
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
551 552
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
553
#ifdef PADDLE_WITH_CUDA
554 555
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
556 557
  }
#endif
558 559 560
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
561
    const std::string data_format = ctx.Attr<std::string>("data_format");
562
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
563
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
564
    customized_type_value = kConvMKLDNNFP32;
565
  }
566
#endif
567

568 569 570
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
571
  return type;
572 573
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

H
hong 已提交
600 601
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
602
 public:
H
hong 已提交
603
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
604

605
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
606
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
607 608 609 610
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
611

H
hong 已提交
612 613 614 615
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
616
  }
S
sneaxiy 已提交
617 618
};

H
hong 已提交
619 620
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
621
 public:
H
hong 已提交
622
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
623

624
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
625
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
626 627 628
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
629

H
hong 已提交
630 631
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
632

H
hong 已提交
633 634
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
635 636
    }

H
hong 已提交
637
    op->SetAttrMap(this->Attrs());
638 639 640
  }
};

Q
qingqing01 已提交
641 642 643 644
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
645 646
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
647
 public:
H
hong 已提交
648
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
649

650
  void Apply(GradOpPtr<T> op) const override {
Q
qingqing01 已提交
651 652
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
653 654 655 656 657 658
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
659 660 661 662

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
663 664
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
665

L
lvmengsi 已提交
666
    op->SetOutput("DDOutput",
H
hong 已提交
667
                  ddx.empty()
668
                      ? this->EmptyInputGrad()
H
hong 已提交
669
                      : this->InputGrad(framework::GradVarName("Output")));
670 671 672 673
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
674

H
hong 已提交
675
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
676 677 678
  }
};

L
lvmengsi 已提交
679 680 681 682
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
683 684
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
685
 public:
H
hong 已提交
686
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
687

688
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
689 690
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
691 692 693 694 695 696
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
697

H
hong 已提交
698 699
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
700

L
lvmengsi 已提交
701
    op->SetOutput("DDOutput",
H
hong 已提交
702
                  ddx.empty()
703
                      ? this->EmptyInputGrad()
H
hong 已提交
704
                      : this->InputGrad(framework::GradVarName("Output")));
705 706 707 708
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
L
lvmengsi 已提交
709

H
hong 已提交
710
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
711 712 713
  }
};

Q
qingqing01 已提交
714 715 716 717 718
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
719 720
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
721 722
    ctx->SetOutputDim("DDOutput", do_dims);
  }
723
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
724 725
    ctx->SetOutputDim("DFilter", w_dims);
  }
726
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
727 728 729 730 731 732 733 734 735
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
736
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
737 738 739 740 741
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

#ifdef PADDLE_WITH_CUDA
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
742
  }
Q
qingqing01 已提交
743
#endif
744 745 746
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
747 748 749
  return type;
}

C
chengduoZH 已提交
750 751 752 753
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
754
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
755 756 757 758 759 760
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
761
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
762 763

// depthwise convolution op
Y
Yang Yang 已提交
764
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
765 766 767
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
768
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
769

Y
Yang Yang 已提交
770
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
H
hong 已提交
771 772 773 774 775 776
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad,
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
777
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
778

779 780
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
781
REGISTER_OP_CPU_KERNEL(
782
    depthwise_conv2d,
X
xzl 已提交
783 784 785 786
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
787
    depthwise_conv2d_grad,
X
xzl 已提交
788 789
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
790

C
chengduoZH 已提交
791
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
792 793 794 795 796 797
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
798 799 800 801
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
802 803

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
804 805 806 807 808 809
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
810 811 812 813
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);