Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
8cbefd1a
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8cbefd1a
编写于
9月 14, 2018
作者:
M
Michał Gallus
提交者:
Yan Chunwei
9月 14, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fuse Conv+BN+SkipConnectionAdd+ReLU with transpiler temporarily (#13350)
上级
f00081a4
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
87 addition
and
27 deletion
+87
-27
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+31
-25
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+5
-0
python/paddle/fluid/transpiler/inference_transpiler.py
python/paddle/fluid/transpiler/inference_transpiler.py
+51
-2
未找到文件。
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
8cbefd1a
...
...
@@ -300,6 +300,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
bool
fuse_relu
=
ctx
.
Attr
<
bool
>
(
"fuse_relu"
);
bool
fuse_eltwise
=
ctx
.
Attr
<
bool
>
(
"fuse_eltwise"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
// TODO: add support for dilation
...
...
@@ -366,12 +367,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_eltwise
);
}
else
{
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_eltwise
);
}
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
...
...
@@ -421,16 +423,26 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
}
private:
mkldnn
::
primitive_attr
AddRelu
()
const
{
// Fusion with ReLU layer is executed through the PostOps feature. Create a
// PostOps object and configure it to execute an eltwise relu operation.
mkldnn
::
primitive_attr
CreatePostOps
(
bool
fuse_relu
,
bool
fuse_eltwise
)
const
{
mkldnn
::
primitive_attr
conv_attr
;
constexpr
float
scale
=
1.0
f
;
constexpr
float
negative_slope
=
0.0
f
;
constexpr
float
placeholder
=
0.0
f
;
mkldnn
::
post_ops
post_operations
;
post_operations
.
append_eltwise
(
scale
,
mkldnn
::
algorithm
::
eltwise_relu
,
negative_slope
,
placeholder
);
// Fusion with Elementwise layer relies on adding a sum post-operation with
// the scale parameter. It is assumed that when fuse_eltwise is true, the
// Output tensor contains the data coming from residual connection. The
// result of this post_op is: Output = scale * Output + Conv_Out.
if
(
fuse_eltwise
)
{
post_operations
.
append_sum
(
1.0
f
);
}
// Fusion with ReLU layer is executed through the PostOps feature. Create a
// PostOps object and configure it to execute an eltwise relu operation.
if
(
fuse_relu
)
{
constexpr
float
scale
=
1.0
f
;
constexpr
float
negative_slope
=
0.0
f
;
constexpr
float
placeholder
=
0.0
f
;
post_operations
.
append_eltwise
(
scale
,
mkldnn
::
algorithm
::
eltwise_relu
,
negative_slope
,
placeholder
);
}
conv_attr
.
set_post_ops
(
post_operations
);
return
conv_attr
;
}
...
...
@@ -439,8 +451,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
ConvFwdPrimitiveDesc
(
const
memory
::
desc
&
src
,
const
memory
::
desc
&
weights
,
const
memory
::
desc
&
dst
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_
relu
)
const
{
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
const
bool
fuse_
eltwise
)
const
{
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
...
...
@@ -449,10 +461,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
dst
,
stride_dims
,
padding_dims
,
padding_dims
,
mkldnn
::
padding_kind
::
zero
);
mkldnn
::
primitive_attr
conv_attr
;
if
(
fuse_relu
)
{
conv_attr
=
AddRelu
();
}
mkldnn
::
primitive_attr
conv_attr
=
CreatePostOps
(
fuse_relu
,
fuse_eltwise
);
auto
p_conv_pd
=
new
mkldnn
::
convolution_forward
::
primitive_desc
(
conv_desc
,
conv_attr
,
engine
);
...
...
@@ -466,8 +475,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const
memory
::
desc
&
bias
,
const
memory
::
desc
&
dst
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_
relu
)
const
{
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
const
bool
fuse_
eltwise
)
const
{
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
...
...
@@ -476,10 +485,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bias
,
dst
,
stride_dims
,
padding_dims
,
padding_dims
,
mkldnn
::
padding_kind
::
zero
);
mkldnn
::
primitive_attr
conv_attr
;
if
(
fuse_relu
)
{
conv_attr
=
AddRelu
();
}
mkldnn
::
primitive_attr
conv_attr
=
CreatePostOps
(
fuse_relu
,
fuse_eltwise
);
auto
p_conv_pd
=
new
mkldnn
::
convolution_forward
::
primitive_desc
(
conv_desc
,
conv_attr
,
engine
);
...
...
paddle/fluid/operators/conv_op.cc
浏览文件 @
8cbefd1a
...
...
@@ -164,6 +164,11 @@ void Conv2DOpMaker::Make() {
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"fuse_relu"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"fuse_eltwise"
,
"(bool, default false) Only used in mkldnn kernel. Used "
"whenever convolution output is connected via skip connection "
"to a previous layer."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"data_format"
,
"(string, default NCHW) Only used in "
...
...
python/paddle/fluid/transpiler/inference_transpiler.py
浏览文件 @
8cbefd1a
...
...
@@ -65,8 +65,43 @@ class InferenceTranspiler(object):
if
use_mkldnn
:
self
.
_fuse_conv_bias_mkldnn
(
program
)
self
.
_fuse_conv_relu_mkldnn
(
program
)
self
.
_fuse_conv_eltwise_mkldnn
(
program
)
self
.
_fuse_conv_relu_mkldnn
(
program
)
# ResNet residual block merging
self
.
_fuse_bn_relu_mkldnn
(
program
)
def
_fuse_conv_eltwise_mkldnn
(
self
,
program
):
'''
Transpile the program fusing elementwise_add into conv for MKLDNN
program. Elementwise add following convolution OP can be fused by adding
'fuse_eltwise' attribute to convolution OP and replacing its output
Tensor with second parameter of elementwise_add.
The result of fuse is:
- before:
- conv->elementwise_add->any_other_op
- after:
- conv->any_other_op
:param program: program to transpile
:type program: Program
'''
self
.
block
=
program
.
block
(
0
)
i
=
0
while
i
<
len
(
self
.
block
.
ops
):
current_op
=
self
.
block
.
ops
[
i
]
if
current_op
.
type
in
[
'conv2d'
]:
next_op
=
self
.
block
.
ops
[
i
+
1
]
if
next_op
.
type
==
'elementwise_add'
:
self
.
_fuse_conv_eltwise
(
current_op
,
next_op
)
self
.
block
.
_remove_op
(
i
+
1
)
# Remove elementwise_add
i
=
i
+
1
self
.
_adjust_input
()
self
.
_remove_unused_var
()
# TODO(luotao): use clone() method to flush the program.desc in force,
# since some large program.desc will not be flushed immediately.
# And a better solution will be considered later.
program
=
program
.
clone
()
def
_fuse_conv_relu_mkldnn
(
self
,
program
):
'''
Transpile the program by fused relu activation for MKLDNN program.
...
...
@@ -88,9 +123,9 @@ class InferenceTranspiler(object):
if
current_op
.
type
in
[
'conv2d'
]:
next_op
=
self
.
block
.
ops
[
i
+
1
]
if
next_op
.
type
==
'relu'
:
# modify
conv
OP to include relu
# modify
bnorm
OP to include relu
current_op
.
set_attr
(
"fuse_relu"
,
True
)
# remove
conv
OP
# remove
relu
OP
self
.
block
.
_remove_op
(
i
+
1
)
i
=
i
+
1
...
...
@@ -409,6 +444,20 @@ class InferenceTranspiler(object):
outputs
=
{
"Output"
:
out_var
},
attrs
=
attrs
)
def
_fuse_conv_eltwise
(
self
,
conv_op
,
eltwise_op
):
'''
fuse the conv op with elementwise_add
:param conv_op: convolution operator
:type conv_op: Operator
:param eltwise_op: operator adding data from skip connection
:type eltwise_op: Operator
'''
conv_op
.
set_attr
(
"fuse_eltwise"
,
True
)
self
.
input_map
[
conv_op
.
output
(
"Output"
)[
0
]]
=
eltwise_op
.
input
(
"Y"
)[
0
]
self
.
input_map
[
eltwise_op
.
output
(
"Out"
)[
0
]]
=
eltwise_op
.
input
(
"Y"
)[
0
]
def
_adjust_input
(
self
):
for
i
in
range
(
len
(
self
.
block
.
ops
)):
current_op
=
self
.
block
.
ops
[
i
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录