io.py 88.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
H
hong 已提交
23
import contextlib
24
from functools import reduce
25

H
hong 已提交
26
import numpy as np
27
import math
28
import paddle
29
from paddle.fluid import layers
H
hong 已提交
30
from paddle.fluid.executor import Executor, global_scope
31
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
32
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
33
    program_guard, dygraph_not_support, static_only
34 35
from paddle.reader import cache, map_readers, buffered, compose, chain, shuffle, \
    ComposeNotAligned, firstn, xmap_readers, multiprocess_reader
36
from .wrapped_decorator import signature_safe_contextmanager
T
tangwei12 已提交
37
from paddle.fluid.compiler import CompiledProgram
38
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
39
from . import reader
40
from . import unique_name
S
sneaxiy 已提交
41
from .reader import *
42 43
from . import dataloader
from .dataloader import *
K
fix bug  
Kexin Zhao 已提交
44
from . import core
45
from .. import compat as cpt
46 47
from paddle.utils import deprecated
from paddle.fluid.framework import static_only
48

49 50
batch = paddle.batch

51
__all__ = [
52 53 54 55 56 57 58 59 60 61 62 63 64
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
65 66
    'get_program_parameter',
    'get_program_persistable_vars',
67
] + reader.__all__
68

69 70
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
71

72 73

def is_parameter(var):
F
fengjiayi 已提交
74 75
    """
    Check whether the given variable is an instance of Parameter.
76 77

    Args:
F
fengjiayi 已提交
78
        var(Variable): The variable to be checked.
79 80

    Returns:
F
fengjiayi 已提交
81 82 83 84 85 86
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

87
            import paddle
88
            import paddle.fluid as fluid
89 90

            paddle.enable_static()
F
fengjiayi 已提交
91 92
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
93
    """
94 95 96 97
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

111
            import paddle
112
            import paddle.fluid as fluid
113 114

            paddle.enable_static()
115
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
116 117
            res = fluid.io.is_persistable(param)
    """
118
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
119 120
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
121
        return False
122 123 124
    return var.persistable


H
hong 已提交
125
def is_belong_to_optimizer(var):
126
    if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
127 128 129
        return is_persistable(var)

    return False
H
hong 已提交
130 131


132
@dygraph_not_support
H
hong 已提交
133 134
def get_program_parameter(program):
    """
135 136
    :api_attr: Static Graph

H
hong 已提交
137 138 139 140 141 142 143 144 145 146 147
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

148
            import paddle
H
hong 已提交
149
            import paddle.fluid as fluid
150 151

            paddle.enable_static()
H
hong 已提交
152 153 154 155 156 157 158 159
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


160
@dygraph_not_support
H
hong 已提交
161 162
def get_program_persistable_vars(program):
    """
163 164
    :api_attr: Static Graph

H
hong 已提交
165 166 167 168 169 170 171 172 173 174 175
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

176
            import paddle
H
hong 已提交
177
            import paddle.fluid as fluid
178 179

            paddle.enable_static()
H
hong 已提交
180 181 182 183 184 185 186 187
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


188 189
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
205 206


207
@signature_safe_contextmanager
H
hong 已提交
208 209 210 211 212 213 214
def _load_program_scope(main=None, startup=None, scope=None):
    prog = main if main else paddle.fluid.Program()
    startup_prog = startup if startup else paddle.fluid.Program()
    scope = scope if scope else paddle.fluid.core.Scope()
    with paddle.fluid.scope_guard(scope):
        with paddle.fluid.program_guard(prog, startup_prog):
            with paddle.fluid.unique_name.guard():
215 216
                with paddle.fluid.framework._dygraph_guard(None):
                    yield
H
hong 已提交
217 218


219
def _get_valid_program(main_program=None):
C
chengduo 已提交
220 221 222 223 224
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
225 226 227
            raise TypeError(
                "The type of input main_program is invalid, expected tyep is Program, but received None"
            )
C
chengduo 已提交
228 229 230
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
231 232 233
        raise TypeError(
            "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
            % type(main_program))
C
chengduo 已提交
234 235 236
    return main_program


237
@dygraph_not_support
238 239 240 241 242
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
243
              filename=None):
244
    """
245 246
    :api_attr: Static Graph

247
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
248

249
    There are two ways to specify the variables to be saved: set variables in
250 251
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
252

253
    The `dirname` is used to specify the folder where to save variables.
T
tianshuo78520a 已提交
254
    If you prefer to save variables in separate files in the `dirname` folder,
255
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
256
    use `filename` to specify it.
257

F
fengjiayi 已提交
258 259
    Args:
        executor(Executor): The executor to run for saving variables.
260 261
        dirname(str, optional): The folder where to save variables.
                            When you need to save the parameter to the memory, set it to None.
262
        main_program(Program, optional): The program whose variables will be saved.
263
                                    If it is None, the default main program will
F
fengjiayi 已提交
264 265
                                    be used automatically.
                                    Default: None
266 267 268
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
269
                                       `predicate(variable) == True`.
270 271
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
272
                                 use `filename` to specify it. Otherwise, let `filename` be None.
273
                                 Default: None
F
fengjiayi 已提交
274 275

    Returns:
276 277
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
278 279 280 281 282 283 284

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

285
            import paddle
286
            import paddle.fluid as fluid
287

288
            paddle.enable_static()
289 290 291 292 293 294 295 296 297 298 299
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
300

301
            # The first usage: use `vars` to set the saved variables.
302 303
            var_list = [w, b]
            path = "./my_paddle_vars"
304
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
305 306 307 308 309 310 311 312 313 314
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
315
    """
316 317 318 319
    save_to_memory = False
    if dirname is None and filename is None:
        save_to_memory = True

C
chengduo 已提交
320
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
321

322
    if vars is None:
323
        return save_vars(
324
            executor,
325
            main_program=main_program,
326
            dirname=dirname,
327
            vars=list(filter(predicate, main_program.list_vars())),
328
            filename=filename)
329
    else:
330
        params_var_name = unique_name.generate("saved_params")
331 332 333 334 335 336 337
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

338 339
        save_program = Program()
        save_block = save_program.global_block()
340 341

        save_var_map = {}
342
        for each_var in vars:
343 344 345
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
346
            new_var = _clone_var_in_block_(save_block, each_var)
347 348 349
            if filename is None and save_to_memory is False:
                save_file_path = os.path.join(
                    os.path.normpath(dirname), new_var.name)
350 351 352 353
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
354
                    attrs={'file_path': os.path.normpath(save_file_path)})
355 356 357
            else:
                save_var_map[new_var.name] = new_var

358
        if filename is not None or save_to_memory:
359 360 361 362
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

363 364 365 366 367 368 369
            save_path = str()
            if save_to_memory is False:
                save_path = os.path.join(os.path.normpath(dirname), filename)

            saved_params = save_block.create_var(
                type=core.VarDesc.VarType.RAW, name=params_var_name)
            saved_params.desc.set_persistable(True)
370
            save_block.append_op(
371 372
                type='save_combine',
                inputs={'X': save_var_list},
373 374 375 376 377
                outputs={'Y': saved_params},
                attrs={
                    'file_path': save_path,
                    'save_to_memory': save_to_memory
                })
378

379
        # NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
380 381 382
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
383
        executor.run(save_program)
384 385
        if save_to_memory:
            return global_scope().find_var(params_var_name).get_bytes()
386 387


388
@dygraph_not_support
389
def save_params(executor, dirname, main_program=None, filename=None):
390
    """
391 392
    :api_attr: Static Graph

G
guofei 已提交
393
    This operator saves all parameters from the :code:`main_program` to
394
    the folder :code:`dirname` or file :code:`filename`. You can refer to
G
guofei 已提交
395
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
396

G
guofei 已提交
397 398 399
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
400 401
    the file name.

402
    Note:
G
guofei 已提交
403
        Some variables are not Parameter while they are necessary for
404
        training, such as learning rate, global step, etc. So you can NOT save
G
guofei 已提交
405 406
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
407 408 409
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to save your model for the inference, please use the
G
guofei 已提交
410 411
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
412 413

    Args:
414
        executor(Executor): The executor to run for saving parameters, You can
G
guofei 已提交
415
                            refer to :ref:`api_guide_executor_en`.
416 417
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
G
guofei 已提交
418
        main_program(Program, optional): The program whose parameters will be
419 420
                                         saved. You can refer to
                                         :ref:`api_guide_Program_en` for more
G
guofei 已提交
421 422 423 424 425 426 427
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
428 429

    Returns:
430 431
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
432 433 434 435

    Examples:
        .. code-block:: python

436
            import paddle
H
Huihuang Zheng 已提交
437
            import paddle.fluid as fluid
438

439 440

            paddle.enable_static()
G
guofei 已提交
441 442 443 444 445
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
446

G
guofei 已提交
447 448
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
449

F
fengjiayi 已提交
450
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
451 452
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
453 454
            # The parameters weights and bias of the fc layer in the network are going to
            # be saved in different files in the path "./my_paddle_model"
455
    """
456
    return save_vars(
457 458
        executor,
        dirname=dirname,
459
        main_program=main_program,
460
        vars=None,
461
        predicate=is_parameter,
462
        filename=filename)
463 464


465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

487
            import paddle
488
            import paddle.fluid as fluid
489 490

            paddle.enable_static()
491 492 493 494 495 496 497 498 499 500
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
T
tianshuo78520a 已提交
501
        receive params on pserver through rpc.
502 503 504 505 506 507 508 509 510 511
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
512 513 514 515 516 517 518
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
519 520 521

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
522
                slice = optimizer.slice
523 524 525
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
526 527 528
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
529 530
                endpoints[index] = endpoint

T
tangwei12 已提交
531 532 533 534 535
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

536
            block.append_op(
T
tangwei12 已提交
537 538 539 540 541 542 543 544 545 546 547
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name)
                })

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
577 578
                            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                            var.desc.type() == core.VarDesc.VarType.READER:
579 580 581 582 583 584
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
585
        raise TypeError("'main_program' should be an instance of Program.")
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


619
@dygraph_not_support
620
def save_persistables(executor, dirname, main_program=None, filename=None):
621
    """
622 623
    :api_attr: Static Graph

G
guofei 已提交
624 625 626
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
627 628
    saves these persistables variables to the folder :code:`dirname` or file
    :code:`filename`.
F
fengjiayi 已提交
629

G
guofei 已提交
630
    The :code:`dirname` is used to specify the folder where persistable variables
631
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
632 633
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
634 635 636

    Args:
        executor(Executor): The executor to run for saving persistable variables.
637
                            You can refer to :ref:`api_guide_executor_en` for
G
guofei 已提交
638
                            more details.
639

640 641 642
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
        main_program(Program, optional): The program whose persistbale variables will
G
guofei 已提交
643 644
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
645
                                         If it is None, the default main program will
G
guofei 已提交
646 647 648 649 650
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
651 652

    Returns:
653 654
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
655 656 657 658

    Examples:
        .. code-block:: python

659
            import paddle
H
Huihuang Zheng 已提交
660
            import paddle.fluid as fluid
661

662
            paddle.enable_static()
G
guofei 已提交
663 664 665 666 667
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
668

G
guofei 已提交
669 670 671
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
672
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
673 674
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
675
            # The persistables variables weights and bias in the fc layer of the network
G
guofei 已提交
676 677
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
678
    """
679
    if main_program and main_program._is_distributed:
680
        return _save_distributed_persistables(
681 682
            executor, dirname=dirname, main_program=main_program)
    else:
683
        return save_vars(
684 685 686 687 688 689
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
690 691


692 693 694 695 696
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
697
              filename=None):
698
    """
699 700
    :api_attr: Static Graph

701
    This API loads variables from files by executor.
F
fengjiayi 已提交
702

703
    There are two ways to specify the variables to be loaded: the first way, set
704 705
    variables in a list and assign it to the `vars`; the second way, use the
    `predicate` function to select variables that make `predicate(variable) == True`.
706
    The first way has a higher priority.
F
fengjiayi 已提交
707

708
    The `dirname` is used to specify the folder where to load variables.
709
    If variables were saved in separate files in the folder `dirname`,
710
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
711
    use `filename` to specify it.
712

F
fengjiayi 已提交
713 714
    Args:
        executor(Executor): The executor to run for loading variables.
715 716
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
717
                                    If it is None, the default main program will
F
fengjiayi 已提交
718 719
                                    be used automatically.
                                    Default: None
720
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
721
                                   Default: None
722
        predicate(function, optional): The function selects variables that make
723 724 725 726 727
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
728 729 730 731 732 733 734 735 736 737

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

738
            import paddle
739
            import paddle.fluid as fluid
740

741
            paddle.enable_static()
742 743 744 745 746 747 748 749 750 751 752
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
753

754 755 756 757 758 759 760 761 762 763 764
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
765
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
766 767 768
            def name_has_fc(var):
                res = "fc" in var.name
                return res
769 770 771
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
772
                               vars=None, predicate=name_has_fc)
773 774
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
775

776
    """
777 778 779 780 781
    vars_from_memory = False
    if dirname is not None:
        dirname = os.path.normpath(dirname)
    else:
        vars_from_memory = True
T
tangwei12 已提交
782

783
    if vars is None:
784
        if main_program is None:
Y
Yu Yang 已提交
785
            main_program = default_main_program()
786
        if not isinstance(main_program, Program):
787 788 789
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
790 791 792

        load_vars(
            executor,
793
            dirname=dirname,
T
tangwei12 已提交
794
            main_program=main_program,
795
            vars=list(filter(predicate, main_program.list_vars())),
796
            filename=filename)
797 798 799
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
800

801 802
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
803

804
        if not isinstance(main_program, Program):
805 806 807
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
808

T
tangwei12 已提交
809
        # save origin param shape
H
hong 已提交
810
        orig_para_shape = {}
811
        load_var_map = {}
812 813 814 815

        check_vars = []
        sparse_vars = []

816 817
        for each_var in vars:
            assert isinstance(each_var, Variable)
818

T
tangwei12 已提交
819 820
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
821 822

            if isinstance(each_var, Parameter):
823 824
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
825 826 827 828 829

            if each_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_vars.append(each_var)
                continue

830
            new_var = _clone_var_in_block_(load_block, each_var)
831 832
            check_vars.append(each_var)

833
            if filename is None:
834 835 836 837
                if dirname is None:
                    raise ValueError(
                        "The directory path and params cannot be None at the same time."
                    )
838 839 840 841
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
842
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
843 844 845
            else:
                load_var_map[new_var.name] = new_var

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
        for each_var in sparse_vars:
            assert isinstance(each_var, Variable)

            if filename is not None:
                raise ValueError(
                    "SelectedRows can not be load with load_combine")

            new_var = _clone_var_in_block_(load_block, each_var)

            var_path = os.path.join(dirname, new_var.name)
            if not os.path.exists(var_path):
                raise ValueError("SelectedRows var {} can not find at {}".
                                 format(new_var.name, var_path))

            if os.path.isfile(var_path):
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                blocks = []
                block_paths = os.listdir(var_path)

                for block in block_paths:
                    if block.startswith(new_var.name):
                        blocks.append(block)

                slices = []
                for block in blocks:
                    slice = load_block.create_var(
                        name=block,
                        type=new_var.type,
                        shape=new_var.shape,
                        dtype=new_var.dtype,
                        persistable=False)
                    slices.append(slice)

                    file_path = os.path.join(var_path, block, "Param")
                    load_block.append_op(
                        type='load',
                        inputs={},
                        outputs={'Out': [slice]},
                        attrs={'file_path': file_path})

                load_block.append_op(
                    type='lookup_sparse_table_merge',
                    inputs={'X': slices},
                    outputs={'Out': new_var},
                    attrs={})

897
        if filename is not None:
898 899 900 901
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

902 903 904
            if vars_from_memory is False:
                filename = os.path.join(dirname, filename)

905
            load_block.append_op(
906
                type='load_combine',
907
                inputs={},
908
                outputs={"Out": load_var_list},
909 910 911 912
                attrs={
                    'file_path': filename,
                    'model_from_memory': vars_from_memory
                })
913 914
        executor.run(load_prog)

T
tangwei12 已提交
915
        # check var shape
916
        for each_var in check_vars:
H
hong 已提交
917 918 919 920 921
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
922
            assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
H
hong 已提交
923 924 925
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
926
                    "Variable's shape does not match, the Program requires a parameter with the shape of ({}), "
H
hong 已提交
927 928 929
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

930

931
@dygraph_not_support
932
def load_params(executor, dirname, main_program=None, filename=None):
933
    """
934 935
    :api_attr: Static Graph

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
955 956

    Args:
957 958
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
959
        dirname(str): The directory path.
960 961 962 963 964 965 966 967
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
968 969 970 971 972 973 974

    Returns:
        None

    Examples:
        .. code-block:: python

975
            import paddle
976
            import paddle.fluid as fluid
977

978
            paddle.enable_static()
F
fengjiayi 已提交
979 980 981
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
982
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
983
                                main_program=None)
984 985
    """
    load_vars(
986 987 988
        executor,
        dirname=dirname,
        main_program=main_program,
989
        predicate=is_parameter,
990
        filename=filename)
991 992


993
@dygraph_not_support
994
def load_persistables(executor, dirname, main_program=None, filename=None):
995
    """
996 997
    :api_attr: Static Graph
    
998 999
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
T
tianshuo78520a 已提交
1000
    directory ``dirname`` or the file ``filename``.
F
fengjiayi 已提交
1001

1002 1003 1004 1005
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
1006 1007

    Args:
1008 1009
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
1010
        dirname(str): The directory path.
T
tianshuo78520a 已提交
1011
        main_program(Program, optional): The program whose persistable variables will
1012 1013 1014 1015 1016 1017 1018
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
1019 1020 1021 1022 1023 1024 1025

    Returns:
        None

    Examples:
        .. code-block:: python

1026
            import paddle
1027
            import paddle.fluid as fluid
1028

1029
            paddle.enable_static()
F
fengjiayi 已提交
1030 1031 1032
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
1033
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
1034
                                       main_program=None)
1035
    """
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

1067
            import paddle
1068
            import paddle.fluid as fluid
1069 1070

            paddle.enable_static()
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                load_block.append_op(
T
tangwei12 已提交
1104 1105 1106 1107 1108 1109 1110 1111
                    type='load',
                    inputs={},
                    outputs={'Out': [slice]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name),
                        'seek': offset,
                        'shape': slice.shape
                    })
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
1134
        raise TypeError("'main_program' should be an instance of Program.")
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
1149 1150


1151 1152 1153
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
1154 1155 1156
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
1157 1158
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
1159 1160 1161
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
1162

1163
    for i, name in enumerate(feed_target_names):
1164 1165 1166 1167 1168 1169 1170
        if not global_block.has_var(name):
            raise ValueError(
                "The feeded_var_names[{i}]: '{name}' doesn't exist in pruned inference program. "
                "Please check whether '{name}' is a valid feed_var name, or remove it from feeded_var_names "
                "if '{name}' is not involved in the target_vars calculation.".
                format(
                    i=i, name=name))
K
fix bug  
Kexin Zhao 已提交
1171
        out = global_block.var(name)
W
Wu Yi 已提交
1172
        global_block._prepend_op(
K
Kexin Zhao 已提交
1173 1174
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
1175
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
1176 1177 1178
            attrs={'col': i})


1179 1180 1181
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
1182 1183
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
1184 1185 1186
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
1187

1188
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
1189 1190 1191 1192 1193 1194 1195
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


1196 1197
@static_only
@deprecated(since="2.0.0", update_to="paddle.static.save_inference_model")
1198 1199 1200 1201
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1202
                         main_program=None,
1203
                         model_filename=None,
1204
                         params_filename=None,
T
tangwei12 已提交
1205 1206
                         export_for_deployment=True,
                         program_only=False):
1207
    """
1208 1209
    :api_attr: Static Graph

F
fengjiayi 已提交
1210
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1211
    and then save it and all related parameters to given `dirname` .
1212
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1213 1214
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1215

G
guofei 已提交
1216
    Note:
1217
        The :code:`dirname` is used to specify the folder where inference model
G
guofei 已提交
1218
        structure and parameters are going to be saved. If you would like to save params of
1219
        Program in separate files, set `params_filename` None; if you would like to save all
G
guofei 已提交
1220
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1221 1222 1223

    Args:
        dirname(str): The directory path to save the inference model.
T
tianshuo78520a 已提交
1224
        feeded_var_names(list[str]): list of string. Names of variables that need to be fed
G
guofei 已提交
1225
                                     data during inference.
1226
        target_vars(list[Variable]): list of Variable. Variables from which we can get
G
guofei 已提交
1227
                                     inference results.
1228
        executor(Executor): The executor that saves the inference model. You can refer
G
guofei 已提交
1229 1230
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
T
tianshuo78520a 已提交
1231
                                         build the inference model. If is set None,
G
guofei 已提交
1232 1233 1234
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
T
tianshuo78520a 已提交
1235
                                       itself. If is set None, a default filename
G
guofei 已提交
1236 1237
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
T
tianshuo78520a 已提交
1238
                                        If it is set None, parameters will be saved
G
guofei 已提交
1239
                                        in separate files .
X
Xin Pan 已提交
1240 1241 1242 1243 1244
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1245
                                     Default: True.
1246
        program_only(bool, optional): If True, It will save inference program only, and do not
G
guofei 已提交
1247 1248
                                      save params of Program.
                                      Default: False.
1249

F
fengjiayi 已提交
1250
    Returns:
G
guofei 已提交
1251 1252 1253 1254
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1255 1256

    Raises:
G
guofei 已提交
1257 1258
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1259 1260 1261

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1262

1263
            import paddle
1264 1265
            import paddle.fluid as fluid

1266
            paddle.enable_static()
F
fengjiayi 已提交
1267 1268
            path = "./infer_model"

T
tianshuo78520a 已提交
1269
            # User defined network, here a softmax regession example
G
guofei 已提交
1270 1271
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1289
            # In this example, the save_inference_mode inference will prune the default
1290
            # main program according to the network's input node (img) and output node(predict).
G
guofei 已提交
1291
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1292
            # and parameters are going to be saved in separate files under folder
1293
            # "./infer_model".
1294 1295

    """
M
minqiyang 已提交
1296
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1297
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1298
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1299
        if len(feeded_var_names) > 0:
1300
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1301
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1302
                    isinstance(name, six.string_types)
1303
                    for name in feeded_var_names)):
M
minqiyang 已提交
1304
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1305 1306

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1307
        target_vars = [target_vars]
X
Xin Pan 已提交
1308
    elif export_for_deployment:
1309 1310
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1311 1312
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1313
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1314

1315
    # remind user to set auc_states to zeros if the program contains auc op
1316 1317
    all_ops = main_program.global_block().ops
    for op in all_ops:
1318 1319 1320
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
1321 1322 1323 1324 1325 1326
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1327 1328 1329 1330 1331
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1332
        for i, var in enumerate(target_vars):
1333
            if isinstance(var, Variable):
F
flame 已提交
1334 1335 1336
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1337
        target_vars = uniq_target_vars
F
flame 已提交
1338
    target_var_name_list = [var.name for var in target_vars]
1339

1340
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1341
    save_dirname = dirname
1342
    try:
L
lujun 已提交
1343 1344
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1345 1346 1347 1348
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1349 1350 1351 1352
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1353
    model_basename = os.path.join(save_dirname, model_basename)
1354

X
Xin Pan 已提交
1355 1356 1357 1358
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1359 1360 1361

    origin_program = main_program.clone()

X
Xin Pan 已提交
1362
    if export_for_deployment:
X
Xin Pan 已提交
1363 1364
        main_program = main_program.clone()
        global_block = main_program.global_block()
1365
        need_to_remove_op_index = []
X
Xin Pan 已提交
1366 1367 1368
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1369 1370 1371 1372 1373
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1374
        main_program.desc.flush()
X
Xin Pan 已提交
1375

1376 1377
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1378
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1379 1380
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1381 1382 1383
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1384
        main_program.desc._set_version()
1385
        paddle.fluid.core.save_op_version_info(main_program.desc)
X
Xin Pan 已提交
1386 1387
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1388 1389 1390
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1391 1392
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1393

T
tangwei12 已提交
1394 1395 1396 1397 1398 1399
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1400 1401
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1402 1403
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1404

L
lujun 已提交
1405
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1406
    return target_var_name_list
X
fix  
Xin Pan 已提交
1407

1408

1409 1410
@static_only
@deprecated(since="2.0.0", update_to="paddle.static.load_inference_model")
1411 1412 1413
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1414 1415
                         params_filename=None,
                         pserver_endpoints=None):
1416
    """
1417 1418
    :api_attr: Static Graph

1419 1420 1421
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1422
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1423

F
fengjiayi 已提交
1424
    Args:
1425 1426 1427
        dirname(str): One of the following:
          - The given directory path.
          - Set to None when reading the model from memory.
F
fengjiayi 已提交
1428
        executor(Executor): The executor to run for loading inference model.
1429
                            See :ref:`api_guide_executor_en` for more details about it.
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
        model_filename(str, optional): One of the following:
          - The name of file to load the inference program.
          - If it is None, the default filename ``__model__`` will be used.
          - When ``dirname`` is ``None``, it must be set to a string containing model.
          Default: ``None``.
        params_filename(str, optional): It is only used for the case that all
            parameters were saved in a single binary file. One of the following:
          - The name of file to load all parameters.  
          - When ``dirname`` is ``None``, it must be set to a string containing all the parameters.
          - If parameters were saved in separate files, set it as ``None``.
            Default: ``None``.
1441 1442 1443 1444

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1445
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1446 1447

    Returns:
1448
        list: The return of this API is a list with three elements:
1449
        (program, feed_target_names, fetch_targets). The `program` is a
1450 1451 1452 1453 1454
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1455 1456 1457 1458 1459 1460 1461

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1462
            import paddle
1463 1464
            import paddle.fluid as fluid
            import numpy as np
1465

1466
            paddle.enable_static()
1467
            # Build the model
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1479 1480

            # Save the inference model
F
fengjiayi 已提交
1481
            path = "./infer_model"
1482 1483
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1484 1485 1486

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1487 1488
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1489
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1490 1491 1492 1493
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1494 1495 1496
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1497
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1498
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1499 1500
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1501
                                              pserver_endpoints=endpoints))
1502

1503
            # In this example, the inference program was saved in the file
1504
            # "./infer_model/__model__" and parameters were saved in
1505 1506 1507 1508
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1509
    """
1510 1511 1512 1513
    load_from_memory = False
    if dirname is not None:
        load_dirname = os.path.normpath(dirname)
        if not os.path.isdir(load_dirname):
1514
            raise ValueError("There is no directory named '%s'" % dirname)
1515

1516 1517
        if model_filename is None:
            model_filename = '__model__'
1518

1519 1520
        model_filename = os.path.join(load_dirname,
                                      os.path.basename(model_filename))
1521

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
        if params_filename is not None:
            params_filename = os.path.basename(params_filename)

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()
    else:
        load_from_memory = True
        if params_filename is None:
            raise ValueError(
                "The path of params cannot be None when the directory path is None."
            )
        load_dirname = dirname
        program_desc_str = model_filename
        params_filename = params_filename
1536

1537
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1538
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1539 1540 1541
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1542
    load_persistables(executor, load_dirname, program, params_filename)
1543

T
tangwei12 已提交
1544
    if pserver_endpoints:
T
tangwei12 已提交
1545
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1546

1547 1548
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1549 1550 1551 1552 1553
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1554 1555


T
tangwei12 已提交
1556 1557 1558
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1559 1560
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1561
    program._sync_with_cpp()
T
tangwei12 已提交
1562
    return program
T
tangwei12 已提交
1563 1564


X
xuwei06 已提交
1565 1566
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1578

F
fengjiayi 已提交
1579 1580
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1581

1582
            import paddle
1583
            import paddle.fluid as fluid
1584 1585

            paddle.enable_static()
F
fengjiayi 已提交
1586 1587 1588
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1589

X
xuwei06 已提交
1590
    """
1591
    assert is_parameter(para), "The input variable is not parameter."
X
xuwei06 已提交
1592

X
xuwei06 已提交
1593 1594 1595 1596 1597 1598 1599 1600
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1601
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1602

F
fengjiayi 已提交
1603 1604 1605 1606 1607 1608 1609
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1610

F
fengjiayi 已提交
1611 1612
    Returns:
        numpy.array: The parameter's values.
1613

F
fengjiayi 已提交
1614 1615 1616
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
T
tianshuo78520a 已提交
1617
        AssertionError: If there is a variable named `name` in the
F
fengjiayi 已提交
1618
                        given program but it is not a Parameter.
1619

F
fengjiayi 已提交
1620 1621 1622
    Examples:
        .. code-block:: python

1623
            import paddle
1624
            import paddle.fluid as fluid
1625 1626

            paddle.enable_static()
F
fengjiayi 已提交
1627 1628
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1629 1630
    """
    if program is None:
Y
Yu Yang 已提交
1631
        program = default_main_program()
X
xuwei06 已提交
1632 1633
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
1658
                        var_desc.type() == core.VarDesc.VarType.READER:
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
1697
                        var_desc.type() == core.VarDesc.VarType.READER:
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1711 1712


1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
def _unpack_saved_dict(saved_obj):
    temp_saved_obj = {}
    unpack_infor = {}
    for key, value in saved_obj.items():
        if isinstance(value, np.ndarray):
            MAX_NUMBER_OF_ELEMENT = 2**22
            num_element = np.prod(value.shape)
            if num_element > MAX_NUMBER_OF_ELEMENT:
                unpack_infor[key] = {}
                unpack_infor[key]["OriginShape"] = value.shape
                unpack_infor[key]["slices"] = []
                value = value.flatten()
                for i in range(
                        int(
                            math.ceil(num_element * 1.0 /
                                      MAX_NUMBER_OF_ELEMENT))):
                    part_name = key + "@@." + str(i)
                    unpack_infor[key]["slices"].append(part_name)
                    temp_saved_obj[part_name] = value[
                        i * MAX_NUMBER_OF_ELEMENT:MAX_NUMBER_OF_ELEMENT * (i + 1
                                                                           )]

    if unpack_infor:
        for key, value in unpack_infor.items():
            if key in saved_obj:
                saved_obj.pop(key)
                for part in value['slices']:
                    saved_obj[part] = temp_saved_obj[part]
        saved_obj['UnpackBigParamInfor@@'] = unpack_infor
    return saved_obj


def _pack_loaded_dict(load_obj):
    unpack_info = 'UnpackBigParamInfor@@'
    if unpack_info in load_obj:
        removes = []
        for key, value in load_obj[unpack_info].items():
            slices = [load_obj[part] for part in value["slices"]]
            load_obj[key] = np.concatenate(slices).reshape(value["OriginShape"])
            removes += value["slices"]
        for key in removes:
            load_obj.pop(key)
        load_obj.pop(unpack_info)
    return load_obj


1759
@static_only
H
hong 已提交
1760 1761
def save(program, model_path):
    """
1762 1763
    :api_attr: Static Graph

1764
    This function save parameters, optimizer information and network description to model_path.
H
hong 已提交
1765

1766 1767
    The parameters contains all the trainable Tensor, will save to a file with suffix ".pdparams".
    The optimizer information contains all the Tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no Tensor need to save (like SGD), the fill will not generated).
H
hong 已提交
1768
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
1769

H
hong 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

1780
            import paddle
1781
            import paddle.static as static
H
hong 已提交
1782

1783
            paddle.enable_static()
H
hong 已提交
1784

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()

            static.save(prog, "./temp")
H
hong 已提交
1795 1796 1797 1798
    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
1799
        "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received model_path is empty string."
H
hong 已提交
1800

1801 1802 1803 1804
    dir_name = os.path.dirname(model_path)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

Y
Yang Zhang 已提交
1805 1806 1807 1808
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1809
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1810
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
1811
    param_dict = _unpack_saved_dict(param_dict)
Y
Yang Zhang 已提交
1812
    with open(model_path + ".pdparams", 'wb') as f:
1813
        pickle.dump(param_dict, f, protocol=2)
H
hong 已提交
1814 1815 1816 1817

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1818 1819
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
1820
        pickle.dump(opt_dict, f, protocol=2)
H
hong 已提交
1821 1822 1823 1824

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
1825
    paddle.fluid.core.save_op_version_info(program.desc)
H
hong 已提交
1826 1827 1828 1829 1830

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


1831
@static_only
H
hong 已提交
1832
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1833
    """
1834 1835
    :api_attr: Static Graph

H
hong 已提交
1836
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1837
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1838

1839 1840
    This function can also load model file saved with [ save_params, save_persistables, save_vars ].
    var_list can not be None  when load single model file
H
hong 已提交
1841 1842
    ( filename is not None When save_params, save_persistables or save_vars is called ).

1843
    Args:
1844 1845
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
1846
        executor(Executor, optional): The executor used for initialize the parameter
1847
                                      When startup program is not run.
1848
        var_list(list, optional): The Tensor list to load single model file saved with
1849
                                  [ save_params, save_persistables, save_vars ].
H
hong 已提交
1850
                                  Default: None
H
hong 已提交
1851 1852 1853

    Returns:
        None
1854

H
hong 已提交
1855 1856 1857
     Examples:
        .. code-block:: python

1858
            import paddle
1859
            import paddle.static as static
H
hong 已提交
1860

1861
            paddle.enable_static()
H
hong 已提交
1862

1863 1864 1865
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)
H
hong 已提交
1866

1867 1868 1869 1870 1871 1872 1873
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()

            static.save(prog, "./temp")
            static.load(prog, "./temp")
H
hong 已提交
1874 1875
    """

1876 1877
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
1891
        _logger.debug(
H
hong 已提交
1892 1893 1894 1895 1896 1897
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
1898 1899 1900 1901 1902 1903

        if var_list is not None:
            var_list_names = [var.name for var in var_list]
        else:
            var_list_names = None

H
hong 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
1914 1915
                load_condition = var_list_names is None or var.name in var_list_names
                if var_path in binary_file_set and load_condition:
H
hong 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
                load_vars(
                    executor=executor, dirname=model_path, vars=loaded_var_list)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
1930
                    "Failed to load model file, please make sure model file is saved with the "
H
hong 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
1946
                        "loaded var [{}] is not in program variable list")
H
hong 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

            dir_name, file_name = os.path.split(model_path)
            try:
                load_vars(
                    executor=executor,
                    dirname=dir_name,
                    vars=var_list,
                    filename=file_name)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
1959 1960 1961
                raise RuntimeError("Failed to load model file , please make sure model file is saved with the " \
                                   "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                   "When these API called, filename CANNOT be None")
H
hong 已提交
1962 1963

            return
Y
Yang Zhang 已提交
1964 1965 1966 1967 1968 1969 1970 1971

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
1972 1973 1974 1975
        elif p.is_xpu_place():
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.XPUPlace(p.xpu_device_id())
Y
Yang Zhang 已提交
1976 1977 1978 1979 1980 1981
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
1982 1983

    parameter_list = list(filter(is_parameter, program.list_vars()))
1984 1985 1986 1987 1988

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
1989
    with open(parameter_file_name, 'rb') as f:
1990
        load_dict = pickle.load(f) if six.PY2 else pickle.load(
1991
            f, encoding='latin1')
1992
        load_dict = _pack_loaded_dict(load_dict)
Y
Yang Zhang 已提交
1993 1994 1995 1996 1997
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
1998 1999 2000 2001 2002

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
2003
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
2004
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
2005
            "Optimizer file [{}] not exits".format(opt_file_name)
2006 2007 2008 2009

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
2010 2011

        with open(opt_file_name, 'rb') as f:
2012
            load_dict = pickle.load(f) if six.PY2 else pickle.load(
2013
                f, encoding='latin1')
Y
Yang Zhang 已提交
2014 2015 2016 2017 2018
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
2019 2020


H
hong 已提交
2021
def load_program_state(model_path, var_list=None):
2022
    """
2023 2024
    :api_attr: Static Graph

2025
    Load program state from local file
2026

2027 2028
    Args:
        model_path(str): The file prefix store the program
2029
        var_list(list, optional): The Tensor list to load saved with
2030
                                  [ save_params, save_persistables, save_vars ].
H
hong 已提交
2031
                                  Default: None.
2032
                                  The var_list is only used to get name,
H
hong 已提交
2033
                                  will not be modified.
2034 2035 2036 2037 2038 2039
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
        .. code-block:: python

2040
            import paddle
2041
            import paddle.static as static
2042 2043

            paddle.enable_static()
2044

2045 2046 2047
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)
2048

2049 2050 2051 2052
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()
2053

2054 2055
            static.save(prog, "./temp")
            program_state = static.load_program_state("./temp")
2056
    """
H
hong 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"
    if not os.path.exists(parameter_file_name):
        # model file saved with fluid.save is not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
2069
        _logger.debug(
H
hong 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))

        var_name_list = []
        if var_list is None and os.path.isfile(model_path):
            raise ValueError(
                "var_list can not be None when model_path is a file type")

        for root, dirs, files in os.walk(model_path, topdown=False):
            for f in files:
                file_path = os.path.join(root, f)
                var_temp_name = os.path.relpath(file_path, model_path)
                var_temp_name = var_temp_name.replace("\\", "/")
                var_name_list.append(var_temp_name)

        with _load_program_scope():
            load_prog = Program()
            load_block = load_prog.global_block()

            def clone_var_to_block(block, var):
                if not isinstance(var, Variable):
                    raise TypeError("value in var_list must be variable")
                return block.create_var(
                    name=var.name,
                    shape=var.shape,
                    dtype=var.dtype,
                    type=var.type,
                    lod_level=var.lod_level
                    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR else
                    None,
                    persistable=True)

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
            def _load_vars_with_try_catch(exe,
                                          dirname,
                                          vars,
                                          filename,
                                          raise_error=True):
                try:
                    load_vars(
                        executor=exe,
                        dirname=dirname,
                        vars=vars,
                        filename=filename)
                    return True
                except:
                    error_str = "Failed to load model/variables `%s`, please make sure " \
                                "model/variables file is saved with the following APIs: " \
                                "save_params, save_persistables, save_vars."
                    filenames = [var.name for var in vars
                                 ] if filename is None else filename
                    if raise_error:
                        raise RuntimeError(error_str % filenames)
                    else:
                        warnings.warn(error_str % filenames, RuntimeWarning)
                return False

            place = paddle.fluid.CPUPlace()
            exe = paddle.fluid.Executor(place)

H
hong 已提交
2129 2130
            loaded_var_list = []

2131 2132 2133
            if os.path.isfile(model_path):
                # when model_path is file, var_list cannot be None
                dir_name, file_name = os.path.split(model_path)
H
hong 已提交
2134 2135
                for var in var_list:
                    loaded_var_list.append(clone_var_to_block(load_block, var))
2136 2137
                _load_vars_with_try_catch(exe, dir_name, loaded_var_list,
                                          file_name)
H
hong 已提交
2138
            else:
2139 2140 2141 2142 2143 2144 2145
                # var_list can be None or not None
                if var_list is not None:
                    for var in var_list:
                        loaded_var_list.append(
                            clone_var_to_block(load_block, var))
                    _load_vars_with_try_catch(exe, model_path, loaded_var_list,
                                              None)
H
hong 已提交
2146
                else:
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
                    for var_name in var_name_list:
                        # NOTE(chenweihang): If identify which files the user wants 
                        # to load from the disk, we load these variables one by one. 
                        # If a file does not exist, we only warn the user that the 
                        # file may be an irrelevant file, but does not throw an error 
                        # to ensure that other legal variables can be loaded.
                        temp_var = load_block.create_var(
                            name=var_name, persistable=True)
                        if _load_vars_with_try_catch(exe, model_path,
                                                     [temp_var], None, False):
                            loaded_var_list.append(temp_var)

H
hong 已提交
2159 2160 2161 2162 2163 2164 2165
            res_dict = {}
            for var in loaded_var_list:
                res_dict[var.name] = np.asarray(paddle.fluid.global_scope(
                ).find_var(var.name).get_tensor())

            return res_dict

2166
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
2167
        "Parameter file [{}] not exits".format(parameter_file_name)
2168 2169

    with open(parameter_file_name, 'rb') as f:
2170
        para_dict = pickle.load(f) if six.PY2 else pickle.load(
2171
            f, encoding='latin1')
2172

H
hong 已提交
2173
    opt_file_name = model_prefix + ".pdopt"
2174 2175
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
2176
            opti_dict = pickle.load(f) if six.PY2 else pickle.load(
2177
                f, encoding='latin1')
2178 2179 2180 2181 2182 2183

        para_dict.update(opti_dict)

    return para_dict


2184
@static_only
2185 2186
def set_program_state(program, state_dict):
    """
2187 2188
    :api_attr: Static Graph

2189 2190
    Set program parameter from state_dict

2191
    An exception will throw if shape or dtype of the parameters is not match.
2192 2193 2194 2195 2196 2197

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
2198
    Returns:
2199
        None
2200

2201 2202
    Examples:
        .. code-block:: python
2203

2204
            import paddle
2205
            import paddle.static as static
2206 2207

            paddle.enable_static()
2208

2209 2210 2211
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)
2212

2213 2214 2215 2216
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()
2217

2218 2219
            static.save(prog, "./temp")
            program_state = static.load_program_state("./temp")
H
hong 已提交
2220

2221
            static.set_program_state(prog, program_state)
2222 2223 2224 2225 2226 2227 2228
    """
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
2229
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
2230 2231 2232 2233
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
2234
            assert orig_para_np.shape == new_para_np.shape, \
2235
                "Parameter's shape does not match, the Program requires a parameter with the shape of ({}), " \
T
tangwei12 已提交
2236
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
2237
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
2238
            assert orig_para_np.dtype == new_para_np.dtype, \
2239
                "Parameter's data type does not match, the Program requires a parameter with a dtype of ({}), " \
T
tangwei12 已提交
2240
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
2241 2242 2243 2244 2245
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

Q
QingshuChen 已提交
2246 2247
            #assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
            #    "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
2248 2249 2250 2251 2252 2253 2254
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())
Q
QingshuChen 已提交
2255 2256 2257 2258
            elif ten_place.is_xpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.XPUPlace(p.xpu_device_id())
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
            "This list is not set, Because of Paramerter not found in program. There are: {}".
            format(" ".join(unused_para_list)))