io.py 80.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
H
hong 已提交
23
import contextlib
24
from functools import reduce
25

H
hong 已提交
26 27
import numpy as np

28 29 30
import paddle
import paddle.reader
from paddle.reader import *
31
from paddle.fluid import layers
H
hong 已提交
32
from paddle.fluid.executor import Executor, global_scope
33
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
34
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
35
    program_guard, dygraph_not_support
36
from .wrapped_decorator import signature_safe_contextmanager
T
tangwei12 已提交
37
from paddle.fluid.compiler import CompiledProgram
38
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
39
from . import reader
40
from . import unique_name
S
sneaxiy 已提交
41
from .reader import *
42 43
from . import dataloader
from .dataloader import *
K
fix bug  
Kexin Zhao 已提交
44
from . import core
45
from .. import compat as cpt
46

47 48
batch = paddle.batch

49
__all__ = [
50 51 52 53 54 55 56 57 58 59 60 61 62
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
63 64
    'get_program_parameter',
    'get_program_persistable_vars',
65
] + reader.__all__ + paddle.reader.__all__
66

67 68
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
69

70 71

def is_parameter(var):
F
fengjiayi 已提交
72 73
    """
    Check whether the given variable is an instance of Parameter.
74 75

    Args:
F
fengjiayi 已提交
76
        var(Variable): The variable to be checked.
77 78

    Returns:
F
fengjiayi 已提交
79 80 81 82 83 84
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

85
            import paddle.fluid as fluid
F
fengjiayi 已提交
86 87
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
88
    """
89 90 91 92
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

106
            import paddle.fluid as fluid
107
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
108 109
            res = fluid.io.is_persistable(param)
    """
110
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
111 112
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
113
        return False
114 115 116
    return var.persistable


H
hong 已提交
117
def is_belong_to_optimizer(var):
118
    if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
119 120 121
        return is_persistable(var)

    return False
H
hong 已提交
122 123


124
@dygraph_not_support
H
hong 已提交
125 126
def get_program_parameter(program):
    """
127 128
    :api_attr: Static Graph

H
hong 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


149
@dygraph_not_support
H
hong 已提交
150 151
def get_program_persistable_vars(program):
    """
152 153
    :api_attr: Static Graph

H
hong 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


174 175
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
191 192


193
@signature_safe_contextmanager
H
hong 已提交
194 195 196 197 198 199 200 201 202 203
def _load_program_scope(main=None, startup=None, scope=None):
    prog = main if main else paddle.fluid.Program()
    startup_prog = startup if startup else paddle.fluid.Program()
    scope = scope if scope else paddle.fluid.core.Scope()
    with paddle.fluid.scope_guard(scope):
        with paddle.fluid.program_guard(prog, startup_prog):
            with paddle.fluid.unique_name.guard():
                yield


C
chengduo 已提交
204 205 206 207 208 209
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
210 211 212
            raise TypeError(
                "The type of input main_program is invalid, expected tyep is Program, but received None"
            )
C
chengduo 已提交
213 214 215
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
216 217 218
        raise TypeError(
            "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
            % type(main_program))
C
chengduo 已提交
219 220 221
    return main_program


222
@dygraph_not_support
223 224 225 226 227
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
228
              filename=None):
229
    """
230 231
    :api_attr: Static Graph

232
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
233

234 235 236
    There are two ways to specify the variables to be saved: set variables in 
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
237

238
    The `dirname` is used to specify the folder where to save variables.
T
tianshuo78520a 已提交
239
    If you prefer to save variables in separate files in the `dirname` folder,
240
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
241
    use `filename` to specify it.
242

F
fengjiayi 已提交
243 244
    Args:
        executor(Executor): The executor to run for saving variables.
245 246
        dirname(str, optional): The folder where to save variables.
                            When you need to save the parameter to the memory, set it to None.
247
        main_program(Program, optional): The program whose variables will be saved.
248
                                    If it is None, the default main program will
F
fengjiayi 已提交
249 250
                                    be used automatically.
                                    Default: None
251 252 253 254 255 256 257 258
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
                                       `predicate(variable) == True`. 
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
                                 use `filename` to specify it. Otherwise, let `filename` be None. 
                                 Default: None
F
fengjiayi 已提交
259 260

    Returns:
261 262
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
263 264 265 266 267 268 269

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

270
            import paddle.fluid as fluid
271

272 273 274 275 276 277 278 279 280 281 282
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
283

284
            # The first usage: use `vars` to set the saved variables.
285 286
            var_list = [w, b]
            path = "./my_paddle_vars"
287
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
288 289 290 291 292 293 294 295 296 297
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
298
    """
299 300 301 302
    save_to_memory = False
    if dirname is None and filename is None:
        save_to_memory = True

C
chengduo 已提交
303
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
304

305
    if vars is None:
306
        return save_vars(
307
            executor,
308
            main_program=main_program,
309
            dirname=dirname,
310
            vars=list(filter(predicate, main_program.list_vars())),
311
            filename=filename)
312
    else:
313
        params_var_name = unique_name.generate("saved_params")
314 315 316 317 318 319 320
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

321 322
        save_program = Program()
        save_block = save_program.global_block()
323 324

        save_var_map = {}
325
        for each_var in vars:
326 327 328
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
329
            new_var = _clone_var_in_block_(save_block, each_var)
330 331 332
            if filename is None and save_to_memory is False:
                save_file_path = os.path.join(
                    os.path.normpath(dirname), new_var.name)
333 334 335 336
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
337
                    attrs={'file_path': os.path.normpath(save_file_path)})
338 339 340
            else:
                save_var_map[new_var.name] = new_var

341
        if filename is not None or save_to_memory:
342 343 344 345
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

346 347 348 349 350 351 352
            save_path = str()
            if save_to_memory is False:
                save_path = os.path.join(os.path.normpath(dirname), filename)

            saved_params = save_block.create_var(
                type=core.VarDesc.VarType.RAW, name=params_var_name)
            saved_params.desc.set_persistable(True)
353
            save_block.append_op(
354 355
                type='save_combine',
                inputs={'X': save_var_list},
356 357 358 359 360
                outputs={'Y': saved_params},
                attrs={
                    'file_path': save_path,
                    'save_to_memory': save_to_memory
                })
361

362 363 364 365
        #NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
366
        executor.run(save_program)
367 368
        if save_to_memory:
            return global_scope().find_var(params_var_name).get_bytes()
369 370


371
@dygraph_not_support
372
def save_params(executor, dirname, main_program=None, filename=None):
373
    """
374 375
    :api_attr: Static Graph

G
guofei 已提交
376 377 378
    This operator saves all parameters from the :code:`main_program` to
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
379

G
guofei 已提交
380 381 382
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
383 384
    the file name.

G
guofei 已提交
385 386 387 388 389 390 391 392 393 394
    Note: 
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you can NOT save 
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead. 
        
        If you want to save your model for the inference, please use the 
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
395 396

    Args:
G
guofei 已提交
397 398
        executor(Executor): The executor to run for saving parameters, You can 
                            refer to :ref:`api_guide_executor_en`.
399 400
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
G
guofei 已提交
401 402 403 404 405 406 407 408 409 410
        main_program(Program, optional): The program whose parameters will be
                                         saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more 
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
411 412

    Returns:
413 414
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
415 416 417 418

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
419
            import paddle.fluid as fluid
G
guofei 已提交
420 421 422 423 424 425 426 427 428 429
           
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
    
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
            
F
fengjiayi 已提交
430
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
431 432 433 434
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
            # The parameters weights and bias of the fc layer in the network are going to 
            # be saved in different files in the path "./my_paddle_model" 
435
    """
436
    return save_vars(
437 438
        executor,
        dirname=dirname,
439
        main_program=main_program,
440
        vars=None,
441
        predicate=is_parameter,
442
        filename=filename)
443 444


445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

467
            import paddle.fluid as fluid
468 469 470 471 472 473 474 475 476 477
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
T
tianshuo78520a 已提交
478
        receive params on pserver through rpc.
479 480 481 482 483 484 485 486 487 488
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
489 490 491 492 493 494 495
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
496 497 498

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
499
                slice = optimizer.slice
500 501 502
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
503 504 505
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
506 507
                endpoints[index] = endpoint

T
tangwei12 已提交
508 509 510 511 512
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

513
            block.append_op(
T
tangwei12 已提交
514 515 516 517 518 519 520 521 522 523 524
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name)
                })

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
T
tangwei12 已提交
554 555
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
556 557 558 559 560 561
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
562
        raise TypeError("'main_program' should be an instance of Program.")
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


596
@dygraph_not_support
597
def save_persistables(executor, dirname, main_program=None, filename=None):
598
    """
599 600
    :api_attr: Static Graph

G
guofei 已提交
601 602 603 604 605
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
    saves these persistables variables to the folder :code:`dirname` or file 
    :code:`filename`. 
F
fengjiayi 已提交
606

G
guofei 已提交
607
    The :code:`dirname` is used to specify the folder where persistable variables
608
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
609 610
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
611 612 613

    Args:
        executor(Executor): The executor to run for saving persistable variables.
G
guofei 已提交
614 615
                            You can refer to :ref:`api_guide_executor_en` for 
                            more details.
616 617 618
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
        main_program(Program, optional): The program whose persistbale variables will
G
guofei 已提交
619 620 621 622 623 624 625 626
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
                                         If it is None, the default main program will 
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
627 628

    Returns:
629 630
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
631 632 633 634

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
635
            import paddle.fluid as fluid
G
guofei 已提交
636 637 638 639 640 641 642 643 644 645
        
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
           
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
646
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
647 648 649 650 651
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
            # The persistables variables weights and bias in the fc layer of the network 
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
652
    """
653
    if main_program and main_program._is_distributed:
654
        return _save_distributed_persistables(
655 656
            executor, dirname=dirname, main_program=main_program)
    else:
657
        return save_vars(
658 659 660 661 662 663
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
664 665


666
@dygraph_not_support
667 668 669 670 671
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
672
              filename=None):
673
    """
674 675
    :api_attr: Static Graph

676
    This API loads variables from files by executor.
F
fengjiayi 已提交
677

678 679 680 681
    There are two ways to specify the variables to be loaded: the first way, set
    variables in a list and assign it to the `vars`; the second way, use the 
    `predicate` function to select variables that make `predicate(variable) == True`. 
    The first way has a higher priority.
F
fengjiayi 已提交
682

683
    The `dirname` is used to specify the folder where to load variables.
684
    If variables were saved in separate files in the folder `dirname`,
685
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
686
    use `filename` to specify it.
687

F
fengjiayi 已提交
688 689
    Args:
        executor(Executor): The executor to run for loading variables.
690 691
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
692
                                    If it is None, the default main program will
F
fengjiayi 已提交
693 694
                                    be used automatically.
                                    Default: None
695
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
696
                                   Default: None
697 698 699 700 701 702
        predicate(function, optional): The function selects variables that make 
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
703 704 705 706 707 708 709 710 711 712

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

713
            import paddle.fluid as fluid
714

715 716 717 718 719 720 721 722 723 724 725
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
726

727 728 729 730 731 732 733 734 735 736 737
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
738
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
739 740 741
            def name_has_fc(var):
                res = "fc" in var.name
                return res
742 743 744
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
745
                               vars=None, predicate=name_has_fc)
746 747
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
748

749
    """
750 751 752 753 754
    vars_from_memory = False
    if dirname is not None:
        dirname = os.path.normpath(dirname)
    else:
        vars_from_memory = True
T
tangwei12 已提交
755

756
    if vars is None:
757
        if main_program is None:
Y
Yu Yang 已提交
758
            main_program = default_main_program()
759
        if not isinstance(main_program, Program):
760 761 762
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
763 764 765

        load_vars(
            executor,
766
            dirname=dirname,
T
tangwei12 已提交
767
            main_program=main_program,
768
            vars=list(filter(predicate, main_program.list_vars())),
769
            filename=filename)
770 771 772
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
773

774 775
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
776

777
        if not isinstance(main_program, Program):
778 779 780
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
781

T
tangwei12 已提交
782
        # save origin param shape
H
hong 已提交
783
        orig_para_shape = {}
784
        load_var_map = {}
785 786
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
787 788
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
789 790

            if isinstance(each_var, Parameter):
791 792
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
793
            new_var = _clone_var_in_block_(load_block, each_var)
794
            if filename is None:
795 796 797 798
                if dirname is None:
                    raise ValueError(
                        "The directory path and params cannot be None at the same time."
                    )
799 800 801 802
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
803
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
804 805 806
            else:
                load_var_map[new_var.name] = new_var

807
        if filename is not None:
808 809 810 811
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

812 813 814
            if vars_from_memory is False:
                filename = os.path.join(dirname, filename)

815
            load_block.append_op(
816
                type='load_combine',
817
                inputs={},
818
                outputs={"Out": load_var_list},
819 820 821 822
                attrs={
                    'file_path': filename,
                    'model_from_memory': vars_from_memory
                })
823 824
        executor.run(load_prog)

T
tangwei12 已提交
825
        # check var shape
H
hong 已提交
826 827 828 829 830 831
        for each_var in vars:
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
832
            assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
H
hong 已提交
833 834 835
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
836
                    "Variable's shape does not match, the Program requires a parameter with the shape of ({}), "
H
hong 已提交
837 838 839
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

840

841
@dygraph_not_support
842
def load_params(executor, dirname, main_program=None, filename=None):
843
    """
844 845
    :api_attr: Static Graph

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
865 866

    Args:
867 868
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
869
        dirname(str): The directory path.
870 871 872 873 874 875 876 877
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
878 879 880 881 882 883 884

    Returns:
        None

    Examples:
        .. code-block:: python

885
            import paddle.fluid as fluid
886

F
fengjiayi 已提交
887 888 889
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
890
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
891
                                main_program=None)
892 893
    """
    load_vars(
894 895 896
        executor,
        dirname=dirname,
        main_program=main_program,
897
        predicate=is_parameter,
898
        filename=filename)
899 900


901
@dygraph_not_support
902
def load_persistables(executor, dirname, main_program=None, filename=None):
903
    """
904 905
    :api_attr: Static Graph
    
906 907
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
T
tianshuo78520a 已提交
908
    directory ``dirname`` or the file ``filename``.
F
fengjiayi 已提交
909

910 911 912 913
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
914 915

    Args:
916 917
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
918
        dirname(str): The directory path.
T
tianshuo78520a 已提交
919
        main_program(Program, optional): The program whose persistable variables will
920 921 922 923 924 925 926
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
927 928 929 930 931 932 933

    Returns:
        None

    Examples:
        .. code-block:: python

934
            import paddle.fluid as fluid
935

F
fengjiayi 已提交
936 937 938
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
939
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
940
                                       main_program=None)
941
    """
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

973
            import paddle.fluid as fluid
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                load_block.append_op(
T
tangwei12 已提交
1007 1008 1009 1010 1011 1012 1013 1014
                    type='load',
                    inputs={},
                    outputs={'Out': [slice]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name),
                        'seek': offset,
                        'shape': slice.shape
                    })
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
1037
        raise TypeError("'main_program' should be an instance of Program.")
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
1052 1053


1054 1055 1056
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
1057 1058 1059
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
1060 1061
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
1062 1063 1064
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
1065

1066
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
1067
        out = global_block.var(name)
W
Wu Yi 已提交
1068
        global_block._prepend_op(
K
Kexin Zhao 已提交
1069 1070
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
1071
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
1072 1073 1074
            attrs={'col': i})


1075 1076 1077
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
1078 1079
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
1080 1081 1082
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
1083

1084
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
1085 1086 1087 1088 1089 1090 1091
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


1092
@dygraph_not_support
1093 1094 1095 1096
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1097
                         main_program=None,
1098
                         model_filename=None,
1099
                         params_filename=None,
T
tangwei12 已提交
1100 1101
                         export_for_deployment=True,
                         program_only=False):
1102
    """
1103 1104
    :api_attr: Static Graph

F
fengjiayi 已提交
1105
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1106
    and then save it and all related parameters to given `dirname` .
1107
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1108 1109
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1110

G
guofei 已提交
1111 1112 1113 1114 1115
    Note:
        The :code:`dirname` is used to specify the folder where inference model 
        structure and parameters are going to be saved. If you would like to save params of
        Program in separate files, set `params_filename` None; if you would like to save all 
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1116 1117 1118

    Args:
        dirname(str): The directory path to save the inference model.
T
tianshuo78520a 已提交
1119
        feeded_var_names(list[str]): list of string. Names of variables that need to be fed
G
guofei 已提交
1120 1121 1122 1123 1124 1125
                                     data during inference.
        target_vars(list[Variable]): list of Variable. Variables from which we can get 
                                     inference results.
        executor(Executor): The executor that saves the inference model. You can refer 
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
T
tianshuo78520a 已提交
1126
                                         build the inference model. If is set None,
G
guofei 已提交
1127 1128 1129
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
T
tianshuo78520a 已提交
1130
                                       itself. If is set None, a default filename
G
guofei 已提交
1131 1132
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
T
tianshuo78520a 已提交
1133
                                        If it is set None, parameters will be saved
G
guofei 已提交
1134
                                        in separate files .
X
Xin Pan 已提交
1135 1136 1137 1138 1139
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1140 1141 1142 1143
                                     Default: True.
        program_only(bool, optional): If True, It will save inference program only, and do not 
                                      save params of Program.
                                      Default: False.
1144

F
fengjiayi 已提交
1145
    Returns:
G
guofei 已提交
1146 1147 1148 1149
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1150 1151

    Raises:
G
guofei 已提交
1152 1153
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1154 1155 1156

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1157

1158 1159
            import paddle.fluid as fluid

F
fengjiayi 已提交
1160 1161
            path = "./infer_model"

T
tianshuo78520a 已提交
1162
            # User defined network, here a softmax regession example
G
guofei 已提交
1163 1164
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1182 1183 1184
            # In this example, the save_inference_mode inference will prune the default
            # main program according to the network's input node (img) and output node(predict). 
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1185
            # and parameters are going to be saved in separate files under folder
1186
            # "./infer_model".
1187 1188

    """
M
minqiyang 已提交
1189
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1190
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1191
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1192
        if len(feeded_var_names) > 0:
1193
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1194
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1195
                    isinstance(name, six.string_types)
1196
                    for name in feeded_var_names)):
M
minqiyang 已提交
1197
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1198 1199

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1200
        target_vars = [target_vars]
X
Xin Pan 已提交
1201
    elif export_for_deployment:
1202 1203
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1204 1205
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1206
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1207

1208 1209 1210
    # remind user to set auc_states to zeros if the program contains auc op 
    all_ops = main_program.global_block().ops
    for op in all_ops:
1211 1212 1213
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
1214 1215 1216 1217 1218 1219
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1220 1221 1222 1223 1224
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1225
        for i, var in enumerate(target_vars):
1226
            if isinstance(var, Variable):
F
flame 已提交
1227 1228 1229
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1230
        target_vars = uniq_target_vars
F
flame 已提交
1231
    target_var_name_list = [var.name for var in target_vars]
1232

1233
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1234
    save_dirname = dirname
1235
    try:
L
lujun 已提交
1236 1237
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1238 1239 1240 1241
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1242 1243 1244 1245
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1246
    model_basename = os.path.join(save_dirname, model_basename)
1247

X
Xin Pan 已提交
1248 1249 1250 1251
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1252 1253 1254

    origin_program = main_program.clone()

X
Xin Pan 已提交
1255
    if export_for_deployment:
X
Xin Pan 已提交
1256 1257
        main_program = main_program.clone()
        global_block = main_program.global_block()
1258
        need_to_remove_op_index = []
X
Xin Pan 已提交
1259 1260 1261
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1262 1263 1264 1265 1266
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1267
        main_program.desc.flush()
X
Xin Pan 已提交
1268

1269 1270
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1271
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1272 1273
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1274 1275 1276
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1277 1278
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1279 1280
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1281 1282 1283
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1284 1285
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1286

T
tangwei12 已提交
1287 1288 1289 1290 1291 1292
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1293 1294
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1295 1296
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1297

L
lujun 已提交
1298
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1299
    return target_var_name_list
X
fix  
Xin Pan 已提交
1300

1301

1302
@dygraph_not_support
1303 1304 1305
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1306 1307
                         params_filename=None,
                         pserver_endpoints=None):
1308
    """
1309 1310
    :api_attr: Static Graph

1311 1312 1313
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1314
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1315

F
fengjiayi 已提交
1316
    Args:
1317 1318 1319
        dirname(str): One of the following:
          - The given directory path.
          - Set to None when reading the model from memory.
F
fengjiayi 已提交
1320
        executor(Executor): The executor to run for loading inference model.
1321
                            See :ref:`api_guide_executor_en` for more details about it.
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
        model_filename(str, optional): One of the following:
          - The name of file to load the inference program.
          - If it is None, the default filename ``__model__`` will be used.
          - When ``dirname`` is ``None``, it must be set to a string containing model.
          Default: ``None``.
        params_filename(str, optional): It is only used for the case that all
            parameters were saved in a single binary file. One of the following:
          - The name of file to load all parameters.  
          - When ``dirname`` is ``None``, it must be set to a string containing all the parameters.
          - If parameters were saved in separate files, set it as ``None``.
            Default: ``None``.
1333 1334 1335 1336

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1337
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1338 1339

    Returns:
1340
        list: The return of this API is a list with three elements:
1341
        (program, feed_target_names, fetch_targets). The `program` is a
1342 1343 1344 1345 1346
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1347 1348 1349 1350 1351 1352 1353

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1354 1355
            import paddle.fluid as fluid
            import numpy as np
1356 1357

            # Build the model
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1369 1370

            # Save the inference model
F
fengjiayi 已提交
1371
            path = "./infer_model"
1372 1373
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1374 1375 1376

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1377 1378
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1379
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1380 1381 1382 1383
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1384 1385 1386
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1387
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1388
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1389 1390
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1391
                                              pserver_endpoints=endpoints))
1392

1393
            # In this example, the inference program was saved in the file
1394
            # "./infer_model/__model__" and parameters were saved in
1395 1396 1397 1398
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1399
    """
1400 1401 1402 1403
    load_from_memory = False
    if dirname is not None:
        load_dirname = os.path.normpath(dirname)
        if not os.path.isdir(load_dirname):
1404
            raise ValueError("There is no directory named '%s'" % dirname)
1405

1406 1407
        if model_filename is None:
            model_filename = '__model__'
1408

1409 1410
        model_filename = os.path.join(load_dirname,
                                      os.path.basename(model_filename))
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
        if params_filename is not None:
            params_filename = os.path.basename(params_filename)

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()
    else:
        load_from_memory = True
        if params_filename is None:
            raise ValueError(
                "The path of params cannot be None when the directory path is None."
            )
        load_dirname = dirname
        program_desc_str = model_filename
        params_filename = params_filename
1426

1427
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1428
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1429 1430 1431
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1432
    load_persistables(executor, load_dirname, program, params_filename)
1433

T
tangwei12 已提交
1434
    if pserver_endpoints:
T
tangwei12 已提交
1435
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1436

1437 1438
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1439 1440 1441 1442 1443
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1444 1445


T
tangwei12 已提交
1446 1447 1448
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1449 1450
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1451
    program._sync_with_cpp()
T
tangwei12 已提交
1452
    return program
T
tangwei12 已提交
1453 1454


X
xuwei06 已提交
1455 1456
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1468

F
fengjiayi 已提交
1469 1470
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1471

1472
            import paddle.fluid as fluid
F
fengjiayi 已提交
1473 1474 1475
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1476

X
xuwei06 已提交
1477
    """
1478
    assert is_parameter(para), "The input variable is not parameter."
X
xuwei06 已提交
1479

X
xuwei06 已提交
1480 1481 1482 1483 1484 1485 1486 1487
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1488
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1489

F
fengjiayi 已提交
1490 1491 1492 1493 1494 1495 1496
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1497

F
fengjiayi 已提交
1498 1499
    Returns:
        numpy.array: The parameter's values.
1500

F
fengjiayi 已提交
1501 1502 1503
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
T
tianshuo78520a 已提交
1504
        AssertionError: If there is a variable named `name` in the
F
fengjiayi 已提交
1505
                        given program but it is not a Parameter.
1506

F
fengjiayi 已提交
1507 1508 1509
    Examples:
        .. code-block:: python

1510
            import paddle.fluid as fluid
F
fengjiayi 已提交
1511 1512
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1513 1514
    """
    if program is None:
Y
Yu Yang 已提交
1515
        program = default_main_program()
X
xuwei06 已提交
1516 1517
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1595 1596


1597
@dygraph_not_support
H
hong 已提交
1598 1599
def save(program, model_path):
    """
1600 1601 1602 1603 1604
    :api_attr: Static Graph
	:alias_main: paddle.save
	:alias: paddle.save,paddle.tensor.save,paddle.tensor.io.save
	:old_api: paddle.fluid.save

H
hong 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
    This function save parameters, optimizer information and network description to  model_path.

    The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
    The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
    
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
1630
        "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received model_path is empty string."
H
hong 已提交
1631

1632 1633 1634 1635
    dir_name = os.path.dirname(model_path)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

Y
Yang Zhang 已提交
1636 1637 1638 1639
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1640
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1641 1642
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
    with open(model_path + ".pdparams", 'wb') as f:
1643
        pickle.dump(param_dict, f, protocol=2)
H
hong 已提交
1644 1645 1646 1647

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1648 1649
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
1650
        pickle.dump(opt_dict, f, protocol=2)
H
hong 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(program.desc)

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


1661
@dygraph_not_support
H
hong 已提交
1662
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1663
    """
1664 1665 1666 1667 1668
    :api_attr: Static Graph
	:alias_main: paddle.load
	:alias: paddle.load,paddle.tensor.load,paddle.tensor.io.load
	:old_api: paddle.fluid.io.load

H
hong 已提交
1669
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1670
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1671

H
hong 已提交
1672 1673 1674 1675
    This function can also load model file saved with [ save_params, save_persistables, save_vars ]. 
    var_list can not be None  when load single model file 
    ( filename is not None When save_params, save_persistables or save_vars is called ).

H
hong 已提交
1676
    Args: 
1677 1678 1679 1680
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
        executor(Executor, optional): The executor used for initialize the parameter 
                                      When startup program is not run.
H
hong 已提交
1681 1682 1683
        var_list(list, optional): The variable list to load single model file saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None
H
hong 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

    Returns:
        None
        
     Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

            fluid.load( prog, "./temp")

    """

1700 1701
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
1715
        _logger.debug(
H
hong 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
                if var_path in binary_file_set:
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
                load_vars(
                    executor=executor, dirname=model_path, vars=loaded_var_list)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
1747
                    "Failed to load model file, please make sure model file is saved with the "
H
hong 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
1763
                        "loaded var [{}] is not in program variable list")
H
hong 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

            dir_name, file_name = os.path.split(model_path)
            try:
                load_vars(
                    executor=executor,
                    dirname=dir_name,
                    vars=var_list,
                    filename=file_name)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError( "Failed to load model file , please make sure model file is saved with the " \
                                    "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                    "When these API called, filename CANNOT be None")

            return
Y
Yang Zhang 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
1795 1796

    parameter_list = list(filter(is_parameter, program.list_vars()))
1797 1798 1799 1800 1801

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
1802
    with open(parameter_file_name, 'rb') as f:
1803
        load_dict = pickle.load(f) if six.PY2 else pickle.load(
1804
            f, encoding='latin1')
Y
Yang Zhang 已提交
1805 1806 1807 1808 1809
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
1810 1811 1812 1813 1814

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
1815
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
1816
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
1817
            "Optimizer file [{}] not exits".format(opt_file_name)
1818 1819 1820 1821

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
1822 1823

        with open(opt_file_name, 'rb') as f:
1824
            load_dict = pickle.load(f) if six.PY2 else pickle.load(
1825
                f, encoding='latin1')
Y
Yang Zhang 已提交
1826 1827 1828 1829 1830
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
1831 1832


1833
@dygraph_not_support
H
hong 已提交
1834
def load_program_state(model_path, var_list=None):
1835
    """
1836 1837
    :api_attr: Static Graph

1838 1839 1840 1841
    Load program state from local file
    
    Args:
        model_path(str): The file prefix store the program
H
hong 已提交
1842 1843 1844 1845 1846
        var_list(list, optional): The variable list to load saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None.
                                  The var_list is only used to get name, 
                                  will not be modified.
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")
            
    """
H
hong 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"
    if not os.path.exists(parameter_file_name):
        # model file saved with fluid.save is not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
1879
        _logger.debug(
H
hong 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))

        var_name_list = []
        if var_list is None and os.path.isfile(model_path):
            raise ValueError(
                "var_list can not be None when model_path is a file type")

        for root, dirs, files in os.walk(model_path, topdown=False):
            for f in files:
                file_path = os.path.join(root, f)
                var_temp_name = os.path.relpath(file_path, model_path)
                var_temp_name = var_temp_name.replace("\\", "/")
                var_name_list.append(var_temp_name)

        with _load_program_scope():
            load_prog = Program()
            load_block = load_prog.global_block()

            def clone_var_to_block(block, var):
                if not isinstance(var, Variable):
                    raise TypeError("value in var_list must be variable")
                return block.create_var(
                    name=var.name,
                    shape=var.shape,
                    dtype=var.dtype,
                    type=var.type,
                    lod_level=var.lod_level
                    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR else
                    None,
                    persistable=True)

            loaded_var_list = []

            if var_list is not None:
                for var in var_list:
                    loaded_var_list.append(clone_var_to_block(load_block, var))
            else:
                for var_name in var_name_list:
                    loaded_var_list.append(
                        load_block.create_var(
                            name=var_name, persistable=True))

            place = paddle.fluid.CPUPlace()
            exe = paddle.fluid.Executor(place)

            try:
                if os.path.isfile(model_path):
                    dir_name, file_name = os.path.split(model_path)
                else:
                    dir_name = model_path
                    file_name = None
                load_vars(
                    executor=exe,
                    dirname=dir_name,
                    vars=loaded_var_list,
                    filename=file_name)
            except:
                raise RuntimeError(
                    "Failed to load model file , please make sure model file is saved with the "
                    "following APIs: save_params, save_persistables, save_vars")
            res_dict = {}
            for var in loaded_var_list:
                res_dict[var.name] = np.asarray(paddle.fluid.global_scope(
                ).find_var(var.name).get_tensor())

            return res_dict

1948
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
1949
        "Parameter file [{}] not exits".format(parameter_file_name)
1950 1951

    with open(parameter_file_name, 'rb') as f:
1952
        para_dict = pickle.load(f) if six.PY2 else pickle.load(
1953
            f, encoding='latin1')
1954

H
hong 已提交
1955
    opt_file_name = model_prefix + ".pdopt"
1956 1957
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
1958
            opti_dict = pickle.load(f) if six.PY2 else pickle.load(
1959
                f, encoding='latin1')
1960 1961 1962 1963 1964 1965

        para_dict.update(opti_dict)

    return para_dict


1966
@dygraph_not_support
1967 1968
def set_program_state(program, state_dict):
    """
1969 1970
    :api_attr: Static Graph

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
    Set program parameter from state_dict

    An exception will throw if shape or dtype of the parameters is not match. 

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
    Returns: 
        None
    
    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")

H
hong 已提交
1999 2000
            fluid.set_program_state( prog, program_state)

2001 2002 2003 2004 2005 2006 2007
    """
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
2008
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
2009 2010 2011 2012
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
2013
            assert orig_para_np.shape == new_para_np.shape, \
2014
                "Parameter's shape does not match, the Program requires a parameter with the shape of ({}), " \
T
tangwei12 已提交
2015
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
2016
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
2017
            assert orig_para_np.dtype == new_para_np.dtype, \
2018
                "Parameter's data type does not match, the Program requires a parameter with a dtype of ({}), " \
T
tangwei12 已提交
2019
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
2020 2021 2022 2023 2024 2025
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

            assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
T
tangwei12 已提交
2026
                "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
            "This list is not set, Because of Paramerter not found in program. There are: {}".
            format(" ".join(unused_para_list)))