io.py 53.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
22
from functools import reduce
23

24
from paddle.fluid import layers
X
Xin Pan 已提交
25
from paddle.fluid.executor import Executor
26
from paddle.fluid.evaluator import Evaluator
27
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
T
tangwei12 已提交
28
from paddle.fluid.compiler import CompiledProgram
29
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
30 31
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
32
from . import core
33
from .. import compat as cpt
34 35

__all__ = [
T
tangwei12 已提交
36
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
37
    'load_persistables', 'save_inference_model', 'load_inference_model'
S
sneaxiy 已提交
38
] + reader.__all__
39

40 41
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
42

43 44

def is_parameter(var):
F
fengjiayi 已提交
45 46
    """
    Check whether the given variable is an instance of Parameter.
47 48

    Args:
F
fengjiayi 已提交
49
        var(Variable): The variable to be checked.
50 51

    Returns:
F
fengjiayi 已提交
52 53 54 55 56 57
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

58
            import paddle.fluid as fluid
F
fengjiayi 已提交
59 60
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
61
    """
62 63 64 65
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

79
            import paddle.fluid as fluid
80
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
81 82
            res = fluid.io.is_persistable(param)
    """
83
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
84 85
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
86
        return False
87 88 89 90 91
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
107 108


109 110 111 112 113
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
114
              filename=None):
115
    """
F
fengjiayi 已提交
116 117
    Save variables to the given directory by executor.

118 119 120 121
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
122
    are assigned, the `main_program` and the `predicate` will be ignored.
123

124 125 126
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
127
    use `filename` to specify it.
128

F
fengjiayi 已提交
129 130 131
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
132 133
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
134 135
                                    be used automatically.
                                    Default: None
136
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
137 138
                                   It has a higher priority than the `main_program`.
                                   Default: None
139 140 141 142
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
143 144
                                  `vars` is None).
                                  Default: None
145
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
146 147 148 149 150 151 152 153 154 155 156 157
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

158 159 160 161 162 163 164 165 166 167 168 169
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
170

171
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
172 173 174 175
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
176
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
177
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
178 179 180 181 182
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
183 184
            var_list = [w, b]
            path = "./my_paddle_vars"
185
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
186 187
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
188
            # saved in the same file named 'var_file' in the path "./my_paddle_vars".
189
    """
L
lujun 已提交
190
    save_dirname = os.path.normpath(dirname)
T
tangwei12 已提交
191

192
    if vars is None:
193
        if main_program is None:
Y
Yu Yang 已提交
194
            main_program = default_main_program()
195
        if not isinstance(main_program, Program):
196 197 198 199
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
200
            main_program=main_program,
L
lujun 已提交
201
            dirname=save_dirname,
202
            vars=list(filter(predicate, main_program.list_vars())),
203
            filename=filename)
204 205 206
    else:
        save_program = Program()
        save_block = save_program.global_block()
207

208 209 210 211 212
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

213
        save_var_map = {}
214
        for each_var in vars:
215 216 217
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
218
            new_var = _clone_var_in_block_(save_block, each_var)
219
            if filename is None:
220 221 222 223
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
L
lujun 已提交
224 225 226
                    attrs={
                        'file_path': os.path.join(save_dirname, new_var.name)
                    })
227 228 229
            else:
                save_var_map[new_var.name] = new_var

230
        if filename is not None:
231 232 233 234
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

235
            save_block.append_op(
236 237
                type='save_combine',
                inputs={'X': save_var_list},
238
                outputs={},
L
lujun 已提交
239
                attrs={'file_path': os.path.join(save_dirname, filename)})
240

241 242 243
        executor.run(save_program)


244
def save_params(executor, dirname, main_program=None, filename=None):
245
    """
F
fengjiayi 已提交
246 247 248
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

249 250 251
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
252 253
    the file name.

254 255 256
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
257 258 259
    and `load_persistables()` instead. If you want to save your model for
    the inference, please use the `save_inference_model` API. You can refer
    to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
260 261 262 263 264 265 266 267

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
268 269
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
270 271 272 273 274 275 276 277 278
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
279 280
            import paddle.fluid as fluid

F
fengjiayi 已提交
281 282 283
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
284
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
285
                                 main_program=None)
286 287 288 289
    """
    save_vars(
        executor,
        dirname=dirname,
290
        main_program=main_program,
291
        vars=None,
292
        predicate=is_parameter,
293
        filename=filename)
294 295


296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

318
            import paddle.fluid as fluid
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
443
        raise TypeError("'main_program' should be an instance of Program.")
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


477
def save_persistables(executor, dirname, main_program=None, filename=None):
478
    """
479 480
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
481 482
    or file `filename`.

483 484 485
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
486 487 488 489 490
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
491 492
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
493 494
                                    program will be used automatically.
                                    Default: None
495
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
496 497 498 499 500 501 502 503 504
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
505 506
            import paddle.fluid as fluid

F
fengjiayi 已提交
507 508
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
509
            # `prog` can be a program defined by the user
F
fengjiayi 已提交
510
            prog = fluid.default_main_program()
511
            fluid.io.save_persistables(executor=exe, dirname=param_path,
512
                                       main_program=prog)
513
    """
514 515 516 517 518 519 520 521 522 523 524 525 526

    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)

    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
527 528


529 530 531 532 533
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
534
              filename=None):
535
    """
F
fengjiayi 已提交
536 537
    Load variables from the given directory by executor.

538 539 540 541
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
542 543
    are assigned, the `main_program` and the `predicate` will be ignored.

544 545 546
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
547
    use `filename` to specify it.
548

F
fengjiayi 已提交
549 550 551
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
552 553
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
554 555
                                    be used automatically.
                                    Default: None
556
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
557 558
                                   It has a higher priority than the `main_program`.
                                   Default: None
559 560 561 562
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
563 564
                                  `vars` is None).
                                  Default: None
565
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
566 567 568 569 570 571 572 573 574 575 576 577
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

578 579 580 581 582 583 584 585 586 587 588 589
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
590

591
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
592 593 594 595
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
596 597 598
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
599
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
600 601 602 603
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.

            # The second usage: using `vars` to specify variables
604 605 606 607
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
608
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
609
                               filename="vars_file")
610 611
            # w and b will be loaded. And they are supposed to haven
            # been saved in the same file named 'var_file' in the path "./my_paddle_vars".
612
    """
L
lujun 已提交
613
    load_dirname = os.path.normpath(dirname)
T
tangwei12 已提交
614

615
    if vars is None:
616
        if main_program is None:
Y
Yu Yang 已提交
617
            main_program = default_main_program()
618
        if not isinstance(main_program, Program):
619 620 621 622
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
623
            dirname=load_dirname,
T
tangwei12 已提交
624
            main_program=main_program,
625
            vars=list(filter(predicate, main_program.list_vars())),
626
            filename=filename)
627 628 629
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
630

631 632
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
633

634 635 636
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

637
        load_var_map = {}
638 639
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
640 641
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
642
            new_var = _clone_var_in_block_(load_block, each_var)
643
            if filename is None:
644 645 646 647
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
648 649 650
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
651 652 653
            else:
                load_var_map[new_var.name] = new_var

654
        if filename is not None:
655 656 657 658
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

659
            load_block.append_op(
660
                type='load_combine',
661
                inputs={},
662
                outputs={"Out": load_var_list},
L
lujun 已提交
663
                attrs={'file_path': os.path.join(load_dirname, filename)})
664 665 666
        executor.run(load_prog)


667
def load_params(executor, dirname, main_program=None, filename=None):
668
    """
F
fengjiayi 已提交
669
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
670
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
671 672
    the file `filename`.

673 674 675
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
676 677
    `filename` to specify the file name.

678 679 680 681
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
682 683 684
    If you want to load the pre-trained model structure and parameters
    for the inference, please use the `load_inference_model` API. You can
    refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
685 686 687 688 689 690 691 692

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
693
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
694 695 696 697 698 699 700 701 702
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

703
            import paddle.fluid as fluid
F
fengjiayi 已提交
704 705 706
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
707
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
708
                                main_program=None)
709 710
    """
    load_vars(
711 712 713
        executor,
        dirname=dirname,
        main_program=main_program,
714
        predicate=is_parameter,
715
        filename=filename)
716 717


718
def load_persistables(executor, dirname, main_program=None, filename=None):
719
    """
720 721
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
722 723
    `dirname` or the file `filename`.

724 725 726
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
727 728 729 730 731
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
732 733
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
734 735
                                    program will be used automatically.
                                    Default: None
736
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
737 738 739 740 741 742 743 744 745
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

746
            import paddle.fluid as fluid
F
fengjiayi 已提交
747 748 749
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
750
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
751
                                       main_program=None)
752
    """
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

784
            import paddle.fluid as fluid
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

T
tangwei12 已提交
832 833 834 835
                dim1_flatten = 1
                if len(slice.shape) >= 2:
                    dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
870
        raise TypeError("'main_program' should be an instance of Program.")
871 872 873 874 875 876 877 878 879 880 881 882 883 884

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
885 886


887 888 889
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
890 891 892
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
893 894
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
895 896 897
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
898

899
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
900
        out = global_block.var(name)
W
Wu Yi 已提交
901
        global_block._prepend_op(
K
Kexin Zhao 已提交
902 903
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
904
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
905 906 907
            attrs={'col': i})


908 909 910
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
911 912
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
913 914 915
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
916

917
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
918 919 920 921 922 923 924
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


925 926 927 928
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
929
                         main_program=None,
930
                         model_filename=None,
931
                         params_filename=None,
T
tangwei12 已提交
932 933
                         export_for_deployment=True,
                         program_only=False):
934
    """
F
fengjiayi 已提交
935 936
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.
937 938 939 940
    If you just want to save parameters of your trained model, please use the
    `save_params` API. You can refer to :ref:`api_guide_model_save_reader_en` for
    more details.

F
fengjiayi 已提交
941 942 943

    Args:
        dirname(str): The directory path to save the inference model.
944
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
945
                                     during inference.
946
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
947 948
                                     results.
        executor(Executor): The executor that saves the inference model.
949 950
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
951 952
                                    the default main program will be used.
                                    Default: None.
953 954
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
955
                                  `__model__` will be used.
956 957
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
958
                                   in separate files .
X
Xin Pan 已提交
959 960 961 962 963
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
T
tangwei12 已提交
964
        program_only(bool): If True, It will save inference program only, and do not save params of Program.
965

F
fengjiayi 已提交
966
    Returns:
F
flame 已提交
967
        target_var_name_list(list): The fetch variables' name list
F
fengjiayi 已提交
968 969 970 971 972 973 974

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
975

976 977
            import paddle.fluid as fluid

F
fengjiayi 已提交
978 979
            path = "./infer_model"

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
            # User defined network, here a softmax regresssion example
            image = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

            # In this example, the function will prune the default main program
            # to make it suitable for infering the `predict` var. The pruned
1002
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1003
            # and parameters are going to be saved in separate files under folder
1004
            # "./infer_model".
1005 1006

    """
M
minqiyang 已提交
1007
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1008
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1009
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1010
        if len(feeded_var_names) > 0:
1011
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1012
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1013
                    isinstance(name, six.string_types)
1014
                    for name in feeded_var_names)):
M
minqiyang 已提交
1015
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1016 1017

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1018
        target_vars = [target_vars]
X
Xin Pan 已提交
1019
    elif export_for_deployment:
1020 1021
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1022 1023
            raise ValueError("'target_vars' should be a list of Variable.")

1024
    if main_program is None:
Y
Yu Yang 已提交
1025
        main_program = default_main_program()
D
dzhwinter 已提交
1026
        if main_program._is_mem_optimized:
D
dzhwinter 已提交
1027 1028 1029 1030 1031 1032
            warnings.warn(
                "save_inference_model must put before you call memory_optimize. \
                                            the memory_optimize will modify the original program, \
                                            is not suitable for saving inference model \
                                            we save the original program as inference model.",
                RuntimeWarning)
X
Xin Pan 已提交
1033

T
tangwei12 已提交
1034 1035 1036
    elif not isinstance(main_program, Program):
        raise TypeError("program should be as Program type or None")

1037 1038 1039 1040 1041
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1042
        for i, var in enumerate(target_vars):
1043
            if isinstance(var, Variable):
F
flame 已提交
1044 1045 1046
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1047
        target_vars = uniq_target_vars
F
flame 已提交
1048
    target_var_name_list = [var.name for var in target_vars]
1049

1050
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1051
    save_dirname = dirname
1052
    try:
L
lujun 已提交
1053 1054
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1055 1056 1057 1058
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1059 1060 1061 1062
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1063
    model_basename = os.path.join(save_dirname, model_basename)
1064

X
Xin Pan 已提交
1065 1066 1067 1068
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1069 1070 1071

    origin_program = main_program.clone()

X
Xin Pan 已提交
1072
    if export_for_deployment:
X
Xin Pan 已提交
1073 1074
        main_program = main_program.clone()
        global_block = main_program.global_block()
1075
        need_to_remove_op_index = []
X
Xin Pan 已提交
1076 1077 1078
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1079 1080 1081 1082 1083
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1084
        main_program.desc.flush()
X
Xin Pan 已提交
1085

X
Xin Pan 已提交
1086 1087
        main_program = main_program._prune(targets=target_vars)
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1088 1089
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1090 1091 1092 1093 1094
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1095 1096 1097
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1098 1099
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1100

T
tangwei12 已提交
1101 1102 1103 1104 1105 1106
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1107 1108
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1109 1110
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1111

L
lujun 已提交
1112
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1113
    return target_var_name_list
X
fix  
Xin Pan 已提交
1114

1115

1116 1117 1118
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1119 1120
                         params_filename=None,
                         pserver_endpoints=None):
1121
    """
1122 1123 1124 1125
    Load inference model from a directory. By this API, you can get the model
    structure(inference program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the `load_params` API.
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1126

F
fengjiayi 已提交
1127 1128 1129 1130
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1131
                                  If it is None, the default filename
F
fengjiayi 已提交
1132 1133 1134
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1135 1136 1137
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1138
                                   files, set it as 'None'.
1139 1140 1141 1142
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1143 1144 1145

    Returns:
        tuple: The return of this function is a tuple with three elements:
1146 1147 1148 1149 1150
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1151 1152 1153 1154 1155 1156 1157 1158
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
            import paddle.fluid as fluid
            import numpy as np
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
1172
            path = "./infer_model"
1173 1174 1175
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
1176 1177
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
F
fengjiayi 已提交
1178 1179 1180 1181
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1182 1183
            # endpoints is your pserver endpoints list, the above is just an example
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1184
            # if we need lookup table, we will use:
1185
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1186 1187
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1188
                                              pserver_endpoints=endpoints))
1189

1190
            # In this example, the inference program was saved in the
1191
            # "./infer_model/__model__" and parameters were saved in
1192
            # separate files in "./infer_model".
1193 1194
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1195
            # program to get the inference result.
1196
    """
L
lujun 已提交
1197 1198
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1199 1200
        raise ValueError("There is no directory named '%s'", dirname)

1201 1202
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1203
    else:
1204
        model_filename = "__model__"
L
lujun 已提交
1205
    model_filename = os.path.join(load_dirname, model_filename)
1206 1207 1208

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1209

1210
    with open(model_filename, "rb") as f:
1211 1212
        program_desc_str = f.read()

1213
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1214
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1215 1216 1217
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1218
    load_persistables(executor, load_dirname, program, params_filename)
1219

T
tangwei12 已提交
1220
    if pserver_endpoints:
T
tangwei12 已提交
1221
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1222

1223 1224
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1225 1226 1227 1228 1229
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1230 1231


T
tangwei12 已提交
1232 1233 1234
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1235 1236
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1237
    program._sync_with_cpp()
T
tangwei12 已提交
1238
    return program
T
tangwei12 已提交
1239 1240


X
xuwei06 已提交
1241 1242
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1254

F
fengjiayi 已提交
1255 1256
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1257

1258
            import paddle.fluid as fluid
F
fengjiayi 已提交
1259 1260 1261
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1262

X
xuwei06 已提交
1263
    """
X
xuwei06 已提交
1264 1265
    assert is_parameter(para)

X
xuwei06 已提交
1266 1267 1268 1269 1270 1271 1272 1273
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1274
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1275

F
fengjiayi 已提交
1276 1277 1278 1279 1280 1281 1282
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1283

F
fengjiayi 已提交
1284 1285
    Returns:
        numpy.array: The parameter's values.
1286

F
fengjiayi 已提交
1287 1288 1289 1290 1291
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1292

F
fengjiayi 已提交
1293 1294 1295
    Examples:
        .. code-block:: python

1296
            import paddle.fluid as fluid
F
fengjiayi 已提交
1297 1298
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1299 1300
    """
    if program is None:
Y
Yu Yang 已提交
1301
        program = default_main_program()
X
xuwei06 已提交
1302 1303
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)