io.py 55.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
22
from functools import reduce
23

H
hong 已提交
24 25
import numpy as np

26 27 28
import paddle
import paddle.reader
from paddle.reader import *
29
from paddle.fluid import layers
X
Xin Pan 已提交
30
from paddle.fluid.executor import Executor
31
from paddle.fluid.evaluator import Evaluator
32
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
T
tangwei12 已提交
33
from paddle.fluid.compiler import CompiledProgram
34
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
35 36
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
37
from . import core
38
from .. import compat as cpt
39

40 41
batch = paddle.batch

42
__all__ = [
T
tangwei12 已提交
43
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
44 45
    'load_persistables', 'save_inference_model', 'load_inference_model', 'batch'
] + reader.__all__ + paddle.reader.__all__
46

47 48
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
49

50 51

def is_parameter(var):
F
fengjiayi 已提交
52 53
    """
    Check whether the given variable is an instance of Parameter.
54 55

    Args:
F
fengjiayi 已提交
56
        var(Variable): The variable to be checked.
57 58

    Returns:
F
fengjiayi 已提交
59 60 61 62 63 64
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

65
            import paddle.fluid as fluid
F
fengjiayi 已提交
66 67
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
68
    """
69 70 71 72
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

86
            import paddle.fluid as fluid
87
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
88 89
            res = fluid.io.is_persistable(param)
    """
90
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
91 92
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
93
        return False
94 95 96 97 98
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
114 115


C
chengduo 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
            raise TypeError("program should be as Program type or None")
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
        raise TypeError("program should be as Program type or None")
    return main_program


130 131 132 133 134
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
135
              filename=None):
136
    """
F
fengjiayi 已提交
137 138
    Save variables to the given directory by executor.

139 140 141 142
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
143
    are assigned, the `main_program` and the `predicate` will be ignored.
144

145 146 147
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
148
    use `filename` to specify it.
149

F
fengjiayi 已提交
150 151 152
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
153 154
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
155 156
                                    be used automatically.
                                    Default: None
157
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
158 159
                                   It has a higher priority than the `main_program`.
                                   Default: None
160 161 162 163
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
164 165
                                  `vars` is None).
                                  Default: None
166
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
167 168 169 170 171 172 173 174 175 176 177 178
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

179 180 181 182 183 184 185 186 187 188 189 190
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
191

192
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
193 194 195 196
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
197
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
198
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
199 200 201 202 203
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
204 205
            var_list = [w, b]
            path = "./my_paddle_vars"
206
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
207 208
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
209
            # saved in the same file named 'var_file' in the path "./my_paddle_vars".
210
    """
L
lujun 已提交
211
    save_dirname = os.path.normpath(dirname)
C
chengduo 已提交
212
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
213

214 215 216
    if vars is None:
        save_vars(
            executor,
217
            main_program=main_program,
L
lujun 已提交
218
            dirname=save_dirname,
219
            vars=list(filter(predicate, main_program.list_vars())),
220
            filename=filename)
221
    else:
222 223 224 225 226 227 228
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

229 230
        save_program = Program()
        save_block = save_program.global_block()
231 232

        save_var_map = {}
233
        for each_var in vars:
234 235 236
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
237
            new_var = _clone_var_in_block_(save_block, each_var)
238
            if filename is None:
239 240
                save_file_path = os.path.join(save_dirname, new_var.name)
                save_file_path = os.path.normpath(save_file_path)
241 242 243 244
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
245
                    attrs={'file_path': save_file_path})
246 247 248
            else:
                save_var_map[new_var.name] = new_var

249
        if filename is not None:
250 251 252 253
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

254
            save_block.append_op(
255 256
                type='save_combine',
                inputs={'X': save_var_list},
257
                outputs={},
L
lujun 已提交
258
                attrs={'file_path': os.path.join(save_dirname, filename)})
259

260 261 262
        executor.run(save_program)


263
def save_params(executor, dirname, main_program=None, filename=None):
264
    """
F
fengjiayi 已提交
265 266 267
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

268 269 270
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
271 272
    the file name.

273 274 275
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
276 277 278
    and `load_persistables()` instead. If you want to save your model for
    the inference, please use the `save_inference_model` API. You can refer
    to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
279 280 281 282 283 284 285 286

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
287 288
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
289 290 291 292 293 294 295 296 297
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
298 299
            import paddle.fluid as fluid

F
fengjiayi 已提交
300 301 302
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
303
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
304
                                 main_program=None)
305 306 307 308
    """
    save_vars(
        executor,
        dirname=dirname,
309
        main_program=main_program,
310
        vars=None,
311
        predicate=is_parameter,
312
        filename=filename)
313 314


315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

337
            import paddle.fluid as fluid
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
462
        raise TypeError("'main_program' should be an instance of Program.")
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


496
def save_persistables(executor, dirname, main_program=None, filename=None):
497
    """
498 499
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
500 501
    or file `filename`.

502 503 504
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
505 506 507 508 509
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
510 511
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
512 513
                                    program will be used automatically.
                                    Default: None
514
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
515 516 517 518 519 520 521 522 523
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
524 525
            import paddle.fluid as fluid

F
fengjiayi 已提交
526 527
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
528
            # `prog` can be a program defined by the user
F
fengjiayi 已提交
529
            prog = fluid.default_main_program()
530
            fluid.io.save_persistables(executor=exe, dirname=param_path,
531
                                       main_program=prog)
532
    """
533 534 535 536 537 538 539 540 541 542 543
    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
544 545


546 547 548 549 550
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
551
              filename=None):
552
    """
F
fengjiayi 已提交
553 554
    Load variables from the given directory by executor.

555 556 557 558
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
559 560
    are assigned, the `main_program` and the `predicate` will be ignored.

561 562 563
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
564
    use `filename` to specify it.
565

F
fengjiayi 已提交
566 567 568
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
569 570
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
571 572
                                    be used automatically.
                                    Default: None
573
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
574 575
                                   It has a higher priority than the `main_program`.
                                   Default: None
576 577 578 579
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
580 581
                                  `vars` is None).
                                  Default: None
582
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
583 584 585 586 587 588 589 590 591 592 593 594
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

595 596 597 598 599 600 601 602 603 604 605 606
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
607

608
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
609 610 611 612
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
613 614 615
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
616
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
617 618 619 620
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.

            # The second usage: using `vars` to specify variables
621 622 623 624
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
625
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
626
                               filename="vars_file")
627 628
            # w and b will be loaded. And they are supposed to haven
            # been saved in the same file named 'var_file' in the path "./my_paddle_vars".
629
    """
L
lujun 已提交
630
    load_dirname = os.path.normpath(dirname)
T
tangwei12 已提交
631

632
    if vars is None:
633
        if main_program is None:
Y
Yu Yang 已提交
634
            main_program = default_main_program()
635
        if not isinstance(main_program, Program):
636 637 638 639
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
640
            dirname=load_dirname,
T
tangwei12 已提交
641
            main_program=main_program,
642
            vars=list(filter(predicate, main_program.list_vars())),
643
            filename=filename)
644 645 646
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
647

648 649
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
650

651 652 653
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

H
hong 已提交
654 655
        #save origin param shape
        orig_para_shape = {}
656
        load_var_map = {}
657 658
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
659 660
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
661 662 663 664 665 666

            if isinstance(each_var, Parameter):
                var_temp = paddle.fluid.global_scope().find_var(each_var.name)
                assert var_temp != None, "can't not find var: " + each_var.name
                orig_para_shape[each_var.name] = (
                    np.array(var_temp.get_tensor())).shape
667
            new_var = _clone_var_in_block_(load_block, each_var)
668
            if filename is None:
669 670 671 672
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
673 674 675
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
676 677 678
            else:
                load_var_map[new_var.name] = new_var

679
        if filename is not None:
680 681 682 683
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

684
            load_block.append_op(
685
                type='load_combine',
686
                inputs={},
687
                outputs={"Out": load_var_list},
L
lujun 已提交
688
                attrs={'file_path': os.path.join(load_dirname, filename)})
689 690
        executor.run(load_prog)

H
hong 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
        #check var shape
        for each_var in vars:
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
            assert each_var.name in orig_para_shape, earch_var.name + "MUST in var list"
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
                    "Shape not matching: the Program requires a parameter with a shape of ({}), "
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

706

707
def load_params(executor, dirname, main_program=None, filename=None):
708
    """
F
fengjiayi 已提交
709
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
710
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
711 712
    the file `filename`.

713 714 715
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
716 717
    `filename` to specify the file name.

718 719 720 721
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
722 723 724
    If you want to load the pre-trained model structure and parameters
    for the inference, please use the `load_inference_model` API. You can
    refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
725 726 727 728 729 730 731 732

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
733
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
734 735 736 737 738 739 740 741 742
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

743
            import paddle.fluid as fluid
F
fengjiayi 已提交
744 745 746
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
747
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
748
                                main_program=None)
749 750
    """
    load_vars(
751 752 753
        executor,
        dirname=dirname,
        main_program=main_program,
754
        predicate=is_parameter,
755
        filename=filename)
756 757


758
def load_persistables(executor, dirname, main_program=None, filename=None):
759
    """
760 761
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
762 763
    `dirname` or the file `filename`.

764 765 766
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
767 768 769 770 771
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
772 773
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
774 775
                                    program will be used automatically.
                                    Default: None
776
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
777 778 779 780 781 782 783 784 785
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

786
            import paddle.fluid as fluid
F
fengjiayi 已提交
787 788 789
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
790
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
791
                                       main_program=None)
792
    """
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

824
            import paddle.fluid as fluid
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

T
tangwei12 已提交
872 873 874 875
                dim1_flatten = 1
                if len(slice.shape) >= 2:
                    dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
910
        raise TypeError("'main_program' should be an instance of Program.")
911 912 913 914 915 916 917 918 919 920 921 922 923 924

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
925 926


927 928 929
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
930 931 932
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
933 934
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
935 936 937
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
938

939
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
940
        out = global_block.var(name)
W
Wu Yi 已提交
941
        global_block._prepend_op(
K
Kexin Zhao 已提交
942 943
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
944
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
945 946 947
            attrs={'col': i})


948 949 950
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
951 952
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
953 954 955
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
956

957
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
958 959 960 961 962 963 964
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


965 966 967 968
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
969
                         main_program=None,
970
                         model_filename=None,
971
                         params_filename=None,
T
tangwei12 已提交
972 973
                         export_for_deployment=True,
                         program_only=False):
974
    """
F
fengjiayi 已提交
975 976
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.
977 978 979 980
    If you just want to save parameters of your trained model, please use the
    `save_params` API. You can refer to :ref:`api_guide_model_save_reader_en` for
    more details.

F
fengjiayi 已提交
981 982 983

    Args:
        dirname(str): The directory path to save the inference model.
984
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
985
                                     during inference.
986
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
987 988
                                     results.
        executor(Executor): The executor that saves the inference model.
989 990
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
991 992
                                    the default main program will be used.
                                    Default: None.
993 994
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
995
                                  `__model__` will be used.
996 997
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
998
                                   in separate files .
X
Xin Pan 已提交
999 1000 1001 1002 1003
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
T
tangwei12 已提交
1004
        program_only(bool): If True, It will save inference program only, and do not save params of Program.
1005

F
fengjiayi 已提交
1006
    Returns:
F
flame 已提交
1007
        target_var_name_list(list): The fetch variables' name list
F
fengjiayi 已提交
1008 1009 1010 1011 1012 1013 1014

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1015

1016 1017
            import paddle.fluid as fluid

F
fengjiayi 已提交
1018 1019
            path = "./infer_model"

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
            # User defined network, here a softmax regresssion example
            image = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

            # In this example, the function will prune the default main program
            # to make it suitable for infering the `predict` var. The pruned
1042
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1043
            # and parameters are going to be saved in separate files under folder
1044
            # "./infer_model".
1045 1046

    """
M
minqiyang 已提交
1047
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1048
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1049
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1050
        if len(feeded_var_names) > 0:
1051
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1052
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1053
                    isinstance(name, six.string_types)
1054
                    for name in feeded_var_names)):
M
minqiyang 已提交
1055
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1056 1057

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1058
        target_vars = [target_vars]
X
Xin Pan 已提交
1059
    elif export_for_deployment:
1060 1061
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1062 1063
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1064
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074
    # remind user to set auc_states to zeros if the program contains auc op 
    all_ops = main_program.global_block().ops
    for op in all_ops:
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1075 1076 1077 1078 1079
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1080
        for i, var in enumerate(target_vars):
1081
            if isinstance(var, Variable):
F
flame 已提交
1082 1083 1084
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1085
        target_vars = uniq_target_vars
F
flame 已提交
1086
    target_var_name_list = [var.name for var in target_vars]
1087

1088
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1089
    save_dirname = dirname
1090
    try:
L
lujun 已提交
1091 1092
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1093 1094 1095 1096
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1097 1098 1099 1100
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1101
    model_basename = os.path.join(save_dirname, model_basename)
1102

X
Xin Pan 已提交
1103 1104 1105 1106
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1107 1108 1109

    origin_program = main_program.clone()

X
Xin Pan 已提交
1110
    if export_for_deployment:
X
Xin Pan 已提交
1111 1112
        main_program = main_program.clone()
        global_block = main_program.global_block()
1113
        need_to_remove_op_index = []
X
Xin Pan 已提交
1114 1115 1116
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1117 1118 1119 1120 1121
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1122
        main_program.desc.flush()
X
Xin Pan 已提交
1123

1124
        main_program = main_program._prune(feeded_var_names, target_vars)
X
Xin Pan 已提交
1125
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1126 1127
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1128 1129 1130
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1131 1132
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1133 1134
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1135 1136 1137
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1138 1139
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1140

T
tangwei12 已提交
1141 1142 1143 1144 1145 1146
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1147 1148
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1149 1150
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1151

L
lujun 已提交
1152
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1153
    return target_var_name_list
X
fix  
Xin Pan 已提交
1154

1155

1156 1157 1158
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1159 1160
                         params_filename=None,
                         pserver_endpoints=None):
1161
    """
1162 1163 1164 1165
    Load inference model from a directory. By this API, you can get the model
    structure(inference program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the `load_params` API.
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1166

F
fengjiayi 已提交
1167 1168 1169 1170
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1171
                                  If it is None, the default filename
F
fengjiayi 已提交
1172 1173 1174
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1175 1176 1177
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1178
                                   files, set it as 'None'.
1179 1180 1181 1182
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1183 1184 1185

    Returns:
        tuple: The return of this function is a tuple with three elements:
1186 1187 1188 1189 1190
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1191 1192 1193 1194 1195 1196 1197 1198
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
            import paddle.fluid as fluid
            import numpy as np
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
1212
            path = "./infer_model"
1213 1214 1215
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
1216 1217
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
F
fengjiayi 已提交
1218 1219 1220 1221
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1222 1223
            # endpoints is your pserver endpoints list, the above is just an example
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1224
            # if we need lookup table, we will use:
1225
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1226 1227
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1228
                                              pserver_endpoints=endpoints))
1229

1230
            # In this example, the inference program was saved in the
1231
            # "./infer_model/__model__" and parameters were saved in
1232
            # separate files in "./infer_model".
1233 1234
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1235
            # program to get the inference result.
1236
    """
L
lujun 已提交
1237 1238
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1239 1240
        raise ValueError("There is no directory named '%s'", dirname)

1241 1242
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1243
    else:
1244
        model_filename = "__model__"
L
lujun 已提交
1245
    model_filename = os.path.join(load_dirname, model_filename)
1246 1247 1248

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1249

1250
    with open(model_filename, "rb") as f:
1251 1252
        program_desc_str = f.read()

1253
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1254
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1255 1256 1257
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1258
    load_persistables(executor, load_dirname, program, params_filename)
1259

T
tangwei12 已提交
1260
    if pserver_endpoints:
T
tangwei12 已提交
1261
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1262

1263 1264
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1265 1266 1267 1268 1269
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1270 1271


T
tangwei12 已提交
1272 1273 1274
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1275 1276
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1277
    program._sync_with_cpp()
T
tangwei12 已提交
1278
    return program
T
tangwei12 已提交
1279 1280


X
xuwei06 已提交
1281 1282
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1294

F
fengjiayi 已提交
1295 1296
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1297

1298
            import paddle.fluid as fluid
F
fengjiayi 已提交
1299 1300 1301
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1302

X
xuwei06 已提交
1303
    """
X
xuwei06 已提交
1304 1305
    assert is_parameter(para)

X
xuwei06 已提交
1306 1307 1308 1309 1310 1311 1312 1313
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1314
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1315

F
fengjiayi 已提交
1316 1317 1318 1319 1320 1321 1322
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1323

F
fengjiayi 已提交
1324 1325
    Returns:
        numpy.array: The parameter's values.
1326

F
fengjiayi 已提交
1327 1328 1329 1330 1331
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1332

F
fengjiayi 已提交
1333 1334 1335
    Examples:
        .. code-block:: python

1336
            import paddle.fluid as fluid
F
fengjiayi 已提交
1337 1338
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1339 1340
    """
    if program is None:
Y
Yu Yang 已提交
1341
        program = default_main_program()
X
xuwei06 已提交
1342 1343
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)