io.py 71.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
23
from functools import reduce
24

H
hong 已提交
25 26
import numpy as np

27 28 29
import paddle
import paddle.reader
from paddle.reader import *
30
from paddle.fluid import layers
H
hong 已提交
31
from paddle.fluid.executor import Executor, global_scope
32
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
33 34
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
    program_guard
T
tangwei12 已提交
35
from paddle.fluid.compiler import CompiledProgram
36
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
37 38
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
39
from . import core
40
from .. import compat as cpt
41

42 43
batch = paddle.batch

44
__all__ = [
45 46 47 48 49 50 51 52 53 54 55 56 57
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
58 59
    'get_program_parameter',
    'get_program_persistable_vars',
60
] + reader.__all__ + paddle.reader.__all__
61

62 63
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
64

65 66

def is_parameter(var):
F
fengjiayi 已提交
67 68
    """
    Check whether the given variable is an instance of Parameter.
69 70

    Args:
F
fengjiayi 已提交
71
        var(Variable): The variable to be checked.
72 73

    Returns:
F
fengjiayi 已提交
74 75 76 77 78 79
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

80
            import paddle.fluid as fluid
F
fengjiayi 已提交
81 82
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
83
    """
84 85 86 87
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

101
            import paddle.fluid as fluid
102
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
103 104
            res = fluid.io.is_persistable(param)
    """
105
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
106 107
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
108
        return False
109 110 111
    return var.persistable


H
hong 已提交
112
def is_belong_to_optimizer(var):
113 114 115 116
    if not isinstance(var, Parameter):
        return is_persistable(var)

    return False
H
hong 已提交
117 118


H
hong 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
def get_program_parameter(program):
    """
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


def get_program_persistable_vars(program):
    """
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


163 164
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
180 181


C
chengduo 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
            raise TypeError("program should be as Program type or None")
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
        raise TypeError("program should be as Program type or None")
    return main_program


196 197 198 199 200
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
201
              filename=None):
202
    """
203
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
204

205 206 207
    There are two ways to specify the variables to be saved: set variables in 
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
208

209 210 211
    The `dirname` is used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the `dirname` floder,
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
212
    use `filename` to specify it.
213

F
fengjiayi 已提交
214 215
    Args:
        executor(Executor): The executor to run for saving variables.
216 217
        dirname(str): The folder where to save variables.
        main_program(Program, optional): The program whose variables will be saved.
218
                                    If it is None, the default main program will
F
fengjiayi 已提交
219 220
                                    be used automatically.
                                    Default: None
221 222 223 224 225 226 227 228
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
                                       `predicate(variable) == True`. 
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
                                 use `filename` to specify it. Otherwise, let `filename` be None. 
                                 Default: None
F
fengjiayi 已提交
229 230 231 232 233 234 235 236 237 238

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

239
            import paddle.fluid as fluid
240

241 242 243 244 245 246 247 248 249 250 251
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
252

253
            # The first usage: use `vars` to set the saved variables.
254 255
            var_list = [w, b]
            path = "./my_paddle_vars"
256
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
257 258 259 260 261 262 263 264 265 266
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
267
    """
L
lujun 已提交
268
    save_dirname = os.path.normpath(dirname)
C
chengduo 已提交
269
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
270

271 272 273
    if vars is None:
        save_vars(
            executor,
274
            main_program=main_program,
L
lujun 已提交
275
            dirname=save_dirname,
276
            vars=list(filter(predicate, main_program.list_vars())),
277
            filename=filename)
278
    else:
279 280 281 282 283 284 285
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

286 287
        save_program = Program()
        save_block = save_program.global_block()
288 289

        save_var_map = {}
290
        for each_var in vars:
291 292 293
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
294
            new_var = _clone_var_in_block_(save_block, each_var)
295
            if filename is None:
296 297
                save_file_path = os.path.join(save_dirname, new_var.name)
                save_file_path = os.path.normpath(save_file_path)
298 299 300 301
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
302
                    attrs={'file_path': save_file_path})
303 304 305
            else:
                save_var_map[new_var.name] = new_var

306
        if filename is not None:
307 308 309 310
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

311
            save_block.append_op(
312 313
                type='save_combine',
                inputs={'X': save_var_list},
314
                outputs={},
L
lujun 已提交
315
                attrs={'file_path': os.path.join(save_dirname, filename)})
316

317 318 319 320
        #NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
321 322 323
        executor.run(save_program)


324
def save_params(executor, dirname, main_program=None, filename=None):
325
    """
G
guofei 已提交
326 327 328
    This operator saves all parameters from the :code:`main_program` to
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
329

G
guofei 已提交
330 331 332
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
333 334
    the file name.

G
guofei 已提交
335 336 337 338 339 340 341 342 343 344
    Note: 
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you can NOT save 
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead. 
        
        If you want to save your model for the inference, please use the 
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
345 346

    Args:
G
guofei 已提交
347 348
        executor(Executor): The executor to run for saving parameters, You can 
                            refer to :ref:`api_guide_executor_en`.
F
fengjiayi 已提交
349
        dirname(str): The saving directory path.
G
guofei 已提交
350 351 352 353 354 355 356 357 358 359
        main_program(Program, optional): The program whose parameters will be
                                         saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more 
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
360 361 362 363 364 365 366

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
367
            import paddle.fluid as fluid
G
guofei 已提交
368 369 370 371 372 373 374 375 376 377
           
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
    
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
            
F
fengjiayi 已提交
378
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
379 380 381 382
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
            # The parameters weights and bias of the fc layer in the network are going to 
            # be saved in different files in the path "./my_paddle_model" 
383 384 385 386
    """
    save_vars(
        executor,
        dirname=dirname,
387
        main_program=main_program,
388
        vars=None,
389
        predicate=is_parameter,
390
        filename=filename)
391 392


393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

415
            import paddle.fluid as fluid
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
437 438 439 440 441 442 443
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
444 445 446

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
447
                slice = optimizer.slice
448 449 450
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
451 452 453
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
454 455
                endpoints[index] = endpoint

T
tangwei12 已提交
456 457 458 459 460
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

461
            block.append_op(
T
tangwei12 已提交
462 463 464 465 466 467 468 469 470 471 472
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name)
                })

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
T
tangwei12 已提交
502 503
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
504 505 506 507 508 509
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
510
        raise TypeError("'main_program' should be an instance of Program.")
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


544
def save_persistables(executor, dirname, main_program=None, filename=None):
545
    """
G
guofei 已提交
546 547 548 549 550
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
    saves these persistables variables to the folder :code:`dirname` or file 
    :code:`filename`. 
F
fengjiayi 已提交
551

G
guofei 已提交
552
    The :code:`dirname` is used to specify the folder where persistable variables
553
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
554 555
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
556 557 558

    Args:
        executor(Executor): The executor to run for saving persistable variables.
G
guofei 已提交
559 560 561 562 563 564 565 566 567 568 569 570
                            You can refer to :ref:`api_guide_executor_en` for 
                            more details.
        dirname(str): The saving directory path.
        main_program(Program, optional): The program whose persistbale variables will
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
                                         If it is None, the default main program will 
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
571 572 573 574 575 576 577

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
578
            import paddle.fluid as fluid
G
guofei 已提交
579 580 581 582 583 584 585 586 587 588
        
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
           
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
589
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
590 591 592 593 594
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
            # The persistables variables weights and bias in the fc layer of the network 
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
595
    """
596 597 598 599 600 601 602 603 604 605 606
    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
607 608


609 610 611 612 613
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
614
              filename=None):
615
    """
616
    This API loads variables from files by executor.
F
fengjiayi 已提交
617

618 619 620 621
    There are two ways to specify the variables to be loaded: the first way, set
    variables in a list and assign it to the `vars`; the second way, use the 
    `predicate` function to select variables that make `predicate(variable) == True`. 
    The first way has a higher priority.
F
fengjiayi 已提交
622

623
    The `dirname` is used to specify the folder where to load variables.
624
    If variables were saved in separate files in the folder `dirname`,
625
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
626
    use `filename` to specify it.
627

F
fengjiayi 已提交
628 629
    Args:
        executor(Executor): The executor to run for loading variables.
630 631
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
632
                                    If it is None, the default main program will
F
fengjiayi 已提交
633 634
                                    be used automatically.
                                    Default: None
635
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
636
                                   Default: None
637 638 639 640 641 642
        predicate(function, optional): The function selects variables that make 
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
643 644 645 646 647 648 649 650 651 652

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

653
            import paddle.fluid as fluid
654

655 656 657 658 659 660 661 662 663 664 665
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
666

667 668 669 670 671 672 673 674 675 676 677
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
678
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
679 680 681
            def name_has_fc(var):
                res = "fc" in var.name
                return res
682 683 684
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
685
                               vars=None, predicate=name_has_fc)
686 687
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
688

689
    """
L
lujun 已提交
690
    load_dirname = os.path.normpath(dirname)
T
tangwei12 已提交
691

692
    if vars is None:
693
        if main_program is None:
Y
Yu Yang 已提交
694
            main_program = default_main_program()
695
        if not isinstance(main_program, Program):
696 697 698 699
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
700
            dirname=load_dirname,
T
tangwei12 已提交
701
            main_program=main_program,
702
            vars=list(filter(predicate, main_program.list_vars())),
703
            filename=filename)
704 705 706
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
707

708 709
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
710

711 712 713
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

T
tangwei12 已提交
714
        # save origin param shape
H
hong 已提交
715
        orig_para_shape = {}
716
        load_var_map = {}
717 718
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
719 720
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
721 722

            if isinstance(each_var, Parameter):
723 724
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
725
            new_var = _clone_var_in_block_(load_block, each_var)
726
            if filename is None:
727 728 729 730
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
731 732 733
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
734 735 736
            else:
                load_var_map[new_var.name] = new_var

737
        if filename is not None:
738 739 740 741
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

742
            load_block.append_op(
743
                type='load_combine',
744
                inputs={},
745
                outputs={"Out": load_var_list},
L
lujun 已提交
746
                attrs={'file_path': os.path.join(load_dirname, filename)})
747 748
        executor.run(load_prog)

T
tangwei12 已提交
749
        # check var shape
H
hong 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763
        for each_var in vars:
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
            assert each_var.name in orig_para_shape, earch_var.name + "MUST in var list"
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
                    "Shape not matching: the Program requires a parameter with a shape of ({}), "
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

764

765
def load_params(executor, dirname, main_program=None, filename=None):
766
    """
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
786 787

    Args:
788 789
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
790
        dirname(str): The directory path.
791 792 793 794 795 796 797 798
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
799 800 801 802 803 804 805

    Returns:
        None

    Examples:
        .. code-block:: python

806
            import paddle.fluid as fluid
807

F
fengjiayi 已提交
808 809 810
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
811
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
812
                                main_program=None)
813 814
    """
    load_vars(
815 816 817
        executor,
        dirname=dirname,
        main_program=main_program,
818
        predicate=is_parameter,
819
        filename=filename)
820 821


822
def load_persistables(executor, dirname, main_program=None, filename=None):
823
    """
824 825 826
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
    directory ``dirnameme`` or the file ``filename``.
F
fengjiayi 已提交
827

828 829 830 831
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
832 833

    Args:
834 835
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
836
        dirname(str): The directory path.
837 838 839 840 841 842 843 844
        main_program(Program, optional): The program whose persistbale variables will
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
845 846 847 848 849 850 851

    Returns:
        None

    Examples:
        .. code-block:: python

852
            import paddle.fluid as fluid
853

F
fengjiayi 已提交
854 855 856
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
857
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
858
                                       main_program=None)
859
    """
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

891
            import paddle.fluid as fluid
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                load_block.append_op(
T
tangwei12 已提交
925 926 927 928 929 930 931 932
                    type='load',
                    inputs={},
                    outputs={'Out': [slice]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name),
                        'seek': offset,
                        'shape': slice.shape
                    })
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
955
        raise TypeError("'main_program' should be an instance of Program.")
956 957 958 959 960 961 962 963 964 965 966 967 968 969

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
970 971


972 973 974
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
975 976 977
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
978 979
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
980 981 982
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
983

984
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
985
        out = global_block.var(name)
W
Wu Yi 已提交
986
        global_block._prepend_op(
K
Kexin Zhao 已提交
987 988
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
989
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
990 991 992
            attrs={'col': i})


993 994 995
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
996 997
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
998 999 1000
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
1001

1002
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
1003 1004 1005 1006 1007 1008 1009
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


1010 1011 1012 1013
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1014
                         main_program=None,
1015
                         model_filename=None,
1016
                         params_filename=None,
T
tangwei12 已提交
1017 1018
                         export_for_deployment=True,
                         program_only=False):
1019
    """
F
fengjiayi 已提交
1020
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1021
    and then save it and all related parameters to given `dirname` .
1022
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1023 1024
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1025

G
guofei 已提交
1026 1027 1028 1029 1030
    Note:
        The :code:`dirname` is used to specify the folder where inference model 
        structure and parameters are going to be saved. If you would like to save params of
        Program in separate files, set `params_filename` None; if you would like to save all 
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1031 1032 1033

    Args:
        dirname(str): The directory path to save the inference model.
G
guofei 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
        feeded_var_names(list[str]): list of string. Names of variables that need to be feeded
                                     data during inference.
        target_vars(list[Variable]): list of Variable. Variables from which we can get 
                                     inference results.
        executor(Executor): The executor that saves the inference model. You can refer 
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
                                         build the inference model. If is setted None,
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
                                       itself. If is setted None, a default filename
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
                                        If it is setted None, parameters will be saved
                                        in separate files .
X
Xin Pan 已提交
1050 1051 1052 1053 1054
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1055 1056 1057 1058
                                     Default: True.
        program_only(bool, optional): If True, It will save inference program only, and do not 
                                      save params of Program.
                                      Default: False.
1059

F
fengjiayi 已提交
1060
    Returns:
G
guofei 已提交
1061 1062 1063 1064
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1065 1066

    Raises:
G
guofei 已提交
1067 1068
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1069 1070 1071

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1072

1073 1074
            import paddle.fluid as fluid

F
fengjiayi 已提交
1075 1076
            path = "./infer_model"

1077
            # User defined network, here a softmax regresssion example
G
guofei 已提交
1078 1079
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1097 1098 1099
            # In this example, the save_inference_mode inference will prune the default
            # main program according to the network's input node (img) and output node(predict). 
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1100
            # and parameters are going to be saved in separate files under folder
1101
            # "./infer_model".
1102 1103

    """
M
minqiyang 已提交
1104
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1105
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1106
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1107
        if len(feeded_var_names) > 0:
1108
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1109
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1110
                    isinstance(name, six.string_types)
1111
                    for name in feeded_var_names)):
M
minqiyang 已提交
1112
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1113 1114

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1115
        target_vars = [target_vars]
X
Xin Pan 已提交
1116
    elif export_for_deployment:
1117 1118
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1119 1120
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1121
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1122

1123 1124 1125 1126 1127 1128 1129 1130 1131
    # remind user to set auc_states to zeros if the program contains auc op 
    all_ops = main_program.global_block().ops
    for op in all_ops:
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1132 1133 1134 1135 1136
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1137
        for i, var in enumerate(target_vars):
1138
            if isinstance(var, Variable):
F
flame 已提交
1139 1140 1141
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1142
        target_vars = uniq_target_vars
F
flame 已提交
1143
    target_var_name_list = [var.name for var in target_vars]
1144

1145
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1146
    save_dirname = dirname
1147
    try:
L
lujun 已提交
1148 1149
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1150 1151 1152 1153
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1154 1155 1156 1157
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1158
    model_basename = os.path.join(save_dirname, model_basename)
1159

X
Xin Pan 已提交
1160 1161 1162 1163
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1164 1165 1166

    origin_program = main_program.clone()

X
Xin Pan 已提交
1167
    if export_for_deployment:
X
Xin Pan 已提交
1168 1169
        main_program = main_program.clone()
        global_block = main_program.global_block()
1170
        need_to_remove_op_index = []
X
Xin Pan 已提交
1171 1172 1173
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1174 1175 1176 1177 1178
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1179
        main_program.desc.flush()
X
Xin Pan 已提交
1180

1181 1182
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1183
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1184 1185
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1186 1187 1188
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1189 1190
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1191 1192
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1193 1194 1195
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1196 1197
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1198

T
tangwei12 已提交
1199 1200 1201 1202 1203 1204
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1205 1206
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1207 1208
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1209

L
lujun 已提交
1210
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1211
    return target_var_name_list
X
fix  
Xin Pan 已提交
1212

1213

1214 1215 1216
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1217 1218
                         params_filename=None,
                         pserver_endpoints=None):
1219
    """
1220 1221 1222
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1223
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1224

F
fengjiayi 已提交
1225
    Args:
1226
        dirname(str): The given directory path.
F
fengjiayi 已提交
1227
        executor(Executor): The executor to run for loading inference model.
1228 1229
                            See :ref:`api_guide_executor_en` for more details about it.
        model_filename(str, optional): The name of file to load the inference program.
1230
                                  If it is None, the default filename
1231 1232 1233
                                  ``__model__`` will be used.
                                  Default: ``None``.
        params_filename(str, optional): The name of file to load all parameters.
1234 1235 1236
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
1237 1238 1239 1240 1241 1242
                                   files, set it as ``None``.
                                   Default: ``None``.

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1243
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1244 1245

    Returns:
1246
        list: The return of this API is a list with three elements:
1247
        (program, feed_target_names, fetch_targets). The `program` is a
1248 1249 1250 1251 1252
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1253 1254 1255 1256 1257 1258 1259

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1260 1261
            import paddle.fluid as fluid
            import numpy as np
1262 1263

            # Build the model
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1275 1276

            # Save the inference model
F
fengjiayi 已提交
1277
            path = "./infer_model"
1278 1279
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1280 1281 1282

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1283 1284
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1285
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1286 1287 1288 1289
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1290 1291 1292
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1293
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1294
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1295 1296
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1297
                                              pserver_endpoints=endpoints))
1298

1299
            # In this example, the inference program was saved in the file
1300
            # "./infer_model/__model__" and parameters were saved in
1301 1302 1303 1304
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1305
    """
L
lujun 已提交
1306 1307
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1308 1309
        raise ValueError("There is no directory named '%s'", dirname)

1310 1311
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1312
    else:
1313
        model_filename = "__model__"
L
lujun 已提交
1314
    model_filename = os.path.join(load_dirname, model_filename)
1315 1316 1317

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1318

1319
    with open(model_filename, "rb") as f:
1320 1321
        program_desc_str = f.read()

1322
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1323
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1324 1325 1326
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1327
    load_persistables(executor, load_dirname, program, params_filename)
1328

T
tangwei12 已提交
1329
    if pserver_endpoints:
T
tangwei12 已提交
1330
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1331

1332 1333
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1334 1335 1336 1337 1338
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1339 1340


T
tangwei12 已提交
1341 1342 1343
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1344 1345
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1346
    program._sync_with_cpp()
T
tangwei12 已提交
1347
    return program
T
tangwei12 已提交
1348 1349


X
xuwei06 已提交
1350 1351
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1363

F
fengjiayi 已提交
1364 1365
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1366

1367
            import paddle.fluid as fluid
F
fengjiayi 已提交
1368 1369 1370
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1371

X
xuwei06 已提交
1372
    """
X
xuwei06 已提交
1373 1374
    assert is_parameter(para)

X
xuwei06 已提交
1375 1376 1377 1378 1379 1380 1381 1382
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1383
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1384

F
fengjiayi 已提交
1385 1386 1387 1388 1389 1390 1391
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1392

F
fengjiayi 已提交
1393 1394
    Returns:
        numpy.array: The parameter's values.
1395

F
fengjiayi 已提交
1396 1397 1398 1399 1400
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1401

F
fengjiayi 已提交
1402 1403 1404
    Examples:
        .. code-block:: python

1405
            import paddle.fluid as fluid
F
fengjiayi 已提交
1406 1407
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1408 1409
    """
    if program is None:
Y
Yu Yang 已提交
1410
        program = default_main_program()
X
xuwei06 已提交
1411 1412
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518


def save(program, model_path):
    """
    This function save parameters, optimizer information and network description to  model_path.

    The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
    The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
    
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
T
tangwei12 已提交
1519
        "model_path MUST be format of dirname/filename [dirname\\filename in Window], Now filename is empty str"
H
hong 已提交
1520

Y
Yang Zhang 已提交
1521 1522 1523 1524
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1525
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1526 1527 1528
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
    with open(model_path + ".pdparams", 'wb') as f:
        pickle.dump(param_dict, f)
H
hong 已提交
1529 1530 1531 1532

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1533 1534 1535
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
        pickle.dump(opt_dict, f)
H
hong 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(program.desc)

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


H
hong 已提交
1546
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1547
    """
H
hong 已提交
1548
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1549
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1550

H
hong 已提交
1551 1552 1553 1554
    This function can also load model file saved with [ save_params, save_persistables, save_vars ]. 
    var_list can not be None  when load single model file 
    ( filename is not None When save_params, save_persistables or save_vars is called ).

H
hong 已提交
1555
    Args: 
1556 1557 1558 1559
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
        executor(Executor, optional): The executor used for initialize the parameter 
                                      When startup program is not run.
H
hong 已提交
1560 1561 1562
        var_list(list, optional): The variable list to load single model file saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None
H
hong 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

    Returns:
        None
        
     Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

            fluid.load( prog, "./temp")

    """

1579 1580
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
        _logger.warning(
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
                if var_path in binary_file_set:
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
                load_vars(
                    executor=executor, dirname=model_path, vars=loaded_var_list)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
                    "Failed to load model file , please make sure model file is saved with the "
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
                        "loaded var [{}] not included in program variable list")

            dir_name, file_name = os.path.split(model_path)
            try:
                load_vars(
                    executor=executor,
                    dirname=dir_name,
                    vars=var_list,
                    filename=file_name)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError( "Failed to load model file , please make sure model file is saved with the " \
                                    "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                    "When these API called, filename CANNOT be None")

            return
Y
Yang Zhang 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
1674 1675

    parameter_list = list(filter(is_parameter, program.list_vars()))
1676 1677 1678 1679 1680

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
1681 1682 1683 1684 1685 1686 1687
    with open(parameter_file_name, 'rb') as f:
        load_dict = pickle.load(f)
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
1688 1689 1690 1691 1692

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
1693
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
1694
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
1695
            "Optimizer file [{}] not exits".format(opt_file_name)
1696 1697 1698 1699

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
1700 1701 1702 1703 1704 1705 1706 1707

        with open(opt_file_name, 'rb') as f:
            load_dict = pickle.load(f)
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737


def load_program_state(model_path):
    """
    Load program state from local file
    
    Args:
        model_path(str): The file prefix store the program
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")
            
    """
    parameter_file_name = model_path + ".pdparams"
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
1738
        "Parameter file [{}] not exits".format(parameter_file_name)
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782

    with open(parameter_file_name, 'rb') as f:
        para_dict = pickle.load(f)

    opt_file_name = model_path + ".pdopt"
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
            opti_dict = pickle.load(f)

        para_dict.update(opti_dict)

    return para_dict


def set_program_state(program, state_dict):
    """
    Set program parameter from state_dict

    An exception will throw if shape or dtype of the parameters is not match. 

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
    Returns: 
        None
    
    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")

H
hong 已提交
1783 1784
            fluid.set_program_state( prog, program_state)

1785 1786 1787 1788 1789 1790 1791
    """
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
1792
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
1793 1794 1795 1796
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
1797 1798 1799
            assert orig_para_np.shape == new_para_np.shape, \
                "Shape not matching: the Program requires a parameter with a shape of ({}), " \
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
1800
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
1801 1802 1803
            assert orig_para_np.dtype == new_para_np.dtype, \
                "Dtype not matching: the Program requires a parameter with a dtype of ({}), " \
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
1804 1805 1806 1807 1808 1809
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

            assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
T
tangwei12 已提交
1810
                "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
            "This list is not set, Because of Paramerter not found in program. There are: {}".
            format(" ".join(unused_para_list)))