io.py 66.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
23
from functools import reduce
24

H
hong 已提交
25 26
import numpy as np

27 28 29
import paddle
import paddle.reader
from paddle.reader import *
30
from paddle.fluid import layers
H
hong 已提交
31
from paddle.fluid.executor import Executor, global_scope
32
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
33 34
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
    program_guard
T
tangwei12 已提交
35
from paddle.fluid.compiler import CompiledProgram
36
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
37 38
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
39
from . import core
40
from .. import compat as cpt
41

42 43
batch = paddle.batch

44
__all__ = [
45 46 47 48 49 50 51 52 53 54 55 56 57
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
58
] + reader.__all__ + paddle.reader.__all__
59

60 61
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
62

63 64

def is_parameter(var):
F
fengjiayi 已提交
65 66
    """
    Check whether the given variable is an instance of Parameter.
67 68

    Args:
F
fengjiayi 已提交
69
        var(Variable): The variable to be checked.
70 71

    Returns:
F
fengjiayi 已提交
72 73 74 75 76 77
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

78
            import paddle.fluid as fluid
F
fengjiayi 已提交
79 80
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
81
    """
82 83 84 85
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

99
            import paddle.fluid as fluid
100
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
101 102
            res = fluid.io.is_persistable(param)
    """
103
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
104 105
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
106
        return False
107 108 109
    return var.persistable


H
hong 已提交
110
def is_belong_to_optimizer(var):
111 112 113 114
    if not isinstance(var, Parameter):
        return is_persistable(var)

    return False
H
hong 已提交
115 116


117 118
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
134 135


C
chengduo 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
            raise TypeError("program should be as Program type or None")
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
        raise TypeError("program should be as Program type or None")
    return main_program


150 151 152 153 154
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
155
              filename=None):
156
    """
157
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
158

159 160 161
    There are two ways to specify the variables to be saved: set variables in 
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
162

163 164 165
    The `dirname` is used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the `dirname` floder,
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
166
    use `filename` to specify it.
167

F
fengjiayi 已提交
168 169
    Args:
        executor(Executor): The executor to run for saving variables.
170 171
        dirname(str): The folder where to save variables.
        main_program(Program, optional): The program whose variables will be saved.
172
                                    If it is None, the default main program will
F
fengjiayi 已提交
173 174
                                    be used automatically.
                                    Default: None
175 176 177 178 179 180 181 182
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
                                       `predicate(variable) == True`. 
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
                                 use `filename` to specify it. Otherwise, let `filename` be None. 
                                 Default: None
F
fengjiayi 已提交
183 184 185 186 187 188 189 190 191 192

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

193
            import paddle.fluid as fluid
194

195 196 197 198 199 200 201 202 203 204 205
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
206

207
            # The first usage: use `vars` to set the saved variables.
208 209
            var_list = [w, b]
            path = "./my_paddle_vars"
210
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
211 212 213 214 215 216 217 218 219 220
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
221
    """
L
lujun 已提交
222
    save_dirname = os.path.normpath(dirname)
C
chengduo 已提交
223
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
224

225 226 227
    if vars is None:
        save_vars(
            executor,
228
            main_program=main_program,
L
lujun 已提交
229
            dirname=save_dirname,
230
            vars=list(filter(predicate, main_program.list_vars())),
231
            filename=filename)
232
    else:
233 234 235 236 237 238 239
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

240 241
        save_program = Program()
        save_block = save_program.global_block()
242 243

        save_var_map = {}
244
        for each_var in vars:
245 246 247
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
248
            new_var = _clone_var_in_block_(save_block, each_var)
249
            if filename is None:
250 251
                save_file_path = os.path.join(save_dirname, new_var.name)
                save_file_path = os.path.normpath(save_file_path)
252 253 254 255
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
256
                    attrs={'file_path': save_file_path})
257 258 259
            else:
                save_var_map[new_var.name] = new_var

260
        if filename is not None:
261 262 263 264
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

265
            save_block.append_op(
266 267
                type='save_combine',
                inputs={'X': save_var_list},
268
                outputs={},
L
lujun 已提交
269
                attrs={'file_path': os.path.join(save_dirname, filename)})
270

271 272 273
        executor.run(save_program)


274
def save_params(executor, dirname, main_program=None, filename=None):
275
    """
G
guofei 已提交
276 277 278
    This operator saves all parameters from the :code:`main_program` to
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
279

G
guofei 已提交
280 281 282
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
283 284
    the file name.

G
guofei 已提交
285 286 287 288 289 290 291 292 293 294
    Note: 
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you can NOT save 
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead. 
        
        If you want to save your model for the inference, please use the 
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
295 296

    Args:
G
guofei 已提交
297 298
        executor(Executor): The executor to run for saving parameters, You can 
                            refer to :ref:`api_guide_executor_en`.
F
fengjiayi 已提交
299
        dirname(str): The saving directory path.
G
guofei 已提交
300 301 302 303 304 305 306 307 308 309
        main_program(Program, optional): The program whose parameters will be
                                         saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more 
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
310 311 312 313 314 315 316

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
317
            import paddle.fluid as fluid
G
guofei 已提交
318 319 320 321 322 323 324 325 326 327
           
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
    
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
            
F
fengjiayi 已提交
328
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
329 330 331 332
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
            # The parameters weights and bias of the fc layer in the network are going to 
            # be saved in different files in the path "./my_paddle_model" 
333 334 335 336
    """
    save_vars(
        executor,
        dirname=dirname,
337
        main_program=main_program,
338
        vars=None,
339
        predicate=is_parameter,
340
        filename=filename)
341 342


343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

365
            import paddle.fluid as fluid
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
387 388 389 390 391 392 393
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
394 395 396

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
397
                slice = optimizer.slice
398 399 400
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
401 402 403
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
404 405
                endpoints[index] = endpoint

T
tangwei12 已提交
406 407 408 409 410
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

411
            block.append_op(
T
tangwei12 已提交
412 413 414 415 416 417 418 419 420 421 422
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name)
                })

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
T
tangwei12 已提交
452 453
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
454 455 456 457 458 459
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
460
        raise TypeError("'main_program' should be an instance of Program.")
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


494
def save_persistables(executor, dirname, main_program=None, filename=None):
495
    """
G
guofei 已提交
496 497 498 499 500
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
    saves these persistables variables to the folder :code:`dirname` or file 
    :code:`filename`. 
F
fengjiayi 已提交
501

G
guofei 已提交
502
    The :code:`dirname` is used to specify the folder where persistable variables
503
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
504 505
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
506 507 508

    Args:
        executor(Executor): The executor to run for saving persistable variables.
G
guofei 已提交
509 510 511 512 513 514 515 516 517 518 519 520
                            You can refer to :ref:`api_guide_executor_en` for 
                            more details.
        dirname(str): The saving directory path.
        main_program(Program, optional): The program whose persistbale variables will
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
                                         If it is None, the default main program will 
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
521 522 523 524 525 526 527

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
528
            import paddle.fluid as fluid
G
guofei 已提交
529 530 531 532 533 534 535 536 537 538
        
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
           
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
539
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
540 541 542 543 544
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
            # The persistables variables weights and bias in the fc layer of the network 
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
545
    """
546 547 548 549 550 551 552 553 554 555 556
    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
557 558


559 560 561 562 563
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
564
              filename=None):
565
    """
566
    This API loads variables from files by executor.
F
fengjiayi 已提交
567

568 569 570 571
    There are two ways to specify the variables to be loaded: the first way, set
    variables in a list and assign it to the `vars`; the second way, use the 
    `predicate` function to select variables that make `predicate(variable) == True`. 
    The first way has a higher priority.
F
fengjiayi 已提交
572

573
    The `dirname` is used to specify the folder where to load variables.
574
    If variables were saved in separate files in the folder `dirname`,
575
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
576
    use `filename` to specify it.
577

F
fengjiayi 已提交
578 579
    Args:
        executor(Executor): The executor to run for loading variables.
580 581
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
582
                                    If it is None, the default main program will
F
fengjiayi 已提交
583 584
                                    be used automatically.
                                    Default: None
585
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
586
                                   Default: None
587 588 589 590 591 592
        predicate(function, optional): The function selects variables that make 
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
593 594 595 596 597 598 599 600 601 602

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

603
            import paddle.fluid as fluid
604

605 606 607 608 609 610 611 612 613 614 615
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
616

617 618 619 620 621 622 623 624 625 626 627
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
628
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
629 630 631
            def name_has_fc(var):
                res = "fc" in var.name
                return res
632 633 634
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
635
                               vars=None, predicate=name_has_fc)
636 637
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
638

639
    """
L
lujun 已提交
640
    load_dirname = os.path.normpath(dirname)
T
tangwei12 已提交
641

642
    if vars is None:
643
        if main_program is None:
Y
Yu Yang 已提交
644
            main_program = default_main_program()
645
        if not isinstance(main_program, Program):
646 647 648 649
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
650
            dirname=load_dirname,
T
tangwei12 已提交
651
            main_program=main_program,
652
            vars=list(filter(predicate, main_program.list_vars())),
653
            filename=filename)
654 655 656
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
657

658 659
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
660

661 662 663
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

T
tangwei12 已提交
664
        # save origin param shape
H
hong 已提交
665
        orig_para_shape = {}
666
        load_var_map = {}
667 668
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
669 670
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
671 672

            if isinstance(each_var, Parameter):
673 674
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
675
            new_var = _clone_var_in_block_(load_block, each_var)
676
            if filename is None:
677 678 679 680
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
681 682 683
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
684 685 686
            else:
                load_var_map[new_var.name] = new_var

687
        if filename is not None:
688 689 690 691
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

692
            load_block.append_op(
693
                type='load_combine',
694
                inputs={},
695
                outputs={"Out": load_var_list},
L
lujun 已提交
696
                attrs={'file_path': os.path.join(load_dirname, filename)})
697 698
        executor.run(load_prog)

T
tangwei12 已提交
699
        # check var shape
H
hong 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713
        for each_var in vars:
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
            assert each_var.name in orig_para_shape, earch_var.name + "MUST in var list"
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
                    "Shape not matching: the Program requires a parameter with a shape of ({}), "
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

714

715
def load_params(executor, dirname, main_program=None, filename=None):
716
    """
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
736 737

    Args:
738 739
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
740
        dirname(str): The directory path.
741 742 743 744 745 746 747 748
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
749 750 751 752 753 754 755

    Returns:
        None

    Examples:
        .. code-block:: python

756
            import paddle.fluid as fluid
757

F
fengjiayi 已提交
758 759 760
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
761
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
762
                                main_program=None)
763 764
    """
    load_vars(
765 766 767
        executor,
        dirname=dirname,
        main_program=main_program,
768
        predicate=is_parameter,
769
        filename=filename)
770 771


772
def load_persistables(executor, dirname, main_program=None, filename=None):
773
    """
774 775 776
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
    directory ``dirnameme`` or the file ``filename``.
F
fengjiayi 已提交
777

778 779 780 781
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
782 783

    Args:
784 785
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
786
        dirname(str): The directory path.
787 788 789 790 791 792 793 794
        main_program(Program, optional): The program whose persistbale variables will
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
795 796 797 798 799 800 801

    Returns:
        None

    Examples:
        .. code-block:: python

802
            import paddle.fluid as fluid
803

F
fengjiayi 已提交
804 805 806
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
807
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
808
                                       main_program=None)
809
    """
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

841
            import paddle.fluid as fluid
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                load_block.append_op(
T
tangwei12 已提交
875 876 877 878 879 880 881 882
                    type='load',
                    inputs={},
                    outputs={'Out': [slice]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name),
                        'seek': offset,
                        'shape': slice.shape
                    })
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
905
        raise TypeError("'main_program' should be an instance of Program.")
906 907 908 909 910 911 912 913 914 915 916 917 918 919

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
920 921


922 923 924
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
925 926 927
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
928 929
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
930 931 932
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
933

934
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
935
        out = global_block.var(name)
W
Wu Yi 已提交
936
        global_block._prepend_op(
K
Kexin Zhao 已提交
937 938
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
939
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
940 941 942
            attrs={'col': i})


943 944 945
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
946 947
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
948 949 950
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
951

952
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
953 954 955 956 957 958 959
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


960 961 962 963
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
964
                         main_program=None,
965
                         model_filename=None,
966
                         params_filename=None,
T
tangwei12 已提交
967 968
                         export_for_deployment=True,
                         program_only=False):
969
    """
F
fengjiayi 已提交
970
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
971
    and then save it and all related parameters to given `dirname` .
972
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
973 974
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
975

G
guofei 已提交
976 977 978 979 980
    Note:
        The :code:`dirname` is used to specify the folder where inference model 
        structure and parameters are going to be saved. If you would like to save params of
        Program in separate files, set `params_filename` None; if you would like to save all 
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
981 982 983

    Args:
        dirname(str): The directory path to save the inference model.
G
guofei 已提交
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
        feeded_var_names(list[str]): list of string. Names of variables that need to be feeded
                                     data during inference.
        target_vars(list[Variable]): list of Variable. Variables from which we can get 
                                     inference results.
        executor(Executor): The executor that saves the inference model. You can refer 
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
                                         build the inference model. If is setted None,
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
                                       itself. If is setted None, a default filename
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
                                        If it is setted None, parameters will be saved
                                        in separate files .
X
Xin Pan 已提交
1000 1001 1002 1003 1004
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1005 1006 1007 1008
                                     Default: True.
        program_only(bool, optional): If True, It will save inference program only, and do not 
                                      save params of Program.
                                      Default: False.
1009

F
fengjiayi 已提交
1010
    Returns:
G
guofei 已提交
1011 1012 1013 1014
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1015 1016

    Raises:
G
guofei 已提交
1017 1018
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1019 1020 1021

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1022

1023 1024
            import paddle.fluid as fluid

F
fengjiayi 已提交
1025 1026
            path = "./infer_model"

1027
            # User defined network, here a softmax regresssion example
G
guofei 已提交
1028 1029
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1047 1048 1049
            # In this example, the save_inference_mode inference will prune the default
            # main program according to the network's input node (img) and output node(predict). 
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1050
            # and parameters are going to be saved in separate files under folder
1051
            # "./infer_model".
1052 1053

    """
M
minqiyang 已提交
1054
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1055
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1056
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1057
        if len(feeded_var_names) > 0:
1058
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1059
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1060
                    isinstance(name, six.string_types)
1061
                    for name in feeded_var_names)):
M
minqiyang 已提交
1062
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1063 1064

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1065
        target_vars = [target_vars]
X
Xin Pan 已提交
1066
    elif export_for_deployment:
1067 1068
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1069 1070
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1071
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081
    # remind user to set auc_states to zeros if the program contains auc op 
    all_ops = main_program.global_block().ops
    for op in all_ops:
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1082 1083 1084 1085 1086
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1087
        for i, var in enumerate(target_vars):
1088
            if isinstance(var, Variable):
F
flame 已提交
1089 1090 1091
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1092
        target_vars = uniq_target_vars
F
flame 已提交
1093
    target_var_name_list = [var.name for var in target_vars]
1094

1095
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1096
    save_dirname = dirname
1097
    try:
L
lujun 已提交
1098 1099
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1100 1101 1102 1103
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1104 1105 1106 1107
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1108
    model_basename = os.path.join(save_dirname, model_basename)
1109

X
Xin Pan 已提交
1110 1111 1112 1113
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1114 1115 1116

    origin_program = main_program.clone()

X
Xin Pan 已提交
1117
    if export_for_deployment:
X
Xin Pan 已提交
1118 1119
        main_program = main_program.clone()
        global_block = main_program.global_block()
1120
        need_to_remove_op_index = []
X
Xin Pan 已提交
1121 1122 1123
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1124 1125 1126 1127 1128
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1129
        main_program.desc.flush()
X
Xin Pan 已提交
1130

1131 1132
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1133
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1134 1135
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1136 1137 1138
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1139 1140
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1141 1142
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1143 1144 1145
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1146 1147
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1148

T
tangwei12 已提交
1149 1150 1151 1152 1153 1154
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1155 1156
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1157 1158
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1159

L
lujun 已提交
1160
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1161
    return target_var_name_list
X
fix  
Xin Pan 已提交
1162

1163

1164 1165 1166
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1167 1168
                         params_filename=None,
                         pserver_endpoints=None):
1169
    """
1170 1171 1172
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1173
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1174

F
fengjiayi 已提交
1175
    Args:
1176
        dirname(str): The given directory path.
F
fengjiayi 已提交
1177
        executor(Executor): The executor to run for loading inference model.
1178 1179
                            See :ref:`api_guide_executor_en` for more details about it.
        model_filename(str, optional): The name of file to load the inference program.
1180
                                  If it is None, the default filename
1181 1182 1183
                                  ``__model__`` will be used.
                                  Default: ``None``.
        params_filename(str, optional): The name of file to load all parameters.
1184 1185 1186
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
1187 1188 1189 1190 1191 1192
                                   files, set it as ``None``.
                                   Default: ``None``.

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1193
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1194 1195

    Returns:
1196
        list: The return of this API is a list with three elements:
1197
        (program, feed_target_names, fetch_targets). The `program` is a
1198 1199 1200 1201 1202
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1203 1204 1205 1206 1207 1208 1209

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1210 1211
            import paddle.fluid as fluid
            import numpy as np
1212 1213

            # Build the model
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1225 1226

            # Save the inference model
F
fengjiayi 已提交
1227
            path = "./infer_model"
1228 1229
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1230 1231 1232

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1233 1234
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1235
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1236 1237 1238 1239
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1240 1241 1242
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1243
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1244
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1245 1246
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1247
                                              pserver_endpoints=endpoints))
1248

1249
            # In this example, the inference program was saved in the file
1250
            # "./infer_model/__model__" and parameters were saved in
1251 1252 1253 1254
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1255
    """
L
lujun 已提交
1256 1257
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1258 1259
        raise ValueError("There is no directory named '%s'", dirname)

1260 1261
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1262
    else:
1263
        model_filename = "__model__"
L
lujun 已提交
1264
    model_filename = os.path.join(load_dirname, model_filename)
1265 1266 1267

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1268

1269
    with open(model_filename, "rb") as f:
1270 1271
        program_desc_str = f.read()

1272
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1273
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1274 1275 1276
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1277
    load_persistables(executor, load_dirname, program, params_filename)
1278

T
tangwei12 已提交
1279
    if pserver_endpoints:
T
tangwei12 已提交
1280
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1281

1282 1283
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1284 1285 1286 1287 1288
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1289 1290


T
tangwei12 已提交
1291 1292 1293
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1294 1295
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1296
    program._sync_with_cpp()
T
tangwei12 已提交
1297
    return program
T
tangwei12 已提交
1298 1299


X
xuwei06 已提交
1300 1301
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1313

F
fengjiayi 已提交
1314 1315
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1316

1317
            import paddle.fluid as fluid
F
fengjiayi 已提交
1318 1319 1320
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1321

X
xuwei06 已提交
1322
    """
X
xuwei06 已提交
1323 1324
    assert is_parameter(para)

X
xuwei06 已提交
1325 1326 1327 1328 1329 1330 1331 1332
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1333
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1334

F
fengjiayi 已提交
1335 1336 1337 1338 1339 1340 1341
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1342

F
fengjiayi 已提交
1343 1344
    Returns:
        numpy.array: The parameter's values.
1345

F
fengjiayi 已提交
1346 1347 1348 1349 1350
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1351

F
fengjiayi 已提交
1352 1353 1354
    Examples:
        .. code-block:: python

1355
            import paddle.fluid as fluid
F
fengjiayi 已提交
1356 1357
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1358 1359
    """
    if program is None:
Y
Yu Yang 已提交
1360
        program = default_main_program()
X
xuwei06 已提交
1361 1362
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468


def save(program, model_path):
    """
    This function save parameters, optimizer information and network description to  model_path.

    The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
    The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
    
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
T
tangwei12 已提交
1469
        "model_path MUST be format of dirname/filename [dirname\\filename in Window], Now filename is empty str"
H
hong 已提交
1470

Y
Yang Zhang 已提交
1471 1472 1473 1474
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1475
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1476 1477 1478
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
    with open(model_path + ".pdparams", 'wb') as f:
        pickle.dump(param_dict, f)
H
hong 已提交
1479 1480 1481 1482

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1483 1484 1485
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
        pickle.dump(opt_dict, f)
H
hong 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(program.desc)

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


1496
def load(program, model_path, executor=None):
H
hong 已提交
1497 1498
    """
    This function filter out parameters and optimizer information from program, and then get corresponding value from file.
1499
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1500 1501

    Args: 
1502 1503 1504 1505
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
        executor(Executor, optional): The executor used for initialize the parameter 
                                      When startup program is not run.
H
hong 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

    Returns:
        None
        
     Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

            fluid.load( prog, "./temp")

    """

1522 1523
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1524 1525
    parameter_file_name = model_path + ".pdparams"
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
1526
        "Parameter file [{}] not exits".format(parameter_file_name)
Y
Yang Zhang 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
1541 1542

    parameter_list = list(filter(is_parameter, program.list_vars()))
1543 1544 1545 1546 1547

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
1548 1549 1550 1551 1552 1553 1554
    with open(parameter_file_name, 'rb') as f:
        load_dict = pickle.load(f)
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
1555 1556 1557 1558 1559 1560 1561

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
        opt_file_name = model_path + ".pdopt"
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
1562
            "Optimizer file [{}] not exits".format(opt_file_name)
1563 1564 1565 1566

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
1567 1568 1569 1570 1571 1572 1573 1574

        with open(opt_file_name, 'rb') as f:
            load_dict = pickle.load(f)
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606


def load_program_state(model_path):
    """
    Load program state from local file
    
    Args:
        model_path(str): The file prefix store the program
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")
            
            fluid.set_program_state( prog, program_state)

    """
    parameter_file_name = model_path + ".pdparams"
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
1607
        "Parameter file [{}] not exits".format(parameter_file_name)
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

    with open(parameter_file_name, 'rb') as f:
        para_dict = pickle.load(f)

    opt_file_name = model_path + ".pdopt"
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
            opti_dict = pickle.load(f)

        para_dict.update(opti_dict)

    return para_dict


def set_program_state(program, state_dict):
    """
    Set program parameter from state_dict

    An exception will throw if shape or dtype of the parameters is not match. 

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
    Returns: 
        None
    
    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")

    """
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
1659
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
1660 1661 1662 1663
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
1664 1665 1666
            assert orig_para_np.shape == new_para_np.shape, \
                "Shape not matching: the Program requires a parameter with a shape of ({}), " \
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
1667
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
1668 1669 1670
            assert orig_para_np.dtype == new_para_np.dtype, \
                "Dtype not matching: the Program requires a parameter with a dtype of ({}), " \
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
1671 1672 1673 1674 1675 1676
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

            assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
T
tangwei12 已提交
1677
                "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
            "This list is not set, Because of Paramerter not found in program. There are: {}".
            format(" ".join(unused_para_list)))