io.py 66.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
23
from functools import reduce
24

H
hong 已提交
25 26
import numpy as np

27 28 29
import paddle
import paddle.reader
from paddle.reader import *
30
from paddle.fluid import layers
H
hong 已提交
31
from paddle.fluid.executor import Executor, global_scope
32
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
33 34
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
    program_guard
T
tangwei12 已提交
35
from paddle.fluid.compiler import CompiledProgram
36
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
37 38
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
39
from . import core
40
from .. import compat as cpt
41

42 43
batch = paddle.batch

44
__all__ = [
45 46 47 48 49 50 51 52 53 54 55 56 57
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
58
] + reader.__all__ + paddle.reader.__all__
59

60 61
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
62

63 64

def is_parameter(var):
F
fengjiayi 已提交
65 66
    """
    Check whether the given variable is an instance of Parameter.
67 68

    Args:
F
fengjiayi 已提交
69
        var(Variable): The variable to be checked.
70 71

    Returns:
F
fengjiayi 已提交
72 73 74 75 76 77
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

78
            import paddle.fluid as fluid
F
fengjiayi 已提交
79 80
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
81
    """
82 83 84 85
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

99
            import paddle.fluid as fluid
100
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
101 102
            res = fluid.io.is_persistable(param)
    """
103
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
104 105
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
106
        return False
107 108 109
    return var.persistable


H
hong 已提交
110
def is_belong_to_optimizer(var):
111 112 113 114
    if not isinstance(var, Parameter):
        return is_persistable(var)

    return False
H
hong 已提交
115 116


117 118
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
134 135


C
chengduo 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
            raise TypeError("program should be as Program type or None")
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
        raise TypeError("program should be as Program type or None")
    return main_program


150 151 152 153 154
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
155
              filename=None):
156
    """
157
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
158

159 160 161
    There are two ways to specify the variables to be saved: set variables in 
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
162

163 164 165
    The `dirname` is used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the `dirname` floder,
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
166
    use `filename` to specify it.
167

F
fengjiayi 已提交
168 169
    Args:
        executor(Executor): The executor to run for saving variables.
170 171
        dirname(str): The folder where to save variables.
        main_program(Program, optional): The program whose variables will be saved.
172
                                    If it is None, the default main program will
F
fengjiayi 已提交
173 174
                                    be used automatically.
                                    Default: None
175 176 177 178 179 180 181 182
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
                                       `predicate(variable) == True`. 
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
                                 use `filename` to specify it. Otherwise, let `filename` be None. 
                                 Default: None
F
fengjiayi 已提交
183 184 185 186 187 188 189 190 191 192

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

193
            import paddle.fluid as fluid
194

195 196 197 198 199 200 201 202 203 204 205
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
206

207
            # The first usage: use `vars` to set the saved variables.
208 209
            var_list = [w, b]
            path = "./my_paddle_vars"
210
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
211 212 213 214 215 216 217 218 219 220
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
221
    """
L
lujun 已提交
222
    save_dirname = os.path.normpath(dirname)
C
chengduo 已提交
223
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
224

225 226 227
    if vars is None:
        save_vars(
            executor,
228
            main_program=main_program,
L
lujun 已提交
229
            dirname=save_dirname,
230
            vars=list(filter(predicate, main_program.list_vars())),
231
            filename=filename)
232
    else:
233 234 235 236 237 238 239
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

240 241
        save_program = Program()
        save_block = save_program.global_block()
242 243

        save_var_map = {}
244
        for each_var in vars:
245 246 247
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
248
            new_var = _clone_var_in_block_(save_block, each_var)
249
            if filename is None:
250 251
                save_file_path = os.path.join(save_dirname, new_var.name)
                save_file_path = os.path.normpath(save_file_path)
252 253 254 255
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
256
                    attrs={'file_path': save_file_path})
257 258 259
            else:
                save_var_map[new_var.name] = new_var

260
        if filename is not None:
261 262 263 264
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

265
            save_block.append_op(
266 267
                type='save_combine',
                inputs={'X': save_var_list},
268
                outputs={},
L
lujun 已提交
269
                attrs={'file_path': os.path.join(save_dirname, filename)})
270

271 272 273 274
        #NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
275 276 277
        executor.run(save_program)


278
def save_params(executor, dirname, main_program=None, filename=None):
279
    """
G
guofei 已提交
280 281 282
    This operator saves all parameters from the :code:`main_program` to
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
283

G
guofei 已提交
284 285 286
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
287 288
    the file name.

G
guofei 已提交
289 290 291 292 293 294 295 296 297 298
    Note: 
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you can NOT save 
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead. 
        
        If you want to save your model for the inference, please use the 
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
299 300

    Args:
G
guofei 已提交
301 302
        executor(Executor): The executor to run for saving parameters, You can 
                            refer to :ref:`api_guide_executor_en`.
F
fengjiayi 已提交
303
        dirname(str): The saving directory path.
G
guofei 已提交
304 305 306 307 308 309 310 311 312 313
        main_program(Program, optional): The program whose parameters will be
                                         saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more 
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
314 315 316 317 318 319 320

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
321
            import paddle.fluid as fluid
G
guofei 已提交
322 323 324 325 326 327 328 329 330 331
           
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
    
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
            
F
fengjiayi 已提交
332
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
333 334 335 336
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
            # The parameters weights and bias of the fc layer in the network are going to 
            # be saved in different files in the path "./my_paddle_model" 
337 338 339 340
    """
    save_vars(
        executor,
        dirname=dirname,
341
        main_program=main_program,
342
        vars=None,
343
        predicate=is_parameter,
344
        filename=filename)
345 346


347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

369
            import paddle.fluid as fluid
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
391 392 393 394 395 396 397
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
398 399 400

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
401
                slice = optimizer.slice
402 403 404
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
405 406 407
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
408 409
                endpoints[index] = endpoint

T
tangwei12 已提交
410 411 412 413 414
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

415
            block.append_op(
T
tangwei12 已提交
416 417 418 419 420 421 422 423 424 425 426
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name)
                })

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
T
tangwei12 已提交
456 457
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
458 459 460 461 462 463
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
464
        raise TypeError("'main_program' should be an instance of Program.")
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


498
def save_persistables(executor, dirname, main_program=None, filename=None):
499
    """
G
guofei 已提交
500 501 502 503 504
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
    saves these persistables variables to the folder :code:`dirname` or file 
    :code:`filename`. 
F
fengjiayi 已提交
505

G
guofei 已提交
506
    The :code:`dirname` is used to specify the folder where persistable variables
507
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
508 509
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
510 511 512

    Args:
        executor(Executor): The executor to run for saving persistable variables.
G
guofei 已提交
513 514 515 516 517 518 519 520 521 522 523 524
                            You can refer to :ref:`api_guide_executor_en` for 
                            more details.
        dirname(str): The saving directory path.
        main_program(Program, optional): The program whose persistbale variables will
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
                                         If it is None, the default main program will 
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
525 526 527 528 529 530 531

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
532
            import paddle.fluid as fluid
G
guofei 已提交
533 534 535 536 537 538 539 540 541 542
        
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
           
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
543
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
544 545 546 547 548
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
            # The persistables variables weights and bias in the fc layer of the network 
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
549
    """
550 551 552 553 554 555 556 557 558 559 560
    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
561 562


563 564 565 566 567
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
568
              filename=None):
569
    """
570
    This API loads variables from files by executor.
F
fengjiayi 已提交
571

572 573 574 575
    There are two ways to specify the variables to be loaded: the first way, set
    variables in a list and assign it to the `vars`; the second way, use the 
    `predicate` function to select variables that make `predicate(variable) == True`. 
    The first way has a higher priority.
F
fengjiayi 已提交
576

577
    The `dirname` is used to specify the folder where to load variables.
578
    If variables were saved in separate files in the folder `dirname`,
579
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
580
    use `filename` to specify it.
581

F
fengjiayi 已提交
582 583
    Args:
        executor(Executor): The executor to run for loading variables.
584 585
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
586
                                    If it is None, the default main program will
F
fengjiayi 已提交
587 588
                                    be used automatically.
                                    Default: None
589
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
590
                                   Default: None
591 592 593 594 595 596
        predicate(function, optional): The function selects variables that make 
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
597 598 599 600 601 602 603 604 605 606

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

607
            import paddle.fluid as fluid
608

609 610 611 612 613 614 615 616 617 618 619
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
620

621 622 623 624 625 626 627 628 629 630 631
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
632
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
633 634 635
            def name_has_fc(var):
                res = "fc" in var.name
                return res
636 637 638
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
639
                               vars=None, predicate=name_has_fc)
640 641
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
642

643
    """
L
lujun 已提交
644
    load_dirname = os.path.normpath(dirname)
T
tangwei12 已提交
645

646
    if vars is None:
647
        if main_program is None:
Y
Yu Yang 已提交
648
            main_program = default_main_program()
649
        if not isinstance(main_program, Program):
650 651 652 653
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
654
            dirname=load_dirname,
T
tangwei12 已提交
655
            main_program=main_program,
656
            vars=list(filter(predicate, main_program.list_vars())),
657
            filename=filename)
658 659 660
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
661

662 663
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
664

665 666 667
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

T
tangwei12 已提交
668
        # save origin param shape
H
hong 已提交
669
        orig_para_shape = {}
670
        load_var_map = {}
671 672
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
673 674
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
675 676

            if isinstance(each_var, Parameter):
677 678
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
679
            new_var = _clone_var_in_block_(load_block, each_var)
680
            if filename is None:
681 682 683 684
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
685 686 687
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
688 689 690
            else:
                load_var_map[new_var.name] = new_var

691
        if filename is not None:
692 693 694 695
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

696
            load_block.append_op(
697
                type='load_combine',
698
                inputs={},
699
                outputs={"Out": load_var_list},
L
lujun 已提交
700
                attrs={'file_path': os.path.join(load_dirname, filename)})
701 702
        executor.run(load_prog)

T
tangwei12 已提交
703
        # check var shape
H
hong 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717
        for each_var in vars:
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
            assert each_var.name in orig_para_shape, earch_var.name + "MUST in var list"
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
                    "Shape not matching: the Program requires a parameter with a shape of ({}), "
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

718

719
def load_params(executor, dirname, main_program=None, filename=None):
720
    """
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
740 741

    Args:
742 743
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
744
        dirname(str): The directory path.
745 746 747 748 749 750 751 752
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
753 754 755 756 757 758 759

    Returns:
        None

    Examples:
        .. code-block:: python

760
            import paddle.fluid as fluid
761

F
fengjiayi 已提交
762 763 764
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
765
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
766
                                main_program=None)
767 768
    """
    load_vars(
769 770 771
        executor,
        dirname=dirname,
        main_program=main_program,
772
        predicate=is_parameter,
773
        filename=filename)
774 775


776
def load_persistables(executor, dirname, main_program=None, filename=None):
777
    """
778 779 780
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
    directory ``dirnameme`` or the file ``filename``.
F
fengjiayi 已提交
781

782 783 784 785
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
786 787

    Args:
788 789
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
790
        dirname(str): The directory path.
791 792 793 794 795 796 797 798
        main_program(Program, optional): The program whose persistbale variables will
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
799 800 801 802 803 804 805

    Returns:
        None

    Examples:
        .. code-block:: python

806
            import paddle.fluid as fluid
807

F
fengjiayi 已提交
808 809 810
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
811
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
812
                                       main_program=None)
813
    """
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

845
            import paddle.fluid as fluid
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                load_block.append_op(
T
tangwei12 已提交
879 880 881 882 883 884 885 886
                    type='load',
                    inputs={},
                    outputs={'Out': [slice]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name),
                        'seek': offset,
                        'shape': slice.shape
                    })
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
909
        raise TypeError("'main_program' should be an instance of Program.")
910 911 912 913 914 915 916 917 918 919 920 921 922 923

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
924 925


926 927 928
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
929 930 931
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
932 933
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
934 935 936
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
937

938
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
939
        out = global_block.var(name)
W
Wu Yi 已提交
940
        global_block._prepend_op(
K
Kexin Zhao 已提交
941 942
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
943
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
944 945 946
            attrs={'col': i})


947 948 949
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
950 951
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
952 953 954
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
955

956
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
957 958 959 960 961 962 963
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


964 965 966 967
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
968
                         main_program=None,
969
                         model_filename=None,
970
                         params_filename=None,
T
tangwei12 已提交
971 972
                         export_for_deployment=True,
                         program_only=False):
973
    """
F
fengjiayi 已提交
974
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
975
    and then save it and all related parameters to given `dirname` .
976
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
977 978
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
979

G
guofei 已提交
980 981 982 983 984
    Note:
        The :code:`dirname` is used to specify the folder where inference model 
        structure and parameters are going to be saved. If you would like to save params of
        Program in separate files, set `params_filename` None; if you would like to save all 
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
985 986 987

    Args:
        dirname(str): The directory path to save the inference model.
G
guofei 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
        feeded_var_names(list[str]): list of string. Names of variables that need to be feeded
                                     data during inference.
        target_vars(list[Variable]): list of Variable. Variables from which we can get 
                                     inference results.
        executor(Executor): The executor that saves the inference model. You can refer 
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
                                         build the inference model. If is setted None,
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
                                       itself. If is setted None, a default filename
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
                                        If it is setted None, parameters will be saved
                                        in separate files .
X
Xin Pan 已提交
1004 1005 1006 1007 1008
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1009 1010 1011 1012
                                     Default: True.
        program_only(bool, optional): If True, It will save inference program only, and do not 
                                      save params of Program.
                                      Default: False.
1013

F
fengjiayi 已提交
1014
    Returns:
G
guofei 已提交
1015 1016 1017 1018
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1019 1020

    Raises:
G
guofei 已提交
1021 1022
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1023 1024 1025

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1026

1027 1028
            import paddle.fluid as fluid

F
fengjiayi 已提交
1029 1030
            path = "./infer_model"

1031
            # User defined network, here a softmax regresssion example
G
guofei 已提交
1032 1033
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1051 1052 1053
            # In this example, the save_inference_mode inference will prune the default
            # main program according to the network's input node (img) and output node(predict). 
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1054
            # and parameters are going to be saved in separate files under folder
1055
            # "./infer_model".
1056 1057

    """
M
minqiyang 已提交
1058
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1059
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1060
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1061
        if len(feeded_var_names) > 0:
1062
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1063
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1064
                    isinstance(name, six.string_types)
1065
                    for name in feeded_var_names)):
M
minqiyang 已提交
1066
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1067 1068

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1069
        target_vars = [target_vars]
X
Xin Pan 已提交
1070
    elif export_for_deployment:
1071 1072
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1073 1074
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1075
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1076

1077 1078 1079 1080 1081 1082 1083 1084 1085
    # remind user to set auc_states to zeros if the program contains auc op 
    all_ops = main_program.global_block().ops
    for op in all_ops:
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1086 1087 1088 1089 1090
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1091
        for i, var in enumerate(target_vars):
1092
            if isinstance(var, Variable):
F
flame 已提交
1093 1094 1095
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1096
        target_vars = uniq_target_vars
F
flame 已提交
1097
    target_var_name_list = [var.name for var in target_vars]
1098

1099
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1100
    save_dirname = dirname
1101
    try:
L
lujun 已提交
1102 1103
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1104 1105 1106 1107
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1108 1109 1110 1111
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1112
    model_basename = os.path.join(save_dirname, model_basename)
1113

X
Xin Pan 已提交
1114 1115 1116 1117
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1118 1119 1120

    origin_program = main_program.clone()

X
Xin Pan 已提交
1121
    if export_for_deployment:
X
Xin Pan 已提交
1122 1123
        main_program = main_program.clone()
        global_block = main_program.global_block()
1124
        need_to_remove_op_index = []
X
Xin Pan 已提交
1125 1126 1127
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1128 1129 1130 1131 1132
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1133
        main_program.desc.flush()
X
Xin Pan 已提交
1134

1135 1136
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1137
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1138 1139
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1140 1141 1142
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1143 1144
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1145 1146
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1147 1148 1149
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1150 1151
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1152

T
tangwei12 已提交
1153 1154 1155 1156 1157 1158
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1159 1160
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1161 1162
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1163

L
lujun 已提交
1164
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1165
    return target_var_name_list
X
fix  
Xin Pan 已提交
1166

1167

1168 1169 1170
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1171 1172
                         params_filename=None,
                         pserver_endpoints=None):
1173
    """
1174 1175 1176
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1177
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1178

F
fengjiayi 已提交
1179
    Args:
1180
        dirname(str): The given directory path.
F
fengjiayi 已提交
1181
        executor(Executor): The executor to run for loading inference model.
1182 1183
                            See :ref:`api_guide_executor_en` for more details about it.
        model_filename(str, optional): The name of file to load the inference program.
1184
                                  If it is None, the default filename
1185 1186 1187
                                  ``__model__`` will be used.
                                  Default: ``None``.
        params_filename(str, optional): The name of file to load all parameters.
1188 1189 1190
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
1191 1192 1193 1194 1195 1196
                                   files, set it as ``None``.
                                   Default: ``None``.

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1197
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1198 1199

    Returns:
1200
        list: The return of this API is a list with three elements:
1201
        (program, feed_target_names, fetch_targets). The `program` is a
1202 1203 1204 1205 1206
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1207 1208 1209 1210 1211 1212 1213

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1214 1215
            import paddle.fluid as fluid
            import numpy as np
1216 1217

            # Build the model
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1229 1230

            # Save the inference model
F
fengjiayi 已提交
1231
            path = "./infer_model"
1232 1233
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1234 1235 1236

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1237 1238
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1239
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1240 1241 1242 1243
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1244 1245 1246
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1247
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1248
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1249 1250
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1251
                                              pserver_endpoints=endpoints))
1252

1253
            # In this example, the inference program was saved in the file
1254
            # "./infer_model/__model__" and parameters were saved in
1255 1256 1257 1258
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1259
    """
L
lujun 已提交
1260 1261
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1262 1263
        raise ValueError("There is no directory named '%s'", dirname)

1264 1265
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1266
    else:
1267
        model_filename = "__model__"
L
lujun 已提交
1268
    model_filename = os.path.join(load_dirname, model_filename)
1269 1270 1271

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1272

1273
    with open(model_filename, "rb") as f:
1274 1275
        program_desc_str = f.read()

1276
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1277
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1278 1279 1280
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1281
    load_persistables(executor, load_dirname, program, params_filename)
1282

T
tangwei12 已提交
1283
    if pserver_endpoints:
T
tangwei12 已提交
1284
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1285

1286 1287
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1288 1289 1290 1291 1292
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1293 1294


T
tangwei12 已提交
1295 1296 1297
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1298 1299
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1300
    program._sync_with_cpp()
T
tangwei12 已提交
1301
    return program
T
tangwei12 已提交
1302 1303


X
xuwei06 已提交
1304 1305
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1317

F
fengjiayi 已提交
1318 1319
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1320

1321
            import paddle.fluid as fluid
F
fengjiayi 已提交
1322 1323 1324
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1325

X
xuwei06 已提交
1326
    """
X
xuwei06 已提交
1327 1328
    assert is_parameter(para)

X
xuwei06 已提交
1329 1330 1331 1332 1333 1334 1335 1336
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1337
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1338

F
fengjiayi 已提交
1339 1340 1341 1342 1343 1344 1345
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1346

F
fengjiayi 已提交
1347 1348
    Returns:
        numpy.array: The parameter's values.
1349

F
fengjiayi 已提交
1350 1351 1352 1353 1354
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1355

F
fengjiayi 已提交
1356 1357 1358
    Examples:
        .. code-block:: python

1359
            import paddle.fluid as fluid
F
fengjiayi 已提交
1360 1361
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1362 1363
    """
    if program is None:
Y
Yu Yang 已提交
1364
        program = default_main_program()
X
xuwei06 已提交
1365 1366
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472


def save(program, model_path):
    """
    This function save parameters, optimizer information and network description to  model_path.

    The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
    The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
    
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
T
tangwei12 已提交
1473
        "model_path MUST be format of dirname/filename [dirname\\filename in Window], Now filename is empty str"
H
hong 已提交
1474

Y
Yang Zhang 已提交
1475 1476 1477 1478
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1479
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1480 1481 1482
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
    with open(model_path + ".pdparams", 'wb') as f:
        pickle.dump(param_dict, f)
H
hong 已提交
1483 1484 1485 1486

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1487 1488 1489
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
        pickle.dump(opt_dict, f)
H
hong 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(program.desc)

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


1500
def load(program, model_path, executor=None):
H
hong 已提交
1501 1502
    """
    This function filter out parameters and optimizer information from program, and then get corresponding value from file.
1503
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1504 1505

    Args: 
1506 1507 1508 1509
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
        executor(Executor, optional): The executor used for initialize the parameter 
                                      When startup program is not run.
H
hong 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

    Returns:
        None
        
     Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

            fluid.load( prog, "./temp")

    """

1526 1527
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1528 1529
    parameter_file_name = model_path + ".pdparams"
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
1530
        "Parameter file [{}] not exits".format(parameter_file_name)
Y
Yang Zhang 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
1545 1546

    parameter_list = list(filter(is_parameter, program.list_vars()))
1547 1548 1549 1550 1551

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
1552 1553 1554 1555 1556 1557 1558
    with open(parameter_file_name, 'rb') as f:
        load_dict = pickle.load(f)
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
1559 1560 1561 1562 1563 1564 1565

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
        opt_file_name = model_path + ".pdopt"
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
1566
            "Optimizer file [{}] not exits".format(opt_file_name)
1567 1568 1569 1570

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
1571 1572 1573 1574 1575 1576 1577 1578

        with open(opt_file_name, 'rb') as f:
            load_dict = pickle.load(f)
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610


def load_program_state(model_path):
    """
    Load program state from local file
    
    Args:
        model_path(str): The file prefix store the program
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")
            
            fluid.set_program_state( prog, program_state)

    """
    parameter_file_name = model_path + ".pdparams"
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
1611
        "Parameter file [{}] not exits".format(parameter_file_name)
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

    with open(parameter_file_name, 'rb') as f:
        para_dict = pickle.load(f)

    opt_file_name = model_path + ".pdopt"
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
            opti_dict = pickle.load(f)

        para_dict.update(opti_dict)

    return para_dict


def set_program_state(program, state_dict):
    """
    Set program parameter from state_dict

    An exception will throw if shape or dtype of the parameters is not match. 

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
    Returns: 
        None
    
    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")

    """
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
1663
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
1664 1665 1666 1667
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
1668 1669 1670
            assert orig_para_np.shape == new_para_np.shape, \
                "Shape not matching: the Program requires a parameter with a shape of ({}), " \
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
1671
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
1672 1673 1674
            assert orig_para_np.dtype == new_para_np.dtype, \
                "Dtype not matching: the Program requires a parameter with a dtype of ({}), " \
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
1675 1676 1677 1678 1679 1680
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

            assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
T
tangwei12 已提交
1681
                "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
            "This list is not set, Because of Paramerter not found in program. There are: {}".
            format(" ".join(unused_para_list)))