io.py 79.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
H
hong 已提交
23
import contextlib
24
from functools import reduce
25

H
hong 已提交
26 27
import numpy as np

28 29 30
import paddle
import paddle.reader
from paddle.reader import *
31
from paddle.fluid import layers
H
hong 已提交
32
from paddle.fluid.executor import Executor, global_scope
33
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
34 35
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
    program_guard
36
from .wrapped_decorator import signature_safe_contextmanager
T
tangwei12 已提交
37
from paddle.fluid.compiler import CompiledProgram
38
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
39
from . import reader
40
from . import unique_name
S
sneaxiy 已提交
41
from .reader import *
42 43
from . import dataloader
from .dataloader import *
K
fix bug  
Kexin Zhao 已提交
44
from . import core
45
from .. import compat as cpt
46

47 48
batch = paddle.batch

49
__all__ = [
50 51 52 53 54 55 56 57 58 59 60 61 62
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
63 64
    'get_program_parameter',
    'get_program_persistable_vars',
65
] + reader.__all__ + paddle.reader.__all__
66

67 68
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
69

70 71

def is_parameter(var):
F
fengjiayi 已提交
72 73
    """
    Check whether the given variable is an instance of Parameter.
74 75

    Args:
F
fengjiayi 已提交
76
        var(Variable): The variable to be checked.
77 78

    Returns:
F
fengjiayi 已提交
79 80 81 82 83 84
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

85
            import paddle.fluid as fluid
F
fengjiayi 已提交
86 87
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
88
    """
89 90 91 92
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

106
            import paddle.fluid as fluid
107
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
108 109
            res = fluid.io.is_persistable(param)
    """
110
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
111 112
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
113
        return False
114 115 116
    return var.persistable


H
hong 已提交
117
def is_belong_to_optimizer(var):
118
    if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
119 120 121
        return is_persistable(var)

    return False
H
hong 已提交
122 123


H
hong 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
def get_program_parameter(program):
    """
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


def get_program_persistable_vars(program):
    """
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


168 169
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
185 186


187
@signature_safe_contextmanager
H
hong 已提交
188 189 190 191 192 193 194 195 196 197
def _load_program_scope(main=None, startup=None, scope=None):
    prog = main if main else paddle.fluid.Program()
    startup_prog = startup if startup else paddle.fluid.Program()
    scope = scope if scope else paddle.fluid.core.Scope()
    with paddle.fluid.scope_guard(scope):
        with paddle.fluid.program_guard(prog, startup_prog):
            with paddle.fluid.unique_name.guard():
                yield


C
chengduo 已提交
198 199 200 201 202 203
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
204 205 206
            raise TypeError(
                "The type of input main_program is invalid, expected tyep is Program, but received None"
            )
C
chengduo 已提交
207 208 209
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
210 211 212
        raise TypeError(
            "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
            % type(main_program))
C
chengduo 已提交
213 214 215
    return main_program


216 217 218 219 220
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
221
              filename=None):
222
    """
223
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
224

225 226 227
    There are two ways to specify the variables to be saved: set variables in 
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
228

229
    The `dirname` is used to specify the folder where to save variables.
T
tianshuo78520a 已提交
230
    If you prefer to save variables in separate files in the `dirname` folder,
231
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
232
    use `filename` to specify it.
233

F
fengjiayi 已提交
234 235
    Args:
        executor(Executor): The executor to run for saving variables.
236 237
        dirname(str, optional): The folder where to save variables.
                            When you need to save the parameter to the memory, set it to None.
238
        main_program(Program, optional): The program whose variables will be saved.
239
                                    If it is None, the default main program will
F
fengjiayi 已提交
240 241
                                    be used automatically.
                                    Default: None
242 243 244 245 246 247 248 249
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
                                       `predicate(variable) == True`. 
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
                                 use `filename` to specify it. Otherwise, let `filename` be None. 
                                 Default: None
F
fengjiayi 已提交
250 251

    Returns:
252 253
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
254 255 256 257 258 259 260

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

261
            import paddle.fluid as fluid
262

263 264 265 266 267 268 269 270 271 272 273
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
274

275
            # The first usage: use `vars` to set the saved variables.
276 277
            var_list = [w, b]
            path = "./my_paddle_vars"
278
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
279 280 281 282 283 284 285 286 287 288
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
289
    """
290 291 292 293
    save_to_memory = False
    if dirname is None and filename is None:
        save_to_memory = True

C
chengduo 已提交
294
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
295

296
    if vars is None:
297
        return save_vars(
298
            executor,
299
            main_program=main_program,
300
            dirname=dirname,
301
            vars=list(filter(predicate, main_program.list_vars())),
302
            filename=filename)
303
    else:
304
        params_var_name = unique_name.generate("saved_params")
305 306 307 308 309 310 311
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

312 313
        save_program = Program()
        save_block = save_program.global_block()
314 315

        save_var_map = {}
316
        for each_var in vars:
317 318 319
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
320
            new_var = _clone_var_in_block_(save_block, each_var)
321 322 323
            if filename is None and save_to_memory is False:
                save_file_path = os.path.join(
                    os.path.normpath(dirname), new_var.name)
324 325 326 327
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
328
                    attrs={'file_path': os.path.normpath(save_file_path)})
329 330 331
            else:
                save_var_map[new_var.name] = new_var

332
        if filename is not None or save_to_memory:
333 334 335 336
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

337 338 339 340 341 342 343
            save_path = str()
            if save_to_memory is False:
                save_path = os.path.join(os.path.normpath(dirname), filename)

            saved_params = save_block.create_var(
                type=core.VarDesc.VarType.RAW, name=params_var_name)
            saved_params.desc.set_persistable(True)
344
            save_block.append_op(
345 346
                type='save_combine',
                inputs={'X': save_var_list},
347 348 349 350 351
                outputs={'Y': saved_params},
                attrs={
                    'file_path': save_path,
                    'save_to_memory': save_to_memory
                })
352

353 354 355 356
        #NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
357
        executor.run(save_program)
358 359
        if save_to_memory:
            return global_scope().find_var(params_var_name).get_bytes()
360 361


362
def save_params(executor, dirname, main_program=None, filename=None):
363
    """
G
guofei 已提交
364 365 366
    This operator saves all parameters from the :code:`main_program` to
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
367

G
guofei 已提交
368 369 370
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
371 372
    the file name.

G
guofei 已提交
373 374 375 376 377 378 379 380 381 382
    Note: 
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you can NOT save 
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead. 
        
        If you want to save your model for the inference, please use the 
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
383 384

    Args:
G
guofei 已提交
385 386
        executor(Executor): The executor to run for saving parameters, You can 
                            refer to :ref:`api_guide_executor_en`.
387 388
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
G
guofei 已提交
389 390 391 392 393 394 395 396 397 398
        main_program(Program, optional): The program whose parameters will be
                                         saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more 
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
399 400

    Returns:
401 402
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
403 404 405 406

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
407
            import paddle.fluid as fluid
G
guofei 已提交
408 409 410 411 412 413 414 415 416 417
           
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
    
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
            
F
fengjiayi 已提交
418
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
419 420 421 422
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
            # The parameters weights and bias of the fc layer in the network are going to 
            # be saved in different files in the path "./my_paddle_model" 
423
    """
424
    return save_vars(
425 426
        executor,
        dirname=dirname,
427
        main_program=main_program,
428
        vars=None,
429
        predicate=is_parameter,
430
        filename=filename)
431 432


433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

455
            import paddle.fluid as fluid
456 457 458 459 460 461 462 463 464 465
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
T
tianshuo78520a 已提交
466
        receive params on pserver through rpc.
467 468 469 470 471 472 473 474 475 476
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
477 478 479 480 481 482 483
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
484 485 486

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
487
                slice = optimizer.slice
488 489 490
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
491 492 493
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
494 495
                endpoints[index] = endpoint

T
tangwei12 已提交
496 497 498 499 500
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

501
            block.append_op(
T
tangwei12 已提交
502 503 504 505 506 507 508 509 510 511 512
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name)
                })

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
T
tangwei12 已提交
542 543
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
544 545 546 547 548 549
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
550
        raise TypeError("'main_program' should be an instance of Program.")
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


584
def save_persistables(executor, dirname, main_program=None, filename=None):
585
    """
G
guofei 已提交
586 587 588 589 590
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
    saves these persistables variables to the folder :code:`dirname` or file 
    :code:`filename`. 
F
fengjiayi 已提交
591

G
guofei 已提交
592
    The :code:`dirname` is used to specify the folder where persistable variables
593
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
594 595
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
596 597 598

    Args:
        executor(Executor): The executor to run for saving persistable variables.
G
guofei 已提交
599 600
                            You can refer to :ref:`api_guide_executor_en` for 
                            more details.
601 602 603
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
        main_program(Program, optional): The program whose persistbale variables will
G
guofei 已提交
604 605 606 607 608 609 610 611
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
                                         If it is None, the default main program will 
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
612 613

    Returns:
614 615
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
616 617 618 619

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
620
            import paddle.fluid as fluid
G
guofei 已提交
621 622 623 624 625 626 627 628 629 630
        
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
           
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
631
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
632 633 634 635 636
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
            # The persistables variables weights and bias in the fc layer of the network 
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
637
    """
638
    if main_program and main_program._is_distributed:
639
        return _save_distributed_persistables(
640 641
            executor, dirname=dirname, main_program=main_program)
    else:
642
        return save_vars(
643 644 645 646 647 648
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
649 650


651 652 653 654 655
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
656
              filename=None):
657
    """
658
    This API loads variables from files by executor.
F
fengjiayi 已提交
659

660 661 662 663
    There are two ways to specify the variables to be loaded: the first way, set
    variables in a list and assign it to the `vars`; the second way, use the 
    `predicate` function to select variables that make `predicate(variable) == True`. 
    The first way has a higher priority.
F
fengjiayi 已提交
664

665
    The `dirname` is used to specify the folder where to load variables.
666
    If variables were saved in separate files in the folder `dirname`,
667
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
668
    use `filename` to specify it.
669

F
fengjiayi 已提交
670 671
    Args:
        executor(Executor): The executor to run for loading variables.
672 673
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
674
                                    If it is None, the default main program will
F
fengjiayi 已提交
675 676
                                    be used automatically.
                                    Default: None
677
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
678
                                   Default: None
679 680 681 682 683 684
        predicate(function, optional): The function selects variables that make 
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
685 686 687 688 689 690 691 692 693 694

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

695
            import paddle.fluid as fluid
696

697 698 699 700 701 702 703 704 705 706 707
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
708

709 710 711 712 713 714 715 716 717 718 719
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
720
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
721 722 723
            def name_has_fc(var):
                res = "fc" in var.name
                return res
724 725 726
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
727
                               vars=None, predicate=name_has_fc)
728 729
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
730

731
    """
732 733 734 735 736
    vars_from_memory = False
    if dirname is not None:
        dirname = os.path.normpath(dirname)
    else:
        vars_from_memory = True
T
tangwei12 已提交
737

738
    if vars is None:
739
        if main_program is None:
Y
Yu Yang 已提交
740
            main_program = default_main_program()
741
        if not isinstance(main_program, Program):
742 743 744
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
745 746 747

        load_vars(
            executor,
748
            dirname=dirname,
T
tangwei12 已提交
749
            main_program=main_program,
750
            vars=list(filter(predicate, main_program.list_vars())),
751
            filename=filename)
752 753 754
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
755

756 757
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
758

759
        if not isinstance(main_program, Program):
760 761 762
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
763

T
tangwei12 已提交
764
        # save origin param shape
H
hong 已提交
765
        orig_para_shape = {}
766
        load_var_map = {}
767 768
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
769 770
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
771 772

            if isinstance(each_var, Parameter):
773 774
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
775
            new_var = _clone_var_in_block_(load_block, each_var)
776
            if filename is None:
777 778 779 780
                if dirname is None:
                    raise ValueError(
                        "The directory path and params cannot be None at the same time."
                    )
781 782 783 784
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
785
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
786 787 788
            else:
                load_var_map[new_var.name] = new_var

789
        if filename is not None:
790 791 792 793
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

794 795 796
            if vars_from_memory is False:
                filename = os.path.join(dirname, filename)

797
            load_block.append_op(
798
                type='load_combine',
799
                inputs={},
800
                outputs={"Out": load_var_list},
801 802 803 804
                attrs={
                    'file_path': filename,
                    'model_from_memory': vars_from_memory
                })
805 806
        executor.run(load_prog)

T
tangwei12 已提交
807
        # check var shape
H
hong 已提交
808 809 810 811 812 813
        for each_var in vars:
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
814
            assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
H
hong 已提交
815 816 817
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
818
                    "Variable's shape does not match, the Program requires a parameter with the shape of ({}), "
H
hong 已提交
819 820 821
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

822

823
def load_params(executor, dirname, main_program=None, filename=None):
824
    """
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
844 845

    Args:
846 847
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
848
        dirname(str): The directory path.
849 850 851 852 853 854 855 856
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
857 858 859 860 861 862 863

    Returns:
        None

    Examples:
        .. code-block:: python

864
            import paddle.fluid as fluid
865

F
fengjiayi 已提交
866 867 868
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
869
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
870
                                main_program=None)
871 872
    """
    load_vars(
873 874 875
        executor,
        dirname=dirname,
        main_program=main_program,
876
        predicate=is_parameter,
877
        filename=filename)
878 879


880
def load_persistables(executor, dirname, main_program=None, filename=None):
881
    """
882 883
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
T
tianshuo78520a 已提交
884
    directory ``dirname`` or the file ``filename``.
F
fengjiayi 已提交
885

886 887 888 889
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
890 891

    Args:
892 893
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
894
        dirname(str): The directory path.
T
tianshuo78520a 已提交
895
        main_program(Program, optional): The program whose persistable variables will
896 897 898 899 900 901 902
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
903 904 905 906 907 908 909

    Returns:
        None

    Examples:
        .. code-block:: python

910
            import paddle.fluid as fluid
911

F
fengjiayi 已提交
912 913 914
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
915
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
916
                                       main_program=None)
917
    """
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

949
            import paddle.fluid as fluid
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                load_block.append_op(
T
tangwei12 已提交
983 984 985 986 987 988 989 990
                    type='load',
                    inputs={},
                    outputs={'Out': [slice]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name),
                        'seek': offset,
                        'shape': slice.shape
                    })
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
1013
        raise TypeError("'main_program' should be an instance of Program.")
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
1028 1029


1030 1031 1032
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
1033 1034 1035
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
1036 1037
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
1038 1039 1040
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
1041

1042
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
1043
        out = global_block.var(name)
W
Wu Yi 已提交
1044
        global_block._prepend_op(
K
Kexin Zhao 已提交
1045 1046
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
1047
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
1048 1049 1050
            attrs={'col': i})


1051 1052 1053
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
1054 1055
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
1056 1057 1058
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
1059

1060
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
1061 1062 1063 1064 1065 1066 1067
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


1068 1069 1070 1071
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1072
                         main_program=None,
1073
                         model_filename=None,
1074
                         params_filename=None,
T
tangwei12 已提交
1075 1076
                         export_for_deployment=True,
                         program_only=False):
1077
    """
F
fengjiayi 已提交
1078
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1079
    and then save it and all related parameters to given `dirname` .
1080
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1081 1082
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1083

G
guofei 已提交
1084 1085 1086 1087 1088
    Note:
        The :code:`dirname` is used to specify the folder where inference model 
        structure and parameters are going to be saved. If you would like to save params of
        Program in separate files, set `params_filename` None; if you would like to save all 
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1089 1090 1091

    Args:
        dirname(str): The directory path to save the inference model.
T
tianshuo78520a 已提交
1092
        feeded_var_names(list[str]): list of string. Names of variables that need to be fed
G
guofei 已提交
1093 1094 1095 1096 1097 1098
                                     data during inference.
        target_vars(list[Variable]): list of Variable. Variables from which we can get 
                                     inference results.
        executor(Executor): The executor that saves the inference model. You can refer 
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
T
tianshuo78520a 已提交
1099
                                         build the inference model. If is set None,
G
guofei 已提交
1100 1101 1102
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
T
tianshuo78520a 已提交
1103
                                       itself. If is set None, a default filename
G
guofei 已提交
1104 1105
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
T
tianshuo78520a 已提交
1106
                                        If it is set None, parameters will be saved
G
guofei 已提交
1107
                                        in separate files .
X
Xin Pan 已提交
1108 1109 1110 1111 1112
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1113 1114 1115 1116
                                     Default: True.
        program_only(bool, optional): If True, It will save inference program only, and do not 
                                      save params of Program.
                                      Default: False.
1117

F
fengjiayi 已提交
1118
    Returns:
G
guofei 已提交
1119 1120 1121 1122
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1123 1124

    Raises:
G
guofei 已提交
1125 1126
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1127 1128 1129

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1130

1131 1132
            import paddle.fluid as fluid

F
fengjiayi 已提交
1133 1134
            path = "./infer_model"

T
tianshuo78520a 已提交
1135
            # User defined network, here a softmax regession example
G
guofei 已提交
1136 1137
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1155 1156 1157
            # In this example, the save_inference_mode inference will prune the default
            # main program according to the network's input node (img) and output node(predict). 
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1158
            # and parameters are going to be saved in separate files under folder
1159
            # "./infer_model".
1160 1161

    """
M
minqiyang 已提交
1162
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1163
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1164
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1165
        if len(feeded_var_names) > 0:
1166
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1167
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1168
                    isinstance(name, six.string_types)
1169
                    for name in feeded_var_names)):
M
minqiyang 已提交
1170
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1171 1172

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1173
        target_vars = [target_vars]
X
Xin Pan 已提交
1174
    elif export_for_deployment:
1175 1176
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1177 1178
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1179
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1180

1181 1182 1183
    # remind user to set auc_states to zeros if the program contains auc op 
    all_ops = main_program.global_block().ops
    for op in all_ops:
1184 1185 1186
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
1187 1188 1189 1190 1191 1192
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1193 1194 1195 1196 1197
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1198
        for i, var in enumerate(target_vars):
1199
            if isinstance(var, Variable):
F
flame 已提交
1200 1201 1202
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1203
        target_vars = uniq_target_vars
F
flame 已提交
1204
    target_var_name_list = [var.name for var in target_vars]
1205

1206
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1207
    save_dirname = dirname
1208
    try:
L
lujun 已提交
1209 1210
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1211 1212 1213 1214
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1215 1216 1217 1218
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1219
    model_basename = os.path.join(save_dirname, model_basename)
1220

X
Xin Pan 已提交
1221 1222 1223 1224
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1225 1226 1227

    origin_program = main_program.clone()

X
Xin Pan 已提交
1228
    if export_for_deployment:
X
Xin Pan 已提交
1229 1230
        main_program = main_program.clone()
        global_block = main_program.global_block()
1231
        need_to_remove_op_index = []
X
Xin Pan 已提交
1232 1233 1234
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1235 1236 1237 1238 1239
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1240
        main_program.desc.flush()
X
Xin Pan 已提交
1241

1242 1243
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1244
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1245 1246
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1247 1248 1249
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1250 1251
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1252 1253
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1254 1255 1256
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1257 1258
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1259

T
tangwei12 已提交
1260 1261 1262 1263 1264 1265
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1266 1267
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1268 1269
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1270

L
lujun 已提交
1271
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1272
    return target_var_name_list
X
fix  
Xin Pan 已提交
1273

1274

1275 1276 1277
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1278 1279
                         params_filename=None,
                         pserver_endpoints=None):
1280
    """
1281 1282 1283
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1284
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1285

F
fengjiayi 已提交
1286
    Args:
1287 1288 1289
        dirname(str): One of the following:
          - The given directory path.
          - Set to None when reading the model from memory.
F
fengjiayi 已提交
1290
        executor(Executor): The executor to run for loading inference model.
1291
                            See :ref:`api_guide_executor_en` for more details about it.
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
        model_filename(str, optional): One of the following:
          - The name of file to load the inference program.
          - If it is None, the default filename ``__model__`` will be used.
          - When ``dirname`` is ``None``, it must be set to a string containing model.
          Default: ``None``.
        params_filename(str, optional): It is only used for the case that all
            parameters were saved in a single binary file. One of the following:
          - The name of file to load all parameters.  
          - When ``dirname`` is ``None``, it must be set to a string containing all the parameters.
          - If parameters were saved in separate files, set it as ``None``.
            Default: ``None``.
1303 1304 1305 1306

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1307
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1308 1309

    Returns:
1310
        list: The return of this API is a list with three elements:
1311
        (program, feed_target_names, fetch_targets). The `program` is a
1312 1313 1314 1315 1316
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1317 1318 1319 1320 1321 1322 1323

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1324 1325
            import paddle.fluid as fluid
            import numpy as np
1326 1327

            # Build the model
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1339 1340

            # Save the inference model
F
fengjiayi 已提交
1341
            path = "./infer_model"
1342 1343
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1344 1345 1346

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1347 1348
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1349
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1350 1351 1352 1353
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1354 1355 1356
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1357
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1358
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1359 1360
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1361
                                              pserver_endpoints=endpoints))
1362

1363
            # In this example, the inference program was saved in the file
1364
            # "./infer_model/__model__" and parameters were saved in
1365 1366 1367 1368
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1369
    """
1370 1371 1372 1373
    load_from_memory = False
    if dirname is not None:
        load_dirname = os.path.normpath(dirname)
        if not os.path.isdir(load_dirname):
1374
            raise ValueError("There is no directory named '%s'" % dirname)
1375

1376 1377
        if model_filename is None:
            model_filename = '__model__'
1378

1379 1380
        model_filename = os.path.join(load_dirname,
                                      os.path.basename(model_filename))
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
        if params_filename is not None:
            params_filename = os.path.basename(params_filename)

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()
    else:
        load_from_memory = True
        if params_filename is None:
            raise ValueError(
                "The path of params cannot be None when the directory path is None."
            )
        load_dirname = dirname
        program_desc_str = model_filename
        params_filename = params_filename
1396

1397
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1398
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1399 1400 1401
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1402
    load_persistables(executor, load_dirname, program, params_filename)
1403

T
tangwei12 已提交
1404
    if pserver_endpoints:
T
tangwei12 已提交
1405
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1406

1407 1408
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1409 1410 1411 1412 1413
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1414 1415


T
tangwei12 已提交
1416 1417 1418
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1419 1420
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1421
    program._sync_with_cpp()
T
tangwei12 已提交
1422
    return program
T
tangwei12 已提交
1423 1424


X
xuwei06 已提交
1425 1426
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1438

F
fengjiayi 已提交
1439 1440
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1441

1442
            import paddle.fluid as fluid
F
fengjiayi 已提交
1443 1444 1445
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1446

X
xuwei06 已提交
1447
    """
1448
    assert is_parameter(para), "The input variable is not parameter."
X
xuwei06 已提交
1449

X
xuwei06 已提交
1450 1451 1452 1453 1454 1455 1456 1457
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1458
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1459

F
fengjiayi 已提交
1460 1461 1462 1463 1464 1465 1466
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1467

F
fengjiayi 已提交
1468 1469
    Returns:
        numpy.array: The parameter's values.
1470

F
fengjiayi 已提交
1471 1472 1473
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
T
tianshuo78520a 已提交
1474
        AssertionError: If there is a variable named `name` in the
F
fengjiayi 已提交
1475
                        given program but it is not a Parameter.
1476

F
fengjiayi 已提交
1477 1478 1479
    Examples:
        .. code-block:: python

1480
            import paddle.fluid as fluid
F
fengjiayi 已提交
1481 1482
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1483 1484
    """
    if program is None:
Y
Yu Yang 已提交
1485
        program = default_main_program()
X
xuwei06 已提交
1486 1487
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593


def save(program, model_path):
    """
    This function save parameters, optimizer information and network description to  model_path.

    The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
    The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
    
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
1594
        "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received model_path is empty string."
H
hong 已提交
1595

1596 1597 1598 1599
    dir_name = os.path.dirname(model_path)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

Y
Yang Zhang 已提交
1600 1601 1602 1603
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1604
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1605 1606
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
    with open(model_path + ".pdparams", 'wb') as f:
1607
        pickle.dump(param_dict, f, protocol=2)
H
hong 已提交
1608 1609 1610 1611

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1612 1613
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
1614
        pickle.dump(opt_dict, f, protocol=2)
H
hong 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(program.desc)

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


H
hong 已提交
1625
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1626
    """
H
hong 已提交
1627
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1628
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1629

H
hong 已提交
1630 1631 1632 1633
    This function can also load model file saved with [ save_params, save_persistables, save_vars ]. 
    var_list can not be None  when load single model file 
    ( filename is not None When save_params, save_persistables or save_vars is called ).

H
hong 已提交
1634
    Args: 
1635 1636 1637 1638
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
        executor(Executor, optional): The executor used for initialize the parameter 
                                      When startup program is not run.
H
hong 已提交
1639 1640 1641
        var_list(list, optional): The variable list to load single model file saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None
H
hong 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

    Returns:
        None
        
     Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

            fluid.load( prog, "./temp")

    """

1658 1659
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
        _logger.warning(
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
                if var_path in binary_file_set:
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
                load_vars(
                    executor=executor, dirname=model_path, vars=loaded_var_list)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
1705
                    "Failed to load model file, please make sure model file is saved with the "
H
hong 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
1721
                        "loaded var [{}] is not in program variable list")
H
hong 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738

            dir_name, file_name = os.path.split(model_path)
            try:
                load_vars(
                    executor=executor,
                    dirname=dir_name,
                    vars=var_list,
                    filename=file_name)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError( "Failed to load model file , please make sure model file is saved with the " \
                                    "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                    "When these API called, filename CANNOT be None")

            return
Y
Yang Zhang 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
1753 1754

    parameter_list = list(filter(is_parameter, program.list_vars()))
1755 1756 1757 1758 1759

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
1760
    with open(parameter_file_name, 'rb') as f:
1761
        load_dict = pickle.load(f) if six.PY2 else pickle.load(
1762
            f, encoding='latin1')
Y
Yang Zhang 已提交
1763 1764 1765 1766 1767
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
1768 1769 1770 1771 1772

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
1773
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
1774
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
1775
            "Optimizer file [{}] not exits".format(opt_file_name)
1776 1777 1778 1779

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
1780 1781

        with open(opt_file_name, 'rb') as f:
1782
            load_dict = pickle.load(f) if six.PY2 else pickle.load(
1783
                f, encoding='latin1')
Y
Yang Zhang 已提交
1784 1785 1786 1787 1788
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
1789 1790


H
hong 已提交
1791
def load_program_state(model_path, var_list=None):
1792 1793 1794 1795 1796
    """
    Load program state from local file
    
    Args:
        model_path(str): The file prefix store the program
H
hong 已提交
1797 1798 1799 1800 1801
        var_list(list, optional): The variable list to load saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None.
                                  The var_list is only used to get name, 
                                  will not be modified.
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")
            
    """
H
hong 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"
    if not os.path.exists(parameter_file_name):
        # model file saved with fluid.save is not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
        _logger.warning(
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))

        var_name_list = []
        if var_list is None and os.path.isfile(model_path):
            raise ValueError(
                "var_list can not be None when model_path is a file type")

        for root, dirs, files in os.walk(model_path, topdown=False):
            for f in files:
                file_path = os.path.join(root, f)
                var_temp_name = os.path.relpath(file_path, model_path)
                var_temp_name = var_temp_name.replace("\\", "/")
                var_name_list.append(var_temp_name)

        with _load_program_scope():
            load_prog = Program()
            load_block = load_prog.global_block()

            def clone_var_to_block(block, var):
                if not isinstance(var, Variable):
                    raise TypeError("value in var_list must be variable")
                return block.create_var(
                    name=var.name,
                    shape=var.shape,
                    dtype=var.dtype,
                    type=var.type,
                    lod_level=var.lod_level
                    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR else
                    None,
                    persistable=True)

            loaded_var_list = []

            if var_list is not None:
                for var in var_list:
                    loaded_var_list.append(clone_var_to_block(load_block, var))
            else:
                for var_name in var_name_list:
                    loaded_var_list.append(
                        load_block.create_var(
                            name=var_name, persistable=True))

            place = paddle.fluid.CPUPlace()
            exe = paddle.fluid.Executor(place)

            try:
                if os.path.isfile(model_path):
                    dir_name, file_name = os.path.split(model_path)
                else:
                    dir_name = model_path
                    file_name = None
                load_vars(
                    executor=exe,
                    dirname=dir_name,
                    vars=loaded_var_list,
                    filename=file_name)
            except:
                raise RuntimeError(
                    "Failed to load model file , please make sure model file is saved with the "
                    "following APIs: save_params, save_persistables, save_vars")
            res_dict = {}
            for var in loaded_var_list:
                res_dict[var.name] = np.asarray(paddle.fluid.global_scope(
                ).find_var(var.name).get_tensor())

            return res_dict

1903
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
1904
        "Parameter file [{}] not exits".format(parameter_file_name)
1905 1906

    with open(parameter_file_name, 'rb') as f:
1907
        para_dict = pickle.load(f) if six.PY2 else pickle.load(
1908
            f, encoding='latin1')
1909

H
hong 已提交
1910
    opt_file_name = model_prefix + ".pdopt"
1911 1912
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
1913
            opti_dict = pickle.load(f) if six.PY2 else pickle.load(
1914
                f, encoding='latin1')
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

        para_dict.update(opti_dict)

    return para_dict


def set_program_state(program, state_dict):
    """
    Set program parameter from state_dict

    An exception will throw if shape or dtype of the parameters is not match. 

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
    Returns: 
        None
    
    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")

H
hong 已提交
1951 1952
            fluid.set_program_state( prog, program_state)

1953 1954 1955 1956 1957 1958 1959
    """
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
1960
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
1961 1962 1963 1964
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
1965
            assert orig_para_np.shape == new_para_np.shape, \
1966
                "Parameter's shape does not match, the Program requires a parameter with the shape of ({}), " \
T
tangwei12 已提交
1967
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
1968
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
1969
            assert orig_para_np.dtype == new_para_np.dtype, \
1970
                "Parameter's data type does not match, the Program requires a parameter with a dtype of ({}), " \
T
tangwei12 已提交
1971
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
1972 1973 1974 1975 1976 1977
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

            assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
T
tangwei12 已提交
1978
                "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
            "This list is not set, Because of Paramerter not found in program. There are: {}".
            format(" ".join(unused_para_list)))