io.py 43.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
T
tangwei12 已提交
19 20
import time
import shutil
21
import six
22
from functools import reduce
23

X
Xin Pan 已提交
24
from paddle.fluid.executor import Executor
25
from paddle.fluid.evaluator import Evaluator
26
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable
K
fix bug  
Kexin Zhao 已提交
27
from . import core
28 29

__all__ = [
T
tangwei12 已提交
30
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
31
    'load_persistables', 'save_inference_model', 'load_inference_model'
32 33 34 35
]


def is_parameter(var):
F
fengjiayi 已提交
36 37
    """
    Check whether the given variable is an instance of Parameter.
38 39

    Args:
F
fengjiayi 已提交
40
        var(Variable): The variable to be checked.
41 42

    Returns:
F
fengjiayi 已提交
43 44 45 46 47 48 49 50
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
51
    """
52 53 54 55
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

69
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
70 71
            res = fluid.io.is_persistable(param)
    """
72
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
73 74
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
75
        return False
76 77 78 79 80 81 82 83
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
84
        dtype=var.dtype,
85 86 87 88 89
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


90 91 92 93 94
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
95
              filename=None):
96
    """
F
fengjiayi 已提交
97 98
    Save variables to the given directory by executor.

99 100 101 102
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
103
    are assigned, the `main_program` and the `predicate` will be ignored.
104

105 106 107
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
108
    use `filename` to specify it.
109

F
fengjiayi 已提交
110 111 112
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
113 114
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
115 116
                                    be used automatically.
                                    Default: None
117
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
118 119
                                   It has a higher priority than the `main_program`.
                                   Default: None
120 121 122 123
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
124 125
                                  `vars` is None).
                                  Default: None
126
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res

            prog = fluid.default_main_program()
            fluid.io.save_vars(executor=exe, dirname=path, main_program=prog,
C
chengduo 已提交
149
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
150 151 152 153 154 155
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
156
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
157 158 159
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
            # saved in the same file named 'var_file' in the path "./my_paddle_model".
160 161
    """
    if vars is None:
162
        if main_program is None:
Y
Yu Yang 已提交
163
            main_program = default_main_program()
164
        if not isinstance(main_program, Program):
165 166 167 168
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
169
            main_program=main_program,
170
            dirname=dirname,
171
            vars=list(filter(predicate, main_program.list_vars())),
172
            filename=filename)
173 174 175
    else:
        save_program = Program()
        save_block = save_program.global_block()
176

177 178 179 180 181
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

182
        save_var_map = {}
183
        for each_var in vars:
184 185 186
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
187
            new_var = _clone_var_in_block_(save_block, each_var)
188
            if filename is None:
189 190 191 192 193 194 195 196
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                save_var_map[new_var.name] = new_var

197
        if filename is not None:
198 199 200 201
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

202
            save_block.append_op(
203 204
                type='save_combine',
                inputs={'X': save_var_list},
205
                outputs={},
206
                attrs={'file_path': os.path.join(dirname, filename)})
207

208 209 210
        executor.run(save_program)


211
def save_params(executor, dirname, main_program=None, filename=None):
212
    """
F
fengjiayi 已提交
213 214 215
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

216 217 218
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
219 220
    the file name.

221 222 223
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
F
fengjiayi 已提交
224 225 226 227 228 229 230 231 232
    and `load_persistables()` instead.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
233 234
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
235 236 237 238 239 240 241 242 243 244 245 246
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
247
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
248
                                 main_program=None)
249 250 251 252
    """
    save_vars(
        executor,
        dirname=dirname,
253
        main_program=main_program,
254
        vars=None,
255
        predicate=is_parameter,
256
        filename=filename)
257 258


259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


439
def save_persistables(executor, dirname, main_program=None, filename=None):
440
    """
441 442
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
443 444
    or file `filename`.

445 446 447
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
448 449 450 451 452
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
453 454
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
455 456
                                    program will be used automatically.
                                    Default: None
457
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
458 459 460 461 462 463 464 465 466 467 468 469
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
470
            fluid.io.save_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
471
                                       main_program=None)
472
    """
473 474 475 476 477 478 479 480 481 482 483 484 485

    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)

    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
486 487


488 489 490 491 492
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
493
              filename=None):
494
    """
F
fengjiayi 已提交
495 496
    Load variables from the given directory by executor.

497 498 499 500
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
501 502
    are assigned, the `main_program` and the `predicate` will be ignored.

503 504 505
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
506
    use `filename` to specify it.
507

F
fengjiayi 已提交
508 509 510
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
511 512
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
513 514
                                    be used automatically.
                                    Default: None
515
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
516 517
                                   It has a higher priority than the `main_program`.
                                   Default: None
518 519 520 521
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
522 523
                                  `vars` is None).
                                  Default: None
524
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
544

F
fengjiayi 已提交
545 546
            prog = fluid.default_main_program()
            fluid.io.load_vars(executor=exe, dirname=path, main_program=prog,
C
chengduo 已提交
547
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
548 549 550 551 552 553
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
554
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
555
                               filename="vars_file")
556
            # var_a, var_b and var_c will be loaded. And they are supposed to haven
F
fengjiayi 已提交
557
            # been saved in the same file named 'var_file' in the path "./my_paddle_model".
558 559
    """
    if vars is None:
560
        if main_program is None:
Y
Yu Yang 已提交
561
            main_program = default_main_program()
562
        if not isinstance(main_program, Program):
563 564 565 566 567
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
            dirname=dirname,
T
tangwei12 已提交
568
            main_program=main_program,
569
            vars=list(filter(predicate, main_program.list_vars())),
570
            filename=filename)
571 572 573
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
574

575 576 577 578 579
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

580
        load_var_map = {}
581 582
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
583 584
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
585
            new_var = _clone_var_in_block_(load_block, each_var)
586
            if filename is None:
587 588 589 590 591 592 593 594
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                load_var_map[new_var.name] = new_var

595
        if filename is not None:
596 597 598 599
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

600
            load_block.append_op(
601
                type='load_combine',
602
                inputs={},
603
                outputs={"Out": load_var_list},
604
                attrs={'file_path': os.path.join(dirname, filename)})
605 606 607
        executor.run(load_prog)


608
def load_params(executor, dirname, main_program=None, filename=None):
609
    """
F
fengjiayi 已提交
610
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
611
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
612 613
    the file `filename`.

614 615 616
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
617 618
    `filename` to specify the file name.

619 620 621 622
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
F
fengjiayi 已提交
623 624 625 626 627 628 629 630

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
631
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
632 633 634 635 636 637 638 639 640 641 642 643
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
644
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
645
                                main_program=None)
646 647
    """
    load_vars(
648 649 650
        executor,
        dirname=dirname,
        main_program=main_program,
651
        predicate=is_parameter,
652
        filename=filename)
653 654


655
def load_persistables(executor, dirname, main_program=None, filename=None):
656
    """
657 658
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
659 660
    `dirname` or the file `filename`.

661 662 663
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
664 665 666 667 668
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
669 670
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
671 672
                                    program will be used automatically.
                                    Default: None
673
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
674 675 676 677 678 679 680 681 682 683 684 685
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
686
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
687
                                       main_program=None)
688
    """
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
817 818


819 820 821
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
822 823 824
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
825 826
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
827 828 829
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
830

831
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
832
        out = global_block.var(name)
W
Wu Yi 已提交
833
        global_block._prepend_op(
K
Kexin Zhao 已提交
834 835
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
836
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
837 838 839
            attrs={'col': i})


840 841 842
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
843 844
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
845 846 847
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
848

849
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
850 851 852 853 854 855 856
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


857 858 859 860
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
861
                         main_program=None,
862
                         model_filename=None,
863 864
                         params_filename=None,
                         export_for_deployment=True):
865
    """
F
fengjiayi 已提交
866 867 868 869 870
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.

    Args:
        dirname(str): The directory path to save the inference model.
871
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
872
                                     during inference.
873
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
874 875
                                     results.
        executor(Executor): The executor that saves the inference model.
876 877
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
878 879
                                    the default main program will be used.
                                    Default: None.
880 881
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
882
                                  `__model__` will be used.
883 884
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
885
                                   in separate files .
X
Xin Pan 已提交
886 887 888 889 890
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
891

F
fengjiayi 已提交
892 893 894 895 896 897 898 899 900
    Returns:
        None

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
901

F
fengjiayi 已提交
902 903 904 905 906
            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[predict_var], executor=exe)

907 908 909
            # In this exsample, the function will prune the default main program
            # to make it suitable for infering the `predict_var`. The pruned
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
910
            # and parameters are going to be saved in separate files under folder
911
            # "./infer_model".
912 913

    """
M
minqiyang 已提交
914
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
915
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
916
    elif export_for_deployment:
Q
Qiao Longfei 已提交
917
        if len(feeded_var_names) > 0:
918
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
919
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
920
                    isinstance(name, six.string_types)
921
                    for name in feeded_var_names)):
M
minqiyang 已提交
922
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
923 924

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
925
        target_vars = [target_vars]
X
Xin Pan 已提交
926
    elif export_for_deployment:
927 928
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
929 930
            raise ValueError("'target_vars' should be a list of Variable.")

931
    if main_program is None:
Y
Yu Yang 已提交
932
        main_program = default_main_program()
X
Xin Pan 已提交
933

934 935
    # when a pserver and a trainer running on the same machine, mkdir may conflict
    try:
936
        os.makedirs(dirname)
937 938 939 940
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
941 942 943 944 945
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
    model_basename = os.path.join(dirname, model_basename)
946

X
Xin Pan 已提交
947 948 949 950
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
951 952 953

    origin_program = main_program.clone()

X
Xin Pan 已提交
954
    if export_for_deployment:
X
Xin Pan 已提交
955 956
        main_program = main_program.clone()
        global_block = main_program.global_block()
957
        need_to_remove_op_index = []
X
Xin Pan 已提交
958 959 960
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
961 962 963 964 965
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
966
        main_program.desc.flush()
X
Xin Pan 已提交
967

X
Xin Pan 已提交
968 969
        main_program = main_program._prune(targets=target_vars)
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
970 971
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
972 973 974 975 976
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
977 978 979
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
980 981
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
982

983 984
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
985 986
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
987

X
fix  
Xin Pan 已提交
988 989
    save_persistables(executor, dirname, main_program, params_filename)

990

991 992 993
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
994 995
                         params_filename=None,
                         pserver_endpoints=None):
996 997 998
    """
    Load inference model from a directory

F
fengjiayi 已提交
999 1000 1001 1002
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1003
                                  If it is None, the default filename
F
fengjiayi 已提交
1004 1005 1006
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1007 1008 1009
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1010
                                   files, set it as 'None'.
1011 1012 1013 1014
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1015 1016 1017

    Returns:
        tuple: The return of this function is a tuple with three elements:
1018 1019 1020 1021 1022
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
1033
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1034
            [inference_program, feed_target_names, fetch_targets] =
F
fengjiayi 已提交
1035 1036 1037 1038 1039
                fluid.io.load_inference_model(dirname=path, executor=exe)
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1040 1041 1042
            # if we need lookup table, we will use:
            fluid.io.load_inference_model(dirname=path, executor=exe, pserver_endpoints=endpoints)

1043 1044 1045 1046 1047
            # In this exsample, the inference program was saved in the
            # "./infer_model/__model__" and parameters were saved in
            # separate files in ""./infer_model".
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1048
            # program to get the inference result.
1049

1050 1051 1052 1053
    """
    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

1054 1055
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1056
    else:
1057 1058 1059 1060 1061
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1062

1063
    with open(model_filename, "rb") as f:
1064 1065
        program_desc_str = f.read()

1066
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1067
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1068 1069 1070
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
1071
    load_persistables(executor, dirname, program, params_filename)
1072

T
tangwei12 已提交
1073
    if pserver_endpoints:
T
tangwei12 已提交
1074
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1075

1076 1077
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1078 1079 1080 1081 1082
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1083 1084


T
tangwei12 已提交
1085 1086 1087
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1088 1089
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1090
    program._sync_with_cpp()
T
tangwei12 已提交
1091
    return program
T
tangwei12 已提交
1092 1093


X
xuwei06 已提交
1094 1095
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1107

F
fengjiayi 已提交
1108 1109
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1110

F
fengjiayi 已提交
1111 1112 1113
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1114

X
xuwei06 已提交
1115
    """
X
xuwei06 已提交
1116 1117
    assert is_parameter(para)

X
xuwei06 已提交
1118 1119 1120 1121 1122 1123 1124 1125
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1126
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1127

F
fengjiayi 已提交
1128 1129 1130 1131 1132 1133 1134
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1135

F
fengjiayi 已提交
1136 1137
    Returns:
        numpy.array: The parameter's values.
1138

F
fengjiayi 已提交
1139 1140 1141 1142 1143
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1144

F
fengjiayi 已提交
1145 1146 1147 1148 1149
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1150 1151
    """
    if program is None:
Y
Yu Yang 已提交
1152
        program = default_main_program()
X
xuwei06 已提交
1153 1154
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)